EmanuelFeru 1e7bf7cd90 Major UART communication improvement
- the UART communication is improved based on UART Idle line detection interrupt
- both Tx and Rx are efficiently handled using DMA

Other:
- minor visual improvements
2020-06-21 23:07:01 +02:00

459 lines
14 KiB
C

/**
* This file is part of the hoverboard-sideboard-hack project.
*
* Copyright (C) 2020-2021 Emanuel FERU <aerdronix@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Includes
#include <stdio.h>
#include <string.h>
#include "systick.h"
#include "gd32f1x0.h"
#include "defines.h"
#include "config.h"
#include "setup.h"
#include "util.h"
#include "mpu6050.h"
// USART variables
#ifdef SERIAL_CONTROL
SerialSideboard Sideboard;
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
static uint8_t rx_buffer[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_len = ARRAY_LEN(rx_buffer);
#endif
#ifdef SERIAL_FEEDBACK
SerialFeedback Feedback;
SerialFeedback FeedbackRaw;
uint16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
static uint32_t Feedback_len = sizeof(Feedback);
#endif
// MPU variables
ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
// MAIN I2C variables
volatile int8_t i2c_status;
volatile i2c_cmd i2c_ReadWriteCmd;
volatile uint8_t i2c_regAddress;
volatile uint8_t i2c_slaveAddress;
volatile uint8_t* i2c_txbuffer;
volatile uint8_t* i2c_rxbuffer;
volatile uint8_t i2c_nDABytes;
volatile int8_t i2c_nRABytes;
volatile uint8_t buffer[14];
#ifdef AUX45_USE_I2C
// AUX I2C variables
volatile int8_t i2c_aux_status;
volatile i2c_cmd i2c_aux_ReadWriteCmd;
volatile uint8_t i2c_aux_regAddress;
volatile uint8_t i2c_aux_slaveAddress;
volatile uint8_t* i2c_aux_txbuffer;
volatile uint8_t* i2c_aux_rxbuffer;
volatile uint8_t i2c_aux_nDABytes;
volatile int8_t i2c_aux_nRABytes;
#endif
/* =========================== General Functions =========================== */
void consoleLog(char *message)
{
#ifdef SERIAL_DEBUG
log_i("%s", message);
#endif
}
/* retarget the C library printf function to the USART */
#ifdef SERIAL_DEBUG
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE {
usart_data_transmit(USART_MAIN, (uint8_t)ch);
while(RESET == usart_flag_get(USART_MAIN, USART_FLAG_TBE));
return ch;
}
#ifdef __GNUC__
int _write(int file, char *data, int len) {
int i;
for (i = 0; i < len; i++) { __io_putchar( *data++ );}
return len;
}
#endif
#endif
void toggle_led(uint32_t gpio_periph, uint32_t pin)
{
GPIO_OCTL(gpio_periph) ^= pin;
}
void intro_demo_led(uint32_t tDelay)
{
int i;
for (i = 0; i < 3; i++) {
gpio_bit_set(LED1_GPIO_Port, LED1_Pin);
gpio_bit_reset(LED3_GPIO_Port, LED3_Pin);
delay_1ms(tDelay);
gpio_bit_set(LED2_GPIO_Port, LED2_Pin);
gpio_bit_reset(LED1_GPIO_Port, LED1_Pin);
delay_1ms(tDelay);
gpio_bit_set(LED3_GPIO_Port, LED3_Pin);
gpio_bit_reset(LED2_GPIO_Port, LED2_Pin);
delay_1ms(tDelay);
}
for (i = 0; i < 2; i++) {
gpio_bit_set(LED1_GPIO_Port, LED1_Pin);
gpio_bit_set(LED2_GPIO_Port, LED2_Pin);
gpio_bit_set(LED3_GPIO_Port, LED3_Pin);
gpio_bit_set(LED4_GPIO_Port, LED4_Pin);
gpio_bit_set(LED5_GPIO_Port, LED5_Pin);
delay_1ms(tDelay);
gpio_bit_reset(LED1_GPIO_Port, LED1_Pin);
gpio_bit_reset(LED2_GPIO_Port, LED2_Pin);
gpio_bit_reset(LED3_GPIO_Port, LED3_Pin);
gpio_bit_reset(LED4_GPIO_Port, LED4_Pin);
gpio_bit_reset(LED5_GPIO_Port, LED5_Pin);
}
}
/* =========================== Input Initialization Function =========================== */
void input_init(void) {
#ifdef SERIAL_CONTROL
usart_Tx_DMA_config(USART_MAIN, (uint8_t *)&Sideboard, sizeof(Sideboard));
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)rx_buffer, sizeof(rx_buffer));
#endif
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
#ifdef MPU_SENSOR_ENABLE
if(mpu_config()) { // IMU MPU-6050 config
mpuStatus = ERROR;
gpio_bit_set(LED1_GPIO_Port, LED1_Pin); // Turn on RED LED
}
else {
mpuStatus = SUCCESS;
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
}
mpu_handle_input('h'); // Print the User Help commands to serial
#else
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
#endif
}
/* =========================== USART READ Functions =========================== */
/*
* Check for new data received on USART with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart_rx_check(void)
{
#ifdef SERIAL_DEBUG
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_len - dma_transfer_number_get(DMA_CH4); // Calculate current position in buffer
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer[old_pos], rx_buffer_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer[0], pos); // Process remaining data
}
}
}
old_pos = pos; // Update old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_DEBUG
#ifdef SERIAL_FEEDBACK
static uint32_t old_pos;
uint32_t pos;
uint8_t *ptr;
pos = rx_buffer_len - dma_transfer_number_get(DMA_CH4); // Calculate current position in buffer
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&FeedbackRaw; // Initialize the pointer with FeedbackRaw address
if (pos > old_pos && (pos - old_pos) == Feedback_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], Feedback_len); // Copy data. This is possible only if FeedbackRaw is contiguous! (meaning all the structure members have the same size)
usart_process_data(&FeedbackRaw, &Feedback); // Process data
} else if ((rx_buffer_len - old_pos + pos) == Feedback_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], rx_buffer_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_len - old_pos; // Move to correct position in FeedbackRaw
memcpy(ptr, &rx_buffer[0], pos); // Copy remaining data
}
usart_process_data(&FeedbackRaw, &Feedback); // Process data
}
}
old_pos = pos; // Updated old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_FEEDBACK
}
/*
* Process Rx debug user command input
*/
#ifdef SERIAL_DEBUG
void usart_process_debug(uint8_t *userCommand, uint32_t len)
{
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
log_i("Command = %c\n", *userCommand);
mpu_handle_input(*userCommand);
}
}
}
#endif // SERIAL_DEBUG
/*
* Process Rx data
* - if the Feedback_in data is valid (correct START_FRAME and checksum) copy the Feedback_in to Feedback_out
*/
#ifdef SERIAL_FEEDBACK
void usart_process_data(SerialFeedback *Feedback_in, SerialFeedback *Feedback_out)
{
uint16_t checksum;
if (Feedback_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(Feedback_in->start ^ Feedback_in->cmd1 ^ Feedback_in->cmd2 ^ Feedback_in->speedR_meas ^ Feedback_in->speedL_meas
^ Feedback_in->batVoltage ^ Feedback_in->boardTemp ^ Feedback_in->cmdLed);
if (Feedback_in->checksum == checksum) {
*Feedback_out = *Feedback_in;
timeoutCntSerial = 0; // Reset timeout counter
timeoutFlagSerial = 0; // Clear timeout flag
}
}
}
#endif // SERIAL_FEEDBACK
/* =========================== I2C WRITE Functions =========================== */
/*
* write bytes to chip register
*/
int8_t i2c_writeBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
{
// assign WRITE command
i2c_ReadWriteCmd = WRITE;
// assign inputs
i2c_status = -1;
i2c_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
i2c_regAddress = regAddr;
i2c_txbuffer = data;
i2c_nDABytes = length;
i2c_nRABytes = 1;
// enable the I2C0 interrupt
i2c_interrupt_enable(MPU_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
// the master waits until the I2C bus is idle
while(i2c_flag_get(MPU_I2C, I2C_FLAG_I2CBSY));
// the master sends a start condition to I2C bus
i2c_start_on_bus(MPU_I2C);
// Wait until all data bytes are sent/received
while(i2c_nDABytes > 0);
return i2c_status;
}
/*
* write 1 byte to chip register
*/
int8_t i2c_writeByte(uint8_t slaveAddr, uint8_t regAddr, uint8_t data)
{
return i2c_writeBytes(slaveAddr, regAddr, 1, &data);
}
/*
* write one bit to chip register
*/
int8_t i2c_writeBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data) {
uint8_t b;
i2c_readByte(slaveAddr, regAddr, &b);
b = (data != 0) ? (b | (1 << bitNum)) : (b & ~(1 << bitNum));
return i2c_writeByte(slaveAddr, regAddr, b);
}
/* =========================== I2C READ Functions =========================== */
/*
* read bytes from chip register
*/
int8_t i2c_readBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
{
// assign READ command
i2c_ReadWriteCmd = READ;
// assign inputs
i2c_status = -1;
i2c_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
i2c_regAddress = regAddr;
i2c_rxbuffer = data;
i2c_nDABytes = length;
i2c_nRABytes = 1;
// enable the I2C0 interrupt
i2c_interrupt_enable(MPU_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
if(2 == i2c_nDABytes){
i2c_ackpos_config(MPU_I2C, I2C_ACKPOS_NEXT); // send ACK for the next byte
}
// the master waits until the I2C bus is idle
while(i2c_flag_get(MPU_I2C, I2C_FLAG_I2CBSY));
// the master sends a start condition to I2C bus
i2c_start_on_bus(MPU_I2C);
// Wait until all data bytes are sent/received
while(i2c_nDABytes > 0);
// Return status
return i2c_status;
}
/*
* read 1 byte from chip register
*/
int8_t i2c_readByte(uint8_t slaveAddr, uint8_t regAddr, uint8_t *data)
{
return i2c_readBytes(slaveAddr, regAddr, 1, data);
}
/*
* read 1 bit from chip register
*/
int8_t i2c_readBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t *data)
{
uint8_t b;
int8_t status = i2c_readByte(slaveAddr, regAddr, &b);
*data = b & (1 << bitNum);
return status;
}
#ifdef AUX45_USE_I2C
/*
* write bytes to chip register
*/
int8_t i2c_aux_writeBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
{
// assign WRITE command
i2c_aux_ReadWriteCmd = WRITE;
// assign inputs
i2c_aux_status = -1;
i2c_aux_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
i2c_aux_regAddress = regAddr;
i2c_aux_txbuffer = data;
i2c_aux_nDABytes = length;
i2c_aux_nRABytes = 1;
// enable the I2C0 interrupt
i2c_interrupt_enable(AUX_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
// the master waits until the I2C bus is idle
while(i2c_flag_get(AUX_I2C, I2C_FLAG_I2CBSY));
// the master sends a start condition to I2C bus
i2c_start_on_bus(AUX_I2C);
// Wait until all data bytes are sent/received
while(i2c_aux_nDABytes > 0);
return i2c_aux_status;
}
/*
* read bytes from chip register
*/
int8_t i2c_aux_readBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
{
// assign READ command
i2c_aux_ReadWriteCmd = READ;
// assign inputs
i2c_aux_status = -1;
i2c_aux_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
i2c_aux_regAddress = regAddr;
i2c_aux_rxbuffer = data;
i2c_aux_nDABytes = length;
i2c_aux_nRABytes = 1;
// enable the I2C0 interrupt
i2c_interrupt_enable(AUX_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
if(2 == i2c_aux_nDABytes){
i2c_ackpos_config(AUX_I2C, I2C_ACKPOS_NEXT); // send ACK for the next byte
}
// the master waits until the I2C bus is idle
while(i2c_flag_get(AUX_I2C, I2C_FLAG_I2CBSY));
// the master sends a start condition to I2C bus
i2c_start_on_bus(AUX_I2C);
// Wait until all data bytes are sent/received
while(i2c_aux_nDABytes > 0);
// Return status
return i2c_aux_status;
}
#endif