Transfer gyro low pass filter to estimate.ino

Separate raw gyro data and filtered rates to different variables
This commit is contained in:
Oleg Kalachev 2024-04-20 14:52:01 +03:00
parent 24e8569905
commit 41a9a95747
8 changed files with 21 additions and 15 deletions

View File

@ -8,9 +8,10 @@ The main loop is running at 1000 Hz. All the dataflow is happening through globa
* `t` *(float)* current step time, *s*.
* `dt` *(float)* — time delta between the current and previous steps, *s*.
* `rates` *(Vector)* angular rates from the gyroscope, *rad/s*.
* `gyro` *(Vector)* — data from the gyroscope, *rad/s*.
* `acc` *(Vector)* — acceleration data from the accelerometer, *m/s<sup>2</sup>*.
* `attitude` *(Quaternion)* — current estimated attitude (orientation) of drone.
* `rates` *(Vector)* — filtered angular rates, *rad/s*.
* `attitude` *(Quaternion)* — estimated attitude (orientation) of drone.
* `controls` *(float[])* user control inputs from the RC, normalized to [-1, 1] range.
* `motors` *(float[])* motor outputs, normalized to [-1, 1] range; reverse rotation is possible.

View File

@ -32,7 +32,6 @@
#define YAWRATE_MAX radians(360)
#define MAX_TILT radians(30)
#define RATES_LFP_ALPHA 0.2 // cutoff frequency ~ 40 Hz
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
enum { MANUAL, ACRO, STAB, USER } mode = STAB;
@ -46,8 +45,6 @@ PID rollPID(ROLL_P, ROLL_I, ROLL_D);
PID pitchPID(PITCH_P, PITCH_I, PITCH_D);
PID yawPID(YAW_P, 0, 0);
LowPassFilter<Vector> ratesFilter(RATES_LFP_ALPHA);
Quaternion attitudeTarget;
Vector ratesTarget;
Vector torqueTarget;
@ -138,8 +135,7 @@ void controlRate() {
return;
}
Vector ratesFiltered = ratesFilter.update(rates);
Vector error = ratesTarget - ratesFiltered;
Vector error = ratesTarget - rates;
// Calculate desired torque, where 0 - no torque, 1 - maximum possible torque
torqueTarget.x = rollRatePID.update(error.x, dt);

View File

@ -5,9 +5,13 @@
#include "quaternion.h"
#include "vector.h"
#include "lpf.h"
#define ONE_G 9.807f
#define WEIGHT_ACC 0.5f
#define RATES_LFP_ALPHA 0.2 // cutoff frequency ~ 40 Hz
LowPassFilter<Vector> ratesFilter(RATES_LFP_ALPHA);
void estimate() {
applyGyro();
@ -16,7 +20,10 @@ void estimate() {
}
void applyGyro() {
// applying gyro
// filter gyro to get angular rates
rates = ratesFilter.update(gyro);
// apply rates to attitude
attitude *= Quaternion::fromAngularRates(rates * dt);
attitude.normalize();
}

View File

@ -28,8 +28,9 @@ float dt; // time delta from previous step, s
float loopFreq; // loop frequency, Hz
int16_t channels[16]; // raw rc channels
float controls[RC_CHANNELS]; // normalized controls in range [-1..1] ([0..1] for throttle)
Vector rates; // angular rates, rad/s
Vector gyro; // gyroscope data
Vector acc; // accelerometer data, m/s/s
Vector rates; // filtered angular rates, rad/s
Quaternion attitude; // estimated attitude
float motors[4]; // normalized motors thrust in range [-1..1]

View File

@ -36,11 +36,11 @@ void configureIMU() {
void readIMU() {
IMU.waitForData();
IMU.getGyro(rates.x, rates.y, rates.z);
IMU.getGyro(gyro.x, gyro.y, gyro.z);
IMU.getAccel(acc.x, acc.y, acc.z);
// apply scale and bias
acc = (acc - accBias) / accScale;
rates = rates - gyroBias;
gyro = gyro - gyroBias;
}
void calibrateGyro() {
@ -51,8 +51,8 @@ void calibrateGyro() {
gyroBias = Vector(0, 0, 0);
for (int i = 0; i < samples; i++) {
IMU.waitForData();
IMU.getGyro(rates.x, rates.y, rates.z);
gyroBias = gyroBias + rates;
IMU.getGyro(gyro.x, gyro.y, gyro.z);
gyroBias = gyroBias + gyro;
}
gyroBias = gyroBias / samples;

View File

@ -55,7 +55,7 @@ void sendMavlink() {
mavlink_msg_scaled_imu_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time,
acc.x * 1000, acc.y * 1000, acc.z * 1000,
rates.x * 1000, rates.y * 1000, rates.z * 1000,
gyro.x * 1000, gyro.y * 1000, gyro.z * 1000,
0, 0, 0, 0);
sendMessage(&msg);
}

View File

@ -26,6 +26,7 @@ float motors[4];
int16_t channels[16]; // raw rc channels
float controls[RC_CHANNELS];
Vector acc;
Vector gyro;
Vector rates;
Quaternion attitude;

View File

@ -64,7 +64,7 @@ public:
step();
// read imu
rates = flu2frd(imu->AngularVelocity());
gyro = flu2frd(imu->AngularVelocity());
acc = this->accFilter.update(flu2frd(imu->LinearAcceleration()));
// read rc