Use FLU as the main coordinate system instead of FRD

Corresponding to the IMU orientation in the new version
This commit is contained in:
Oleg Kalachev 2024-10-23 09:30:49 +03:00
parent f46460e53d
commit abcc9b96de
7 changed files with 27 additions and 32 deletions

View File

@ -81,22 +81,22 @@ void interpretRC() {
if (mode == ACRO) { if (mode == ACRO) {
yawMode = YAW_RATE; yawMode = YAW_RATE;
ratesTarget.x = controls[RC_CHANNEL_ROLL] * ROLLRATE_MAX; ratesTarget.x = controls[RC_CHANNEL_ROLL] * ROLLRATE_MAX;
ratesTarget.y = -controls[RC_CHANNEL_PITCH] * PITCHRATE_MAX; // up pitch stick means tilt clockwise in frd ratesTarget.y = controls[RC_CHANNEL_PITCH] * PITCHRATE_MAX;
ratesTarget.z = controls[RC_CHANNEL_YAW] * YAWRATE_MAX; ratesTarget.z = -controls[RC_CHANNEL_YAW] * YAWRATE_MAX; // positive yaw stick means clockwise rotation in FLU
} else if (mode == STAB) { } else if (mode == STAB) {
yawMode = controls[RC_CHANNEL_YAW] == 0 ? YAW : YAW_RATE; yawMode = controls[RC_CHANNEL_YAW] == 0 ? YAW : YAW_RATE;
attitudeTarget = Quaternion::fromEulerZYX(Vector( attitudeTarget = Quaternion::fromEulerZYX(Vector(
controls[RC_CHANNEL_ROLL] * MAX_TILT, controls[RC_CHANNEL_ROLL] * MAX_TILT,
-controls[RC_CHANNEL_PITCH] * MAX_TILT, controls[RC_CHANNEL_PITCH] * MAX_TILT,
attitudeTarget.getYaw())); attitudeTarget.getYaw()));
ratesTarget.z = controls[RC_CHANNEL_YAW] * YAWRATE_MAX; ratesTarget.z = -controls[RC_CHANNEL_YAW] * YAWRATE_MAX; // positive yaw stick means clockwise rotation in FLU
} else if (mode == MANUAL) { } else if (mode == MANUAL) {
// passthrough mode // passthrough mode
yawMode = YAW_RATE; yawMode = YAW_RATE;
torqueTarget = Vector(controls[RC_CHANNEL_ROLL], -controls[RC_CHANNEL_PITCH], controls[RC_CHANNEL_YAW]) * 0.01; torqueTarget = Vector(controls[RC_CHANNEL_ROLL], controls[RC_CHANNEL_PITCH], -controls[RC_CHANNEL_YAW]) * 0.01;
} }
if (yawMode == YAW_RATE || !motorsActive()) { if (yawMode == YAW_RATE || !motorsActive()) {
@ -113,7 +113,7 @@ void controlAttitude() {
return; return;
} }
const Vector up(0, 0, -1); const Vector up(0, 0, 1);
Vector upActual = attitude.rotate(up); Vector upActual = attitude.rotate(up);
Vector upTarget = attitudeTarget.rotate(up); Vector upTarget = attitudeTarget.rotate(up);
@ -150,10 +150,10 @@ void controlTorque() {
return; return;
} }
motors[MOTOR_FRONT_LEFT] = thrustTarget + torqueTarget.x + torqueTarget.y - torqueTarget.z; motors[MOTOR_FRONT_LEFT] = thrustTarget + torqueTarget.x - torqueTarget.y + torqueTarget.z;
motors[MOTOR_FRONT_RIGHT] = thrustTarget - torqueTarget.x + torqueTarget.y + torqueTarget.z; motors[MOTOR_FRONT_RIGHT] = thrustTarget - torqueTarget.x - torqueTarget.y - torqueTarget.z;
motors[MOTOR_REAR_LEFT] = thrustTarget + torqueTarget.x - torqueTarget.y + torqueTarget.z; motors[MOTOR_REAR_LEFT] = thrustTarget + torqueTarget.x + torqueTarget.y - torqueTarget.z;
motors[MOTOR_REAR_RIGHT] = thrustTarget - torqueTarget.x - torqueTarget.y - torqueTarget.z; motors[MOTOR_REAR_RIGHT] = thrustTarget - torqueTarget.x + torqueTarget.y + torqueTarget.z;
motors[0] = constrain(motors[0], 0, 1); motors[0] = constrain(motors[0], 0, 1);
motors[1] = constrain(motors[1], 0, 1); motors[1] = constrain(motors[1], 0, 1);

View File

@ -36,7 +36,7 @@ void applyAcc() {
if (!landed) return; if (!landed) return;
// calculate accelerometer correction // calculate accelerometer correction
Vector up = attitude.rotate(Vector(0, 0, -1)); Vector up = attitude.rotate(Vector(0, 0, 1));
Vector correction = Vector::angularRatesBetweenVectors(acc, up) * dt * WEIGHT_ACC; Vector correction = Vector::angularRatesBetweenVectors(acc, up) * dt * WEIGHT_ACC;
// apply correction // apply correction
@ -45,6 +45,6 @@ void applyAcc() {
} }
void signalizeHorizontality() { void signalizeHorizontality() {
float angle = Vector::angleBetweenVectors(attitude.rotate(Vector(0, 0, -1)), Vector(0, 0, -1)); float angle = Vector::angleBetweenVectors(attitude.rotate(Vector(0, 0, 1)), Vector(0, 0, 1));
setLED(angle < radians(15)); setLED(angle < radians(15));
} }

View File

@ -2,6 +2,9 @@
// Repository: https://github.com/okalachev/flix // Repository: https://github.com/okalachev/flix
// Work with the IMU sensor // Work with the IMU sensor
// IMU is oriented FLU (front-left-up) style.
// In case of FRD (front-right-down) orientation of the IMU, use this code:
// https://gist.github.com/okalachev/713db47e31bce643dbbc9539d166ce98.
#include <SPI.h> #include <SPI.h>
#include <MPU9250.h> #include <MPU9250.h>

View File

@ -38,8 +38,9 @@ void sendMavlink() {
lastFast = t; lastFast = t;
const float zeroQuat[] = {0, 0, 0, 0}; const float zeroQuat[] = {0, 0, 0, 0};
Quaternion attitudeFRD = FLU2FRD(attitude); // MAVLink uses FRD coordinate system
mavlink_msg_attitude_quaternion_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, mavlink_msg_attitude_quaternion_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
time, attitude.w, attitude.x, attitude.y, attitude.z, rates.x, rates.y, rates.z, zeroQuat); time, attitudeFRD.w, attitudeFRD.x, attitudeFRD.y, attitudeFRD.z, rates.x, rates.y, rates.z, zeroQuat);
sendMessage(&msg); sendMessage(&msg);
mavlink_msg_rc_channels_scaled_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time, 0, mavlink_msg_rc_channels_scaled_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time, 0,
@ -97,4 +98,9 @@ void handleMavlink(const void *_msg) {
} }
} }
// Convert Forward-Left-Up to Forward-Right-Down quaternion
inline Quaternion FLU2FRD(const Quaternion &q) {
return Quaternion(q.w, q.x, -q.y, -q.z);
}
#endif #endif

View File

@ -49,6 +49,7 @@ void sendMavlink();
void sendMessage(const void *msg); void sendMessage(const void *msg);
void receiveMavlink(); void receiveMavlink();
void handleMavlink(const void *_msg); void handleMavlink(const void *_msg);
inline Quaternion FLU2FRD(const Quaternion &q);
// mocks // mocks
void setLED(bool on) {}; void setLED(bool on) {};

View File

@ -17,7 +17,6 @@
#include "Arduino.h" #include "Arduino.h"
#include "flix.h" #include "flix.h"
#include "util.h"
#include "util.ino" #include "util.ino"
#include "rc.ino" #include "rc.ino"
#include "time.ino" #include "time.ino"
@ -63,9 +62,9 @@ public:
__micros = model->GetWorld()->SimTime().Double() * 1000000; __micros = model->GetWorld()->SimTime().Double() * 1000000;
step(); step();
// read imu // read virtual imu
gyro = flu2frd(imu->AngularVelocity()); gyro = Vector(imu->AngularVelocity().X(), imu->AngularVelocity().Y(), imu->AngularVelocity().Z());
acc = this->accFilter.update(flu2frd(imu->LinearAcceleration())); acc = this->accFilter.update(Vector(imu->LinearAcceleration().X(), imu->LinearAcceleration().Y(), imu->LinearAcceleration().Z()));
// read rc // read rc
readRC(); readRC();
@ -75,7 +74,7 @@ public:
estimate(); estimate();
// correct yaw to the actual yaw // correct yaw to the actual yaw
attitude.setYaw(-this->model->WorldPose().Yaw()); attitude.setYaw(this->model->WorldPose().Yaw());
control(); control();
parseInput(); parseInput();

View File

@ -1,14 +0,0 @@
#include <ignition/math/Vector3.hh>
#include <ignition/math/Pose3.hh>
using ignition::math::Vector3d;
using ignition::math::Pose3d;
Pose3d flu2frd(const Pose3d& p) {
return ignition::math::Pose3d(p.Pos().X(), -p.Pos().Y(), -p.Pos().Z(),
p.Rot().W(), p.Rot().X(), -p.Rot().Y(), -p.Rot().Z());
}
Vector flu2frd(const Vector3d& v) {
return Vector(v.X(), -v.Y(), -v.Z());
}