Remove unnecessary documentation files

This commit is contained in:
Oleg Kalachev 2025-07-10 06:14:22 +03:00
parent cf3d4d7ced
commit 4d1f9de872
2 changed files with 0 additions and 63 deletions

View File

@ -1,33 +0,0 @@
# Troubleshooting
## The sketch doesn't compile
Do the following:
* **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](build.md#firmware).
* **Check libraries**. Install all the required libraries from the tutorial. Make sure there are no MPU9250 or other peripherals libraries that may conflict with the ones used in the tutorial.
## The drone doesn't fly
Do the following:
* **Check the battery voltage**. Use a multimeter to measure the battery voltage. It should be in range of 3.7-4.2 V.
* **Check if there are some startup errors**. Connect the ESP32 to the computer and check the Serial Monitor output. Use the Reset button to make sure you see the whole ESP32 output.
* **Make sure correct IMU model is chosen**. If using ICM-20948 board, change `MPU9250` to `ICM20948` everywhere in the `imu.ino` file.
* **Check if the CLI is working**. Perform `help` command in Serial Monitor. You should see the list of available commands.
* **Configure QGroundControl correctly before connecting to the drone** if you use it to control the drone. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
* **Make sure you're not moving the drone several seconds after the power on**. The drone calibrates its gyroscope on the start so it should stay still for a while.
* **Check the IMU sample rate**. Perform `imu` command. The `rate` field should be about 1000 (Hz).
* **Check the IMU data**. Perform `imu` command, check raw accelerometer and gyro output. The output should change as you move the drone.
* **Calibrate the accelerometer.** if is wasn't done before. Perform `ca` command and put the results to `imu.ino` file.
* **Check the attitude estimation**. Connect to the drone using QGroundControl. Rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct.
* **Check the IMU orientation is set correctly**. If the attitude estimation is rotated, make sure `rotateIMU` function is defined correctly in `imu.ino` file.
* **Check the motors**. Perform the following commands using Serial Monitor:
* `mfr` — should rotate front right motor (counter-clockwise).
* `mfl` — should rotate front left motor (clockwise).
* `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise).
* **Calibrate the RC** if you use it. Perform `rc` command and put the results to `rc.ino` file.
* **Check the RC data** if you use it. Use `rc` command, `Control` should show correct values between -1 and 1, and between 0 and 1 for the throttle.
* **Check the IMU output using QGroundControl**. Connect to the drone using QGroundControl on your computer. Go to the *Analyze* tab, *MAVLINK Inspector*. Plot the data from the `SCALED_IMU` message. The gyroscope and accelerometer data should change according to the drone movement.
* **Check the gyroscope only attitude estimation**. Comment out `applyAcc();` line in `estimate.ino` and check if the attitude estimation in QGroundControl. It should be stable, but only drift very slowly.

View File

@ -1,30 +0,0 @@
# Flix version 0
Flix version 0 (obsolete):
<img src="img/flix.jpg" width=500 alt="Flix quadcopter">
## Components list
|Type|Part|Image|Quantity|
|-|-|-|-|
|Microcontroller board|ESP32 Mini|<img src="img/esp32.jpg" width=100>|1|
|IMU and barometer² board|GY-91 (or other MPU-9250 board)|<img src="img/gy-91.jpg" width=100>|1|
|Quadcopter frame|K100|<img src="img/frame.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (**shaft 0.8mm!**)|<img src="img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="img/prop.jpg" width=100>|4|
|Motor ESC|2.7A 1S Dual Way Micro Brush ESC|<img src="img/esc.jpg" width=100>|4|
|RC transmitter|KINGKONG TINY X8|<img src="img/tx.jpg" width=100>|1|
|RC receiver|DF500 (SBUS)|<img src="img/rx.jpg" width=100>|1|
|~~SBUS inverter~~*||<img src="img/inv.jpg" width=100>|~~1~~|
|Battery|3.7 Li-Po 850 MaH 60C|||
|Battery charger||<img src="img/charger.jpg" width=100>|1|
|Wires, connectors, tape, ...|||
*\* — not needed as ESP32 supports [software pin inversion](https://github.com/bolderflight/sbus#inverted-serial).*
## Schematics
<img src="img/schematics.svg" width=800 alt="Flix schematics">
You can also check a user contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764574482511443&cot=14) of the drone.