flix/flix/quaternion.h
2023-12-29 18:43:34 +03:00

187 lines
4.1 KiB
C++

// Copyright (c) 2023 Oleg Kalachev <okalachev@gmail.com>
// Repository: https://github.com/okalachev/flix
// Lightweight rotation quaternion library
#pragma once
#include "vector.h"
class Quaternion : public Printable {
public:
float w, x, y, z;
Quaternion(): w(1), x(0), y(0), z(0) {};
Quaternion(float w, float x, float y, float z): w(w), x(x), y(y), z(z) {};
static Quaternion fromAxisAngle(float a, float b, float c, float angle)
{
float halfAngle = angle * 0.5;
float sin2 = sin(halfAngle);
float cos2 = cos(halfAngle);
float sinNorm = sin2 / sqrt(a * a + b * b + c * c);
return Quaternion(cos2, a * sinNorm, b * sinNorm, c * sinNorm);
}
static Quaternion fromAngularRates(const Vector& rates)
{
if (rates.zero()) {
return Quaternion();
}
return Quaternion::fromAxisAngle(rates.x, rates.y, rates.z, rates.norm());
}
static Quaternion fromEulerZYX(float x, float y, float z)
{
float cx = cos(x / 2);
float cy = cos(y / 2);
float cz = cos(z / 2);
float sx = sin(x / 2);
float sy = sin(y / 2);
float sz = sin(z / 2);
return Quaternion(
cx * cy * cz + sx * sy * sz,
sx * cy * cz - cx * sy * sz,
cx * sy * cz + sx * cy * sz,
cx * cy * sz - sx * sy * cz);
}
static Quaternion fromBetweenVectors(Vector u, Vector v)
{
float dot = u.x * v.x + u.y * v.y + u.z * v.z;
float w1 = u.y * v.z - u.z * v.y;
float w2 = u.z * v.x - u.x * v.z;
float w3 = u.x * v.y - u.y * v.x;
Quaternion ret(
dot + sqrt(dot * dot + w1 * w1 + w2 * w2 + w3 * w3),
w1,
w2,
w3);
ret.normalize();
return ret;
}
void toAxisAngle(float& a, float& b, float& c, float& angle)
{
angle = acos(w) * 2;
a = x / sin(angle / 2);
b = y / sin(angle / 2);
c = z / sin(angle / 2);
}
Vector toEulerZYX() const
{
return Vector(
atan2(2 * (w * x + y * z), 1 - 2 * (x * x + y * y)),
asin(2 * (w * y - z * x)),
atan2(2 * (w * z + x * y), 1 - 2 * (y * y + z * z)));
}
float getYaw() const
{
// https://github.com/ros/geometry2/blob/589caf083cae9d8fae7effdb910454b4681b9ec1/tf2/include/tf2/impl/utils.h#L122
float yaw;
float sqx = x * x;
float sqy = y * y;
float sqz = z * z;
float sqw = w * w;
double sarg = -2 * (x * z - w * y) / (sqx + sqy + sqz + sqw);
if (sarg <= -0.99999) {
yaw = -2 * atan2(y, x);
} else if (sarg >= 0.99999) {
yaw = 2 * atan2(y, x);
} else {
yaw = atan2(2 * (x * y + w * z), sqw + sqx - sqy - sqz);
}
return yaw;
}
void setYaw(float yaw)
{
// TODO: optimize?
Vector euler = toEulerZYX();
(*this) = Quaternion::fromEulerZYX(euler.x, euler.y, yaw);
}
Quaternion& operator *= (const Quaternion& q)
{
Quaternion ret(
w * q.w - x * q.x - y * q.y - z * q.z,
w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y + y * q.w + z * q.x - x * q.z,
w * q.z + z * q.w + x * q.y - y * q.x);
return (*this = ret);
}
Quaternion operator * (const Quaternion& q)
{
return Quaternion(
w * q.w - x * q.x - y * q.y - z * q.z,
w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y + y * q.w + z * q.x - x * q.z,
w * q.z + z * q.w + x * q.y - y * q.x);
}
Quaternion inversed() const
{
float normSqInv = 1 / (w * w + x * x + y * y + z * z);
return Quaternion(
w * normSqInv,
-x * normSqInv,
-y * normSqInv,
-z * normSqInv);
}
float norm() const
{
return sqrt(w * w + x * x + y * y + z * z);
}
void normalize()
{
float n = norm();
w /= n;
x /= n;
y /= n;
z /= n;
}
Vector conjugate(const Vector& v)
{
Quaternion qv(0, v.x, v.y, v.z);
Quaternion res = (*this) * qv * inversed();
return Vector(res.x, res.y, res.z);
}
Vector conjugateInversed(const Vector& v)
{
Quaternion qv(0, v.x, v.y, v.z);
Quaternion res = inversed() * qv * (*this);
return Vector(res.x, res.y, res.z);
}
inline Vector rotate(const Vector& v)
{
return conjugateInversed(v);
}
inline bool finite() const
{
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
}
size_t printTo(Print& p) const {
size_t r = 0;
r += p.print(w, 15) + p.print(" ");
r += p.print(x, 15) + p.print(" ");
r += p.print(y, 15) + p.print(" ");
r += p.print(z, 15);
return r;
}
};