/** * This file is part of the hoverboard-sideboard-hack project. * * Copyright (C) 2020-2021 Emanuel FERU * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "gd32f1x0.h" #include "systick.h" #include "i2c_it.h" #include "defines.h" #include "setup.h" #include "config.h" #include "util.h" #include "mpu6050.h" #include "mpu6050_dmp.h" #ifdef SERIAL_CONTROL extern SerialSideboard Sideboard; #endif #ifdef SERIAL_FEEDBACK extern SerialFeedback Feedback; extern uint16_t timeoutCntSerial; // Timeout counter for Rx Serial command extern uint8_t timeoutFlagSerial; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data) #endif extern MPU_Data mpu; // holds the MPU-6050 data extern ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR FlagStatus sensor1, sensor2; // holds the sensor1 and sensor 2 values FlagStatus sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2 static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main() int main(void) { systick_config(); // SysTick config gpio_config(); // GPIO config usart_nvic_config(); // USART interrupt configuration usart_config(USART_MAIN, USART_MAIN_BAUD); // USART config i2c_config(); // I2C config i2c_nvic_config(); // I2C interrupt configuration input_init(); // Input initialization while(1) { delay_1ms(DELAY_IN_MAIN_LOOP); // ==================================== LEDs Handling ==================================== // toggle_led(LED4_GPIO_Port, LED4_Pin); // Toggle BLUE1 LED #ifdef SERIAL_FEEDBACK if (!timeoutFlagSerial) { if (Feedback.cmdLed & LED1_SET) { gpio_bit_set(LED1_GPIO_Port, LED1_Pin); } else { gpio_bit_reset(LED1_GPIO_Port, LED1_Pin); } if (Feedback.cmdLed & LED2_SET) { gpio_bit_set(LED2_GPIO_Port, LED2_Pin); } else { gpio_bit_reset(LED2_GPIO_Port, LED2_Pin); } if (Feedback.cmdLed & LED3_SET) { gpio_bit_set(LED3_GPIO_Port, LED3_Pin); } else { gpio_bit_reset(LED3_GPIO_Port, LED3_Pin); } if (Feedback.cmdLed & LED4_SET) { gpio_bit_set(LED4_GPIO_Port, LED4_Pin); } else { gpio_bit_reset(LED4_GPIO_Port, LED4_Pin); } if (Feedback.cmdLed & LED5_SET) { gpio_bit_set(LED5_GPIO_Port, LED5_Pin); } else { gpio_bit_reset(LED5_GPIO_Port, LED5_Pin); } if (Feedback.cmdLed & LED4_SET) { gpio_bit_set(AUX3_GPIO_Port, AUX3_Pin); } else { gpio_bit_reset(AUX3_GPIO_Port, AUX3_Pin); } } #endif // ==================================== MPU-6050 Handling ==================================== #ifdef MPU_SENSOR_ENABLE // Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically if (SUCCESS == mpuStatus) { mpu_get_data(); } else if (ERROR == mpuStatus && main_loop_counter % 100 == 0) { toggle_led(LED1_GPIO_Port, LED1_Pin); // Toggle the Red LED every 100 ms } // Print MPU data to Console if (main_loop_counter % 50 == 0) { mpu_print_to_console(); } #endif // ==================================== SENSORS Handling ==================================== sensor1_read = gpio_input_bit_get(SENSOR1_GPIO_Port, SENSOR1_Pin); sensor2_read = gpio_input_bit_get(SENSOR2_GPIO_Port, SENSOR2_Pin); // SENSOR1 if (sensor1 == RESET && sensor1_read == SET) { // Sensor ACTIVE: Do something here (one time task on activation) sensor1 = SET; gpio_bit_set(LED4_GPIO_Port, LED4_Pin); consoleLog("-- SENSOR 1 Active --\n"); } else if(sensor1 == SET && sensor1_read == RESET) { // Sensor DEACTIVE: Do something here (one time task on deactivation) sensor1 = RESET; gpio_bit_reset(LED4_GPIO_Port, LED4_Pin); consoleLog("-- SENSOR 1 Deactive --\n"); } // SENSOR2 if (sensor2 == RESET && sensor2_read == SET) { // Sensor ACTIVE: Do something here (one time task on activation) sensor2 = SET; gpio_bit_set(LED5_GPIO_Port, LED5_Pin); consoleLog("-- SENSOR 2 Active --\n"); } else if (sensor2 == SET && sensor2_read == RESET) { // Sensor DEACTIVE: Do something here (one time task on deactivation) sensor2 = RESET; gpio_bit_reset(LED5_GPIO_Port, LED5_Pin); consoleLog("-- SENSOR 2 Deactive --\n"); } if (sensor1 == SET) { // Sensor ACTIVE: Do something here (continuous task) } if (sensor2 == SET) { // Sensor ACTIVE: Do something here (continuous task) } // ==================================== SERIAL Tx/Rx Handling ==================================== #ifdef SERIAL_CONTROL // To transmit on USART if (main_loop_counter % 5 == 0 && dma_transfer_number_get(DMA_CH3) == 0) { // Check if DMA channel counter is 0 (meaning all data has been transferred) Sideboard.start = (uint16_t)SERIAL_START_FRAME; Sideboard.roll = (int16_t)mpu.euler.roll; Sideboard.pitch = (int16_t)mpu.euler.pitch; Sideboard.yaw = (int16_t)mpu.euler.yaw; Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1) | (mpuStatus << 2)); Sideboard.checksum = (uint16_t)(Sideboard.start ^ Sideboard.roll ^ Sideboard.pitch ^ Sideboard.yaw ^ Sideboard.sensors); dma_channel_disable(DMA_CH3); DMA_CHCNT(DMA_CH3) = sizeof(Sideboard); DMA_CHMADDR(DMA_CH3) = (uint32_t)&Sideboard; dma_channel_enable(DMA_CH3); } #endif #ifdef SERIAL_FEEDBACK if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification timeoutFlagSerial = 1; // Timeout detected timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value } if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired toggle_led(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms } #endif main_loop_counter++; } }