// Copyright (c) 2023 Oleg Kalachev // Repository: https://github.com/okalachev/flix // Gazebo plugin for running Arduino code and simulating the drone #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Arduino.h" #include "flix.h" #include "util.ino" #include "joystick.h" #include "time.ino" #include "estimate.ino" #include "control.ino" #include "log.ino" #include "cli.ino" #include "debug.ino" #include "lpf.h" using ignition::math::Vector3d; using ignition::math::Pose3d; using namespace gazebo; using namespace std; Pose3d flu2frd(const Pose3d& p) { return ignition::math::Pose3d(p.Pos().X(), -p.Pos().Y(), -p.Pos().Z(), p.Rot().W(), p.Rot().X(), -p.Rot().Y(), -p.Rot().Z()); } Vector flu2frd(const Vector3d& v) { return Vector(v.X(), -v.Y(), -v.Z()); } class ModelFlix : public ModelPlugin { private: physics::ModelPtr model, estimateModel; physics::LinkPtr body; sensors::ImuSensorPtr imu; event::ConnectionPtr updateConnection, resetConnection; transport::NodePtr nodeHandle; transport::PublisherPtr motorPub[4]; LowPassFilter accFilter = LowPassFilter(0.1); public: void Load(physics::ModelPtr _parent, sdf::ElementPtr /*_sdf*/) { this->model = _parent; this->body = this->model->GetLink("body"); this->imu = std::dynamic_pointer_cast(sensors::get_sensor(model->GetScopedName(true) + "::body::imu")); // default::flix::body::imu if (imu == nullptr) { gzerr << "IMU sensor not found" << std::endl; return; } this->estimateModel = model->GetWorld()->ModelByName("flix_estimate"); this->updateConnection = event::Events::ConnectWorldUpdateBegin( std::bind(&ModelFlix::OnUpdate, this)); this->resetConnection = event::Events::ConnectWorldReset( std::bind(&ModelFlix::OnReset, this)); initNode(); Serial.begin(0); gzmsg << "Flix plugin loaded" << endl; } public: void OnReset() { attitude = Quaternion(); gzmsg << "Flix plugin reset" << endl; } void OnUpdate() { __micros = model->GetWorld()->SimTime().Double() * 1000000; step(); // read imu rates = flu2frd(imu->AngularVelocity()); acc = this->accFilter.update(flu2frd(imu->LinearAcceleration())); // read rc joystickGet(); controls[RC_CHANNEL_MODE] = 1; // 0 acro, 1 stab controls[RC_CHANNEL_AUX] = 1; // armed estimate(); // correct yaw to the actual yaw attitude.setYaw(-this->model->WorldPose().Yaw()); control(); parseInput(); applyMotorsThrust(); updateEstimatePose(); publishTopics(); logData(); } void applyMotorsThrust() { // thrusts const double d = 0.035355; const double maxThrust = 0.03 * ONE_G; // 30 g, https://www.youtube.com/watch?v=VtKI4Pjx8Sk // 65 mm prop ~40 g const float scale0 = 1.0, scale1 = 1.1, scale2 = 0.9, scale3 = 1.05; const float minThrustRel = 0; // apply min thrust float mfl = mapff(motors[MOTOR_FRONT_LEFT], 0, 1, minThrustRel, 1); float mfr = mapff(motors[MOTOR_FRONT_RIGHT], 0, 1, minThrustRel, 1); float mrl = mapff(motors[MOTOR_REAR_LEFT], 0, 1, minThrustRel, 1); float mrr = mapff(motors[MOTOR_REAR_RIGHT], 0, 1, minThrustRel, 1); if (motors[MOTOR_FRONT_LEFT] < 0.001) mfl = 0; if (motors[MOTOR_FRONT_RIGHT] < 0.001) mfr = 0; if (motors[MOTOR_REAR_LEFT] < 0.001) mrl = 0; if (motors[MOTOR_REAR_RIGHT] < 0.001) mrr = 0; // TODO: min_thrust body->AddLinkForce(Vector3d(0.0, 0.0, scale0 * maxThrust * abs(mfl)), Vector3d(d, d, 0.0)); body->AddLinkForce(Vector3d(0.0, 0.0, scale1 * maxThrust * abs(mfr)), Vector3d(d, -d, 0.0)); body->AddLinkForce(Vector3d(0.0, 0.0, scale2 * maxThrust * abs(mrl)), Vector3d(-d, d, 0.0)); body->AddLinkForce(Vector3d(0.0, 0.0, scale3 * maxThrust * abs(mrr)), Vector3d(-d, -d, 0.0)); // TODO: indicate if > 1 // torque const double maxTorque = 0.0023614413; // 24.08 g*cm int direction = 1; // z is counter clockwise, normal rotation direction is minus body->AddRelativeTorque(Vector3d(0.0, 0.0, direction * scale0 * maxTorque * motors[MOTOR_FRONT_LEFT])); body->AddRelativeTorque(Vector3d(0.0, 0.0, direction * scale1 * -maxTorque * motors[MOTOR_FRONT_RIGHT])); body->AddRelativeTorque(Vector3d(0.0, 0.0, direction * scale2 * -maxTorque * motors[MOTOR_REAR_LEFT])); body->AddRelativeTorque(Vector3d(0.0, 0.0, direction * scale3 * maxTorque * motors[MOTOR_REAR_RIGHT])); } void updateEstimatePose() { if (estimateModel == nullptr) { return; } if (!attitude.finite()) { // gzerr << "attitude is nan" << std::endl; return; } Pose3d pose( model->WorldPose().Pos().X(), model->WorldPose().Pos().Y(), model->WorldPose().Pos().Z(), attitude.w, attitude.x, -attitude.y, -attitude.z // frd to flu ); // std::cout << pose.Pos().X() << " " << pose.Pos().Y() << " " << pose.Pos().Z() << // " " << pose.Rot().W() << " " << pose.Rot().X() << " " << pose.Rot().Y() << " " << pose.Rot().Z() << std::endl; // calculate attitude estimation error Quaternion groundtruthAttitude(estimateModel->WorldPose().Rot().W(), estimateModel->WorldPose().Rot().X(), -estimateModel->WorldPose().Rot().Y(), -estimateModel->WorldPose().Rot().Z()); float angle = Vector::angleBetweenVectors(attitude.rotate(Vector(0, 0, -1)), groundtruthAttitude.rotate(Vector(0, 0, -1))); if (angle < 0.3) { //gzwarn << "att err: " << angle << endl; // TODO: warning // position under the floor to make it invisible pose.SetZ(-5); } estimateModel->SetWorldPose(pose); } void initNode() { nodeHandle = transport::NodePtr(new transport::Node()); nodeHandle->Init(); string ns = "~/" + model->GetName(); motorPub[0] = nodeHandle->Advertise(ns + "/motor0"); motorPub[1] = nodeHandle->Advertise(ns + "/motor1"); motorPub[2] = nodeHandle->Advertise(ns + "/motor2"); motorPub[3] = nodeHandle->Advertise(ns + "/motor3"); } void publishTopics() { for (int i = 0; i < 4; i++) { msgs::Int msg; msg.set_data(static_cast(std::round(motors[i] * 1000))); motorPub[i]->Publish(msg); } } }; GZ_REGISTER_MODEL_PLUGIN(ModelFlix)