mirror of
https://github.com/okalachev/flix.git
synced 2025-07-27 17:49:33 +00:00
99 lines
2.2 KiB
C++
99 lines
2.2 KiB
C++
// Copyright (c) 2023 Oleg Kalachev <okalachev@gmail.com>
|
|
// Repository: https://github.com/okalachev/flix
|
|
|
|
// Lightweight vector library
|
|
|
|
#pragma once
|
|
|
|
class Vector : public Printable {
|
|
public:
|
|
float x, y, z;
|
|
|
|
Vector(): x(0), y(0), z(0) {};
|
|
|
|
Vector(float x, float y, float z): x(x), y(y), z(z) {};
|
|
|
|
float norm() const {
|
|
return sqrt(x * x + y * y + z * z);
|
|
}
|
|
|
|
bool zero() const {
|
|
return x == 0 && y == 0 && z == 0;
|
|
}
|
|
|
|
void normalize() {
|
|
float n = norm();
|
|
x /= n;
|
|
y /= n;
|
|
z /= n;
|
|
}
|
|
|
|
Vector operator * (const float b) const {
|
|
return Vector(x * b, y * b, z * b);
|
|
}
|
|
|
|
Vector operator / (const float b) const {
|
|
return Vector(x / b, y / b, z / b);
|
|
}
|
|
|
|
Vector operator + (const Vector& b) const {
|
|
return Vector(x + b.x, y + b.y, z + b.z);
|
|
}
|
|
|
|
Vector operator - (const Vector& b) const {
|
|
return Vector(x - b.x, y - b.y, z - b.z);
|
|
}
|
|
|
|
// Element-wise multiplication
|
|
Vector operator * (const Vector& b) const {
|
|
return Vector(x * b.x, y * b.y, z * b.z);
|
|
}
|
|
|
|
// Element-wise division
|
|
Vector operator / (const Vector& b) const {
|
|
return Vector(x / b.x, y / b.y, z / b.z);
|
|
}
|
|
|
|
bool operator == (const Vector& b) const {
|
|
return x == b.x && y == b.y && z == b.z;
|
|
}
|
|
|
|
bool operator != (const Vector& b) const {
|
|
return !(*this == b);
|
|
}
|
|
|
|
bool finite() const {
|
|
return isfinite(x) && isfinite(y) && isfinite(z);
|
|
}
|
|
|
|
static float dot(const Vector& a, const Vector& b) {
|
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
|
}
|
|
|
|
static Vector cross(const Vector& a, const Vector& b) {
|
|
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
|
}
|
|
|
|
static float angleBetweenVectors(const Vector& a, const Vector& b) {
|
|
return acos(constrain(dot(a, b) / (a.norm() * b.norm()), -1, 1));
|
|
}
|
|
|
|
static Vector angularRatesBetweenVectors(const Vector& a, const Vector& b) {
|
|
Vector direction = cross(a, b);
|
|
if (direction.zero()) {
|
|
// vectors are opposite, return any perpendicular vector
|
|
return cross(a, Vector(1, 0, 0));
|
|
}
|
|
direction.normalize();
|
|
float angle = angleBetweenVectors(a, b);
|
|
return direction * angle;
|
|
}
|
|
|
|
size_t printTo(Print& p) const {
|
|
return
|
|
p.print(x, 15) + p.print(" ") +
|
|
p.print(y, 15) + p.print(" ") +
|
|
p.print(z, 15);
|
|
}
|
|
};
|