mirror of
https://github.com/okalachev/flix.git
synced 2025-07-27 17:49:33 +00:00
180 lines
4.9 KiB
C++
180 lines
4.9 KiB
C++
// Copyright (c) 2023 Oleg Kalachev <okalachev@gmail.com>
|
|
// Repository: https://github.com/okalachev/flix
|
|
|
|
// Flight control
|
|
|
|
#include "vector.h"
|
|
#include "quaternion.h"
|
|
#include "pid.h"
|
|
#include "lpf.h"
|
|
#include "util.h"
|
|
|
|
#define PITCHRATE_P 0.05
|
|
#define PITCHRATE_I 0.2
|
|
#define PITCHRATE_D 0.001
|
|
#define PITCHRATE_I_LIM 0.3
|
|
#define ROLLRATE_P PITCHRATE_P
|
|
#define ROLLRATE_I PITCHRATE_I
|
|
#define ROLLRATE_D PITCHRATE_D
|
|
#define ROLLRATE_I_LIM PITCHRATE_I_LIM
|
|
#define YAWRATE_P 0.3
|
|
#define YAWRATE_I 0.0
|
|
#define YAWRATE_D 0.0
|
|
#define YAWRATE_I_LIM 0.3
|
|
#define ROLL_P 4.5
|
|
#define ROLL_I 0
|
|
#define ROLL_D 0
|
|
#define PITCH_P ROLL_P
|
|
#define PITCH_I ROLL_I
|
|
#define PITCH_D ROLL_D
|
|
#define YAW_P 3
|
|
#define PITCHRATE_MAX radians(360)
|
|
#define ROLLRATE_MAX radians(360)
|
|
#define YAWRATE_MAX radians(300)
|
|
#define TILT_MAX radians(30)
|
|
|
|
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
|
|
|
|
enum { MANUAL, ACRO, STAB, USER } mode = STAB;
|
|
enum { YAW, YAW_RATE } yawMode = YAW;
|
|
bool armed = false;
|
|
|
|
PID rollRatePID(ROLLRATE_P, ROLLRATE_I, ROLLRATE_D, ROLLRATE_I_LIM, RATES_D_LPF_ALPHA);
|
|
PID pitchRatePID(PITCHRATE_P, PITCHRATE_I, PITCHRATE_D, PITCHRATE_I_LIM, RATES_D_LPF_ALPHA);
|
|
PID yawRatePID(YAWRATE_P, YAWRATE_I, YAWRATE_D);
|
|
PID rollPID(ROLL_P, ROLL_I, ROLL_D);
|
|
PID pitchPID(PITCH_P, PITCH_I, PITCH_D);
|
|
PID yawPID(YAW_P, 0, 0);
|
|
Vector maxRate(ROLLRATE_MAX, PITCHRATE_MAX, YAWRATE_MAX);
|
|
float tiltMax = TILT_MAX;
|
|
|
|
Quaternion attitudeTarget;
|
|
Vector ratesTarget;
|
|
Vector torqueTarget;
|
|
float thrustTarget;
|
|
|
|
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
|
|
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
|
|
|
|
void control() {
|
|
interpretRC();
|
|
failsafe();
|
|
if (mode == STAB) {
|
|
controlAttitude();
|
|
controlRate();
|
|
controlTorque();
|
|
} else if (mode == ACRO) {
|
|
controlRate();
|
|
controlTorque();
|
|
} else if (mode == MANUAL) {
|
|
controlTorque();
|
|
}
|
|
}
|
|
|
|
void interpretRC() {
|
|
armed = controls[throttleChannel] >= 0.05 && controls[armedChannel] >= 0.5;
|
|
|
|
// NOTE: put ACRO or MANUAL modes there if you want to use them
|
|
if (controls[modeChannel] < 0.25) {
|
|
mode = STAB;
|
|
} else if (controls[modeChannel] < 0.75) {
|
|
mode = STAB;
|
|
} else {
|
|
mode = STAB;
|
|
}
|
|
|
|
thrustTarget = controls[throttleChannel];
|
|
|
|
if (mode == ACRO) {
|
|
yawMode = YAW_RATE;
|
|
ratesTarget.x = controls[rollChannel] * maxRate.x;
|
|
ratesTarget.y = controls[pitchChannel] * maxRate.y;
|
|
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
|
|
|
|
} else if (mode == STAB) {
|
|
yawMode = controls[yawChannel] == 0 ? YAW : YAW_RATE;
|
|
|
|
attitudeTarget = Quaternion::fromEulerZYX(Vector(
|
|
controls[rollChannel] * tiltMax,
|
|
controls[pitchChannel] * tiltMax,
|
|
attitudeTarget.getYaw()));
|
|
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
|
|
|
|
} else if (mode == MANUAL) {
|
|
// passthrough mode
|
|
yawMode = YAW_RATE;
|
|
torqueTarget = Vector(controls[rollChannel], controls[pitchChannel], -controls[yawChannel]) * 0.01;
|
|
}
|
|
|
|
if (yawMode == YAW_RATE || !motorsActive()) {
|
|
// update yaw target as we don't have control over the yaw
|
|
attitudeTarget.setYaw(attitude.getYaw());
|
|
}
|
|
}
|
|
|
|
void controlAttitude() {
|
|
if (!armed) {
|
|
rollPID.reset();
|
|
pitchPID.reset();
|
|
yawPID.reset();
|
|
return;
|
|
}
|
|
|
|
const Vector up(0, 0, 1);
|
|
Vector upActual = attitude.rotateVector(up);
|
|
Vector upTarget = attitudeTarget.rotateVector(up);
|
|
|
|
Vector error = Vector::angularRatesBetweenVectors(upTarget, upActual);
|
|
|
|
ratesTarget.x = rollPID.update(error.x, dt);
|
|
ratesTarget.y = pitchPID.update(error.y, dt);
|
|
|
|
if (yawMode == YAW) {
|
|
float yawError = wrapAngle(attitudeTarget.getYaw() - attitude.getYaw());
|
|
ratesTarget.z = yawPID.update(yawError, dt);
|
|
}
|
|
}
|
|
|
|
void controlRate() {
|
|
if (!armed) {
|
|
rollRatePID.reset();
|
|
pitchRatePID.reset();
|
|
yawRatePID.reset();
|
|
return;
|
|
}
|
|
|
|
Vector error = ratesTarget - rates;
|
|
|
|
// Calculate desired torque, where 0 - no torque, 1 - maximum possible torque
|
|
torqueTarget.x = rollRatePID.update(error.x, dt);
|
|
torqueTarget.y = pitchRatePID.update(error.y, dt);
|
|
torqueTarget.z = yawRatePID.update(error.z, dt);
|
|
}
|
|
|
|
void controlTorque() {
|
|
if (!armed) {
|
|
memset(motors, 0, sizeof(motors));
|
|
return;
|
|
}
|
|
|
|
motors[MOTOR_FRONT_LEFT] = thrustTarget + torqueTarget.x - torqueTarget.y + torqueTarget.z;
|
|
motors[MOTOR_FRONT_RIGHT] = thrustTarget - torqueTarget.x - torqueTarget.y - torqueTarget.z;
|
|
motors[MOTOR_REAR_LEFT] = thrustTarget + torqueTarget.x + torqueTarget.y - torqueTarget.z;
|
|
motors[MOTOR_REAR_RIGHT] = thrustTarget - torqueTarget.x + torqueTarget.y + torqueTarget.z;
|
|
|
|
motors[0] = constrain(motors[0], 0, 1);
|
|
motors[1] = constrain(motors[1], 0, 1);
|
|
motors[2] = constrain(motors[2], 0, 1);
|
|
motors[3] = constrain(motors[3], 0, 1);
|
|
}
|
|
|
|
const char* getModeName() {
|
|
switch (mode) {
|
|
case MANUAL: return "MANUAL";
|
|
case ACRO: return "ACRO";
|
|
case STAB: return "STAB";
|
|
case USER: return "USER";
|
|
default: return "UNKNOWN";
|
|
}
|
|
}
|