Many updates to documentation

Updates to main readme.
Add much more info to usage article.
Move simulator building to simulation's readme.
Improve assembly article.
Many fixes.
Updates in diagrams.
This commit is contained in:
Oleg Kalachev
2025-11-06 13:46:25 +03:00
parent 2e7330d2f5
commit f1b993d719
14 changed files with 344 additions and 186 deletions

View File

@@ -1,130 +1,36 @@
# Usage: build, setup and flight
To use Flix, you need to build the firmware and upload it to the ESP32 board. For simulation, you need to build and run the simulator.
To fly Flix quadcopter, you need to build the firmware, upload it to the ESP32 board, and set up the drone for flight.
For the start, clone the repository using git:
To get the firmware sources, clone the repository using git:
```bash
git clone https://github.com/okalachev/flix.git
cd flix
git clone https://github.com/okalachev/flix.git && cd flix
```
## Simulation
Beginners can [download the source code as a ZIP archive](https://github.com/okalachev/flix/archive/refs/heads/master.zip).
### Ubuntu
## Building the firmware
The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you have a newer version, consider using a virtual machine.
1. Install Arduino CLI:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Install Gazebo 11:
```bash
sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget https://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt-get install -y gazebo11 libgazebo11-dev
```
Set up your Gazebo environment variables:
```bash
echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc
source ~/.bashrc
```
3. Install SDL2 and other dependencies:
```bash
sudo apt-get update && sudo apt-get install build-essential libsdl2-dev
```
4. Add your user to the `input` group to enable joystick support (you need to re-login after this command):
```bash
sudo usermod -a -G input $USER
```
5. Run the simulation:
```bash
make simulator
```
### macOS
1. Install Homebrew package manager, if you don't have it installed:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
2. Install Arduino CLI, Gazebo 11 and SDL2:
```bash
brew tap osrf/simulation
brew install arduino-cli
brew install gazebo11
brew install sdl2
```
Set up your Gazebo environment variables:
```bash
echo "source /opt/homebrew/share/gazebo/setup.sh" >> ~/.zshrc
source ~/.zshrc
```
3. Run the simulation:
```bash
make simulator
```
### Setup
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone. For **iOS**, use [QGroundControl build from TAJISOFT](https://apps.apple.com/ru/app/qgc-from-tajisoft/id1618653051).
2. Connect your smartphone to the same Wi-Fi network as the machine running the simulator.
3. If you're using a virtual machine, make sure that its network is set to the **bridged** mode with Wi-Fi adapter selected.
4. Run the simulation.
5. Open QGroundControl app. It should connect and begin showing the virtual drone's telemetry automatically.
6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
7. Use the virtual joystick to fly the drone!
#### Control with USB remote control
1. Connect your USB remote control to the machine running the simulator.
2. Run the simulation.
3. Calibrate the RC using `cr` command in the command line interface.
4. Run the simulation again.
5. Use the USB remote control to fly the drone!
## Firmware
You can build and upload the firmware using either **Arduino IDE** (easier for beginners) or a **command line**.
### Arduino IDE (Windows, Linux, macOS)
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
2. *Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).*
3. Install ESP32 core, version 3.2.0. See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.16.
5. Clone the project using git or [download the source code as a ZIP archive](https://codeload.github.com/okalachev/flix/zip/refs/heads/master).
6. Open the downloaded Arduino sketch `flix/flix.ino` in Arduino IDE.
7. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
8. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
5. Open the `flix/flix.ino` sketch from downloaded firmware sources in Arduino IDE.
6. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
7. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
### Command line (Windows, Linux, macOS)
1. [Install Arduino CLI](https://arduino.github.io/arduino-cli/installation/).
On Linux, use:
On Linux, install it like this:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
@@ -149,19 +55,84 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
make upload monitor
```
See other available Make commands in the [Makefile](../Makefile).
See other available Make commands in [Makefile](../Makefile).
> [!TIP]
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including CLI and QGroundControl connection should work.
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including console and QGroundControl connection should work.
### Setup
## Before first flight
### Choose the IMU model
In case if using different IMU model than MPU9250, change `imu` variable declaration in the `imu.ino`:
```cpp
ICM20948 imu(SPI); // For ICM-20948
MPU6050 imu(Wire); // For MPU-6050
```
### Setup the IMU orientation
The IMU orientation is defined in `rotateIMU` function in the `imu.ino` file. Change it so it converts the IMU axes to the drone's axes correctly. **Drone axes are X forward, Y left, Z up.**
See various [IMU axes orientations table](https://github.com/okalachev/flixperiph/?tab=readme-ov-file#imu-axes-orientation) to help you set up the correct orientation.
### Connect using QGroundControl
QGroundControl is a ground control station software that can be used to monitor and control the drone.
1. Install mobile or desktop version of [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html).
2. Power up the drone.
3. Connect your computer or smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically
### Access console
The console is a command line interface (CLI) that allows to interact with the drone, change parameters, and perform various actions. There are two ways of accessing the console: using **serial port** or using **QGroundControl (wirelessly)**.
To access the console using serial port:
1. Connect the ESP32 board to the computer using USB cable.
2. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
3. In Arduino IDE, make sure the baudrate is set to 115200.
To access the console wirelessly using QGroundControl:
1. Connect to the drone using QGroundControl app.
2. Go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Analyze Tools* ⇒ *MAVLink Console*.
<img src="img/cli.png" width="400">
Use `help` command to see the list of available commands.
### Calibrate accelerometer
Before flight you need to calibrate the accelerometer:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
1. Access the console using QGroundControl (more convenient) or Serial Monitor.
2. Type `ca` command there and follow the instructions.
#### Control with smartphone
### Check everything works
1. Check the IMU is working: perform `imu` command and check its output:
* The `status` field should be `OK`.
* The `rate` field should be about 1000 (Hz).
* The `accel` and `gyro` fields should change as you move the drone.
2. Check the attitude estimation: connect to the drone using QGroundControl, rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct. Attitude indicator in QGroundControl is shown below:
<img src="img/qgc-attitude.png" height="200">
3. Perform motor tests in the console. **Remove the propellers before this!** Use the following commands:
* `mfr` — should rotate front right motor (counter-clockwise).
* `mfl` — should rotate front left motor (clockwise).
* `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise).
## Setup remote control
There are several ways to control the drone's flight: using **smartphone** (Wi-Fi), using **standard radio remote control**, or using **USB remote control** (Wi-Fi).
### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
@@ -173,7 +144,7 @@ Before flight you need to calibrate the accelerometer:
> [!TIP]
> Decrease `TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
#### Control with remote control
### Control with remote control
Before flight using remote control, you need to calibrate it:
@@ -181,7 +152,7 @@ Before flight using remote control, you need to calibrate it:
2. Type `cr` command there and follow the instructions.
3. Use the remote control to fly the drone!
#### Control with USB remote control (Wi-Fi)
### Control with USB remote control
If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it.
@@ -193,9 +164,6 @@ If your drone doesn't have RC receiver installed, you can use USB remote control
6. Go the the QGroundControl menu ⇒ *Vehicle Setup**Joystick*. Calibrate you USB remote control there.
7. Use the USB remote control to fly the drone!
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
## Flight
For both virtual sticks and a physical joystick, the default control scheme is left stick for throttle and yaw and right stick for pitch and roll:
@@ -214,6 +182,9 @@ When finished flying, **disarm** the drone, moving the left stick to the bottom
<img src="img/disarming.svg" width="150">
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
### Flight modes
Flight mode is changed using mode switch on the remote control or using the command line.
@@ -241,12 +212,6 @@ If the pilot moves the control sticks, the drone will switch back to *STAB* mode
## Adjusting parameters
You can adjust some of the drone's parameters (include PID coefficients) in QGroundControl app. In order to do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Parameters*.
You can adjust some of the drone's parameters (include PID coefficients) in QGroundControl. In order to do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Parameters*.
<img src="img/parameters.png" width="400">
## CLI access
In addition to accessing the drone's command line interface (CLI) using the serial port, you can also access it with QGroundControl using Wi-Fi connection. To do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Analyze Tools**MAVLink Console*.
<img src="img/cli.png" width="400">