mirror of
https://github.com/EFeru/hoverboard-sideboard-hack-GD.git
synced 2025-08-17 00:56:11 +00:00
UART with mainboard works
- the sideboard can now send and receive Serial data from the mainboard - fixed Processing sketch
This commit is contained in:
@@ -346,7 +346,7 @@ void I2C1_ErrorIRQ_Handler(void)
|
||||
i2c_interrupt_flag_clear(I2C1, I2C_INT_FLAG_PECERR);
|
||||
}
|
||||
/* disable the error interrupt */
|
||||
i2c_interrupt_disable(I2C0,I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
|
||||
i2c_interrupt_disable(I2C1,I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
57
Src/main.c
57
Src/main.c
@@ -46,8 +46,6 @@ typedef struct{
|
||||
uint16_t start;
|
||||
int16_t cmd1;
|
||||
int16_t cmd2;
|
||||
int16_t speedR;
|
||||
int16_t speedL;
|
||||
int16_t speedR_meas;
|
||||
int16_t speedL_meas;
|
||||
int16_t batVoltage;
|
||||
@@ -63,7 +61,7 @@ static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial comman
|
||||
#endif
|
||||
|
||||
extern MPU_Data mpu; // holds the MPU-6050 data
|
||||
ErrStatus mpuStatus = SUCCESS; // holds the MPU-6050 status: SUCCESS or ERROR
|
||||
ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
|
||||
|
||||
uint8_t userCommand; // holds the user command input
|
||||
FlagStatus sensor1, sensor2; // holds the sensor1 and sensor 2 values
|
||||
@@ -81,10 +79,10 @@ int main(void)
|
||||
i2c_nvic_config(); // NVIC peripheral config
|
||||
|
||||
#ifdef SERIAL_CONTROL
|
||||
usart_Tx_DMA_config(USART_MAIN, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
||||
usart_Tx_DMA_config(USART_MAIN, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
||||
#endif
|
||||
#ifdef SERIAL_FEEDBACK
|
||||
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
||||
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
||||
#endif
|
||||
|
||||
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
|
||||
@@ -93,6 +91,7 @@ int main(void)
|
||||
gpio_bit_set(LED1_GPIO_Port, LED1_Pin); // Turn on RED LED
|
||||
}
|
||||
else {
|
||||
mpuStatus = SUCCESS;
|
||||
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
|
||||
}
|
||||
mpu_handle_input('h'); // Print the User Help commands to serial
|
||||
@@ -131,11 +130,13 @@ int main(void)
|
||||
// Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically
|
||||
if (SUCCESS == mpuStatus) {
|
||||
mpu_get_data();
|
||||
} else if (ERROR == mpuStatus && main_loop_counter % 100 == 0) {
|
||||
toggle_led(LED1_GPIO_Port, LED1_Pin); // Toggle the Red LED every 100 ms
|
||||
}
|
||||
// Print MPU data to Console
|
||||
if (main_loop_counter % 50 == 0) {
|
||||
mpu_print_to_console();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ==================================== SENSORS Handling ====================================
|
||||
@@ -174,13 +175,12 @@ int main(void)
|
||||
// ==================================== SERIAL Tx/Rx Handling ====================================
|
||||
#ifdef SERIAL_CONTROL
|
||||
// To transmit on USART
|
||||
if (main_loop_counter % 50 == 0 && SET == dma_flag_get(DMA_CH3, DMA_FLAG_FTF)) { // check if DMA channel transfer complete (Full Transfer Finish flag == 1)
|
||||
|
||||
if (main_loop_counter % 5 == 0 && SET == dma_flag_get(DMA_CH3, DMA_FLAG_FTF)) { // check if DMA channel transfer complete (Full Transfer Finish flag == 1)
|
||||
Sideboard.start = (uint16_t)SERIAL_START_FRAME;
|
||||
Sideboard.roll = (int16_t)mpu.euler.roll;
|
||||
Sideboard.pitch = (int16_t)mpu.euler.pitch;
|
||||
Sideboard.yaw = (int16_t)mpu.euler.yaw;
|
||||
Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1));
|
||||
Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1) | (mpuStatus << 2));
|
||||
Sideboard.checksum = (uint16_t)(Sideboard.start ^ Sideboard.roll ^ Sideboard.pitch ^ Sideboard.yaw ^ Sideboard.sensors);
|
||||
|
||||
dma_channel_disable(DMA_CH3);
|
||||
@@ -192,36 +192,33 @@ int main(void)
|
||||
|
||||
#ifdef SERIAL_FEEDBACK
|
||||
uint16_t checksum;
|
||||
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR ^ NewFeedback.speedL
|
||||
^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas ^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
|
||||
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas
|
||||
^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
|
||||
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
|
||||
if (timeoutFlagSerial) { // Check for previous timeout flag
|
||||
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
|
||||
timeoutFlagSerial = 0; // Timeout flag cleared
|
||||
} else {
|
||||
memcpy(&Feedback, &NewFeedback, sizeof(SerialFeedback)); // Copy the new data
|
||||
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
|
||||
timeoutCntSerial = 0; // Reset the timeout counter
|
||||
}
|
||||
if (timeoutFlagSerial) { // Check for previous timeout flag
|
||||
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
|
||||
timeoutFlagSerial = 0; // Timeout flag cleared
|
||||
} else {
|
||||
memcpy(&Feedback, &NewFeedback, sizeof(Feedback)); // Copy the new data
|
||||
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
|
||||
timeoutCntSerial = 0; // Reset the timeout counter
|
||||
}
|
||||
} else {
|
||||
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
|
||||
timeoutFlagSerial = 1; // Timeout detected
|
||||
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
|
||||
}
|
||||
// Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA
|
||||
if (main_loop_counter % 50 == 0 && NewFeedback.start != SERIAL_START_FRAME && NewFeedback.start != 0xFFFF) {
|
||||
// Most probably we are out-of-sync. Try to re-sync by reseting the DMA
|
||||
if (main_loop_counter % 150 == 0) {
|
||||
dma_channel_disable(DMA_CH4);
|
||||
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
||||
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
||||
}
|
||||
}
|
||||
|
||||
if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State and indicate error if desired
|
||||
gpio_bit_set(LED1_GPIO_Port, LED1_Pin); // Turn on Red LED
|
||||
} else {
|
||||
gpio_bit_reset(LED1_GPIO_Port, LED1_Pin); // Follow the Normal behavior
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired
|
||||
toggle_led(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms
|
||||
}
|
||||
#endif
|
||||
|
||||
main_loop_counter++;
|
||||
|
||||
|
@@ -3231,19 +3231,19 @@ void mpu_start_self_test(void)
|
||||
#elif defined (MPU6050) || defined (MPU9150)
|
||||
result = mpu_run_self_test(gyro, accel);
|
||||
#endif
|
||||
#ifdef SERIAL_DEBUG
|
||||
log_i("accel: %ld %ld %ld\n",
|
||||
accel[0],
|
||||
accel[1],
|
||||
accel[2]);
|
||||
log_i("gyro: %ld %ld %ld\n",
|
||||
gyro[0],
|
||||
gyro[1],
|
||||
gyro[2]);
|
||||
#endif
|
||||
if (result == 0x7) {
|
||||
#ifdef SERIAL_DEBUG
|
||||
consoleLog("Passed!\n");
|
||||
log_i("accel: %ld %ld %ld\n",
|
||||
accel[0],
|
||||
accel[1],
|
||||
accel[2]);
|
||||
log_i("gyro: %ld %ld %ld\n",
|
||||
gyro[0],
|
||||
gyro[1],
|
||||
gyro[2]);
|
||||
/* Test passed. We can trust the gyro data here, so now we need to update calibrated data*/
|
||||
#endif
|
||||
consoleLog("Passed!\n");
|
||||
/* Test passed. We can trust the gyro data here, so now we need to update calibrated data*/
|
||||
|
||||
#ifdef USE_CAL_HW_REGISTERS
|
||||
/*
|
||||
@@ -3640,10 +3640,10 @@ void mpu_calc_euler_angles(void) {
|
||||
float yaw, pitch, roll;
|
||||
|
||||
// Convert quaternions[q30] to quaternion[float]
|
||||
w = (float)mpu.quat.w / 1073741824; // 1073741824 = 2^30
|
||||
x = (float)mpu.quat.x / 1073741824;
|
||||
y = (float)mpu.quat.y / 1073741824;
|
||||
z = (float)mpu.quat.z / 1073741824;
|
||||
w = (float)mpu.quat.w / q30; // q30 = 2^30
|
||||
x = (float)mpu.quat.x / q30;
|
||||
y = (float)mpu.quat.y / q30;
|
||||
z = (float)mpu.quat.z / q30;
|
||||
|
||||
// Calculate Euler angles: source <https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles>
|
||||
roll = atan2(2*(w*x + y*z), 1 - 2*(x*x + y*y)); // roll (x-axis rotation)
|
||||
|
@@ -92,7 +92,7 @@ void intro_demo_led(uint32_t tDelay)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
for (i = 0; i < 3; i++) {
|
||||
gpio_bit_set(LED1_GPIO_Port, LED1_Pin);
|
||||
gpio_bit_reset(LED3_GPIO_Port, LED3_Pin);
|
||||
delay_1ms(tDelay);
|
||||
|
Reference in New Issue
Block a user