mirror of
https://github.com/EFeru/hoverboard-sideboard-hack-GD.git
synced 2025-07-27 09:39:33 +00:00
- iBUS implementation - changed default baud rate to 115200 - updated platformio.ini, the chip is now supported by Platformio
540 lines
17 KiB
C
540 lines
17 KiB
C
/**
|
|
* This file is part of the hoverboard-sideboard-hack project.
|
|
*
|
|
* Copyright (C) 2020-2021 Emanuel FERU <aerdronix@gmail.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Includes
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "systick.h"
|
|
#include "gd32f1x0.h"
|
|
#include "defines.h"
|
|
#include "config.h"
|
|
#include "setup.h"
|
|
#include "util.h"
|
|
#include "mpu6050.h"
|
|
|
|
// USART variables
|
|
#ifdef SERIAL_CONTROL
|
|
SerialSideboard Sideboard;
|
|
#endif
|
|
|
|
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
|
|
static uint8_t rx1_buffer[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
|
|
static uint32_t rx1_buffer_len = ARRAY_LEN(rx1_buffer);
|
|
#endif
|
|
|
|
#ifdef SERIAL_FEEDBACK
|
|
SerialFeedback Feedback;
|
|
SerialFeedback FeedbackRaw;
|
|
uint16_t timeoutCntSerial = 0; // Timeout counter for UART1 Rx Serial
|
|
uint8_t timeoutFlagSerial = 0; // Timeout Flag for UART1 Rx Serial: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
|
|
static uint32_t Feedback_len = sizeof(Feedback);
|
|
#endif
|
|
|
|
#ifdef SERIAL_AUX_TX
|
|
SerialAuxTx AuxTx;
|
|
#endif
|
|
|
|
#ifdef SERIAL_AUX_RX
|
|
static uint8_t rx0_buffer[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
|
|
static uint32_t rx0_buffer_len = ARRAY_LEN(rx0_buffer);
|
|
#endif
|
|
|
|
#ifdef SERIAL_AUX_RX
|
|
SerialCommand command;
|
|
SerialCommand command_raw;
|
|
uint16_t timeoutCntSerial0 = 0; // Timeout counter for UART0 Rx Serial
|
|
uint8_t timeoutFlagSerial0 = 0; // Timeout Flag for UART0 Rx Serial: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
|
|
static uint32_t command_len = sizeof(command);
|
|
#ifdef CONTROL_IBUS
|
|
static uint16_t ibus_chksum;
|
|
uint16_t ibus_captured_value[IBUS_NUM_CHANNELS];
|
|
#endif
|
|
#endif
|
|
|
|
// MPU variables
|
|
ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
|
|
|
|
// MAIN I2C variables
|
|
volatile int8_t i2c_status;
|
|
volatile i2c_cmd i2c_ReadWriteCmd;
|
|
volatile uint8_t i2c_regAddress;
|
|
volatile uint8_t i2c_slaveAddress;
|
|
volatile uint8_t* i2c_txbuffer;
|
|
volatile uint8_t* i2c_rxbuffer;
|
|
volatile uint8_t i2c_nDABytes;
|
|
volatile int8_t i2c_nRABytes;
|
|
volatile uint8_t buffer[14];
|
|
|
|
#ifdef AUX45_USE_I2C
|
|
// AUX I2C variables
|
|
volatile int8_t i2c_aux_status;
|
|
volatile i2c_cmd i2c_aux_ReadWriteCmd;
|
|
volatile uint8_t i2c_aux_regAddress;
|
|
volatile uint8_t i2c_aux_slaveAddress;
|
|
volatile uint8_t* i2c_aux_txbuffer;
|
|
volatile uint8_t* i2c_aux_rxbuffer;
|
|
volatile uint8_t i2c_aux_nDABytes;
|
|
volatile int8_t i2c_aux_nRABytes;
|
|
#endif
|
|
|
|
|
|
/* =========================== General Functions =========================== */
|
|
|
|
void consoleLog(char *message)
|
|
{
|
|
#ifdef SERIAL_DEBUG
|
|
log_i("%s", message);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* retarget the C library printf function to the USART */
|
|
#ifdef SERIAL_DEBUG
|
|
#ifdef __GNUC__
|
|
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
|
|
#else
|
|
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
|
|
#endif
|
|
PUTCHAR_PROTOTYPE {
|
|
usart_data_transmit(USART_MAIN, (uint8_t)ch);
|
|
while(RESET == usart_flag_get(USART_MAIN, USART_FLAG_TBE));
|
|
return ch;
|
|
}
|
|
|
|
#ifdef __GNUC__
|
|
int _write(int file, char *data, int len) {
|
|
int i;
|
|
for (i = 0; i < len; i++) { __io_putchar( *data++ );}
|
|
return len;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
|
|
void toggle_led(uint32_t gpio_periph, uint32_t pin)
|
|
{
|
|
GPIO_OCTL(gpio_periph) ^= pin;
|
|
}
|
|
|
|
void intro_demo_led(uint32_t tDelay)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
gpio_bit_set(LED1_GPIO_Port, LED1_Pin);
|
|
gpio_bit_reset(LED3_GPIO_Port, LED3_Pin);
|
|
delay_1ms(tDelay);
|
|
gpio_bit_set(LED2_GPIO_Port, LED2_Pin);
|
|
gpio_bit_reset(LED1_GPIO_Port, LED1_Pin);
|
|
delay_1ms(tDelay);
|
|
gpio_bit_set(LED3_GPIO_Port, LED3_Pin);
|
|
gpio_bit_reset(LED2_GPIO_Port, LED2_Pin);
|
|
delay_1ms(tDelay);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
gpio_bit_set(LED1_GPIO_Port, LED1_Pin);
|
|
gpio_bit_set(LED2_GPIO_Port, LED2_Pin);
|
|
gpio_bit_set(LED3_GPIO_Port, LED3_Pin);
|
|
gpio_bit_set(LED4_GPIO_Port, LED4_Pin);
|
|
gpio_bit_set(LED5_GPIO_Port, LED5_Pin);
|
|
delay_1ms(tDelay);
|
|
gpio_bit_reset(LED1_GPIO_Port, LED1_Pin);
|
|
gpio_bit_reset(LED2_GPIO_Port, LED2_Pin);
|
|
gpio_bit_reset(LED3_GPIO_Port, LED3_Pin);
|
|
gpio_bit_reset(LED4_GPIO_Port, LED4_Pin);
|
|
gpio_bit_reset(LED5_GPIO_Port, LED5_Pin);
|
|
}
|
|
|
|
}
|
|
|
|
/* =========================== Input Initialization Function =========================== */
|
|
void input_init(void) {
|
|
#ifdef SERIAL_CONTROL
|
|
usart_Tx_DMA_config(USART_MAIN, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
|
#endif
|
|
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
|
|
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)rx1_buffer, sizeof(rx1_buffer));
|
|
#endif
|
|
#ifdef SERIAL_AUX_TX
|
|
usart_Tx_DMA_config(USART_AUX, (uint8_t *)&AuxTx, sizeof(AuxTx));
|
|
#endif
|
|
#ifdef SERIAL_AUX_RX
|
|
usart_Rx_DMA_config(USART_AUX, (uint8_t *)rx0_buffer, sizeof(rx0_buffer));
|
|
#endif
|
|
|
|
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
|
|
|
|
#ifdef MPU_SENSOR_ENABLE
|
|
if(mpu_config()) { // IMU MPU-6050 config
|
|
mpuStatus = ERROR;
|
|
gpio_bit_set(LED1_GPIO_Port, LED1_Pin); // Turn on RED LED
|
|
}
|
|
else {
|
|
mpuStatus = SUCCESS;
|
|
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
|
|
}
|
|
mpu_handle_input('h'); // Print the User Help commands to serial
|
|
#else
|
|
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
|
|
#endif
|
|
}
|
|
|
|
/* =========================== USART READ Functions =========================== */
|
|
|
|
/*
|
|
* Check for new data received on USART with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
|
|
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
|
|
*/
|
|
void usart0_rx_check(void)
|
|
{
|
|
#ifdef SERIAL_AUX_RX
|
|
static uint32_t old_pos;
|
|
uint32_t pos;
|
|
uint8_t *ptr;
|
|
|
|
pos = rx0_buffer_len - dma_transfer_number_get(USART0_RX_DMA_CH); // Calculate current position in buffer
|
|
if (pos != old_pos) { // Check change in received data
|
|
ptr = (uint8_t *)&command_raw; // Initialize the pointer with structure address
|
|
if (pos > old_pos && (pos - old_pos) == command_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
|
|
memcpy(ptr, &rx0_buffer[old_pos], command_len); // Copy data. This is possible only if structure is contiguous! (meaning all the structure members have the same size)
|
|
usart_process_command(&command_raw, &command); // Process data
|
|
} else if ((rx0_buffer_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length
|
|
memcpy(ptr, &rx0_buffer[old_pos], rx0_buffer_len - old_pos); // First copy data from the end of buffer
|
|
if (pos > 0) { // Check and continue with beginning of buffer
|
|
ptr += rx0_buffer_len - old_pos; // Update position
|
|
memcpy(ptr, &rx0_buffer[0], pos); // Copy remaining data
|
|
}
|
|
usart_process_command(&command_raw, &command); // Process data
|
|
}
|
|
}
|
|
old_pos = pos; // Updated old position
|
|
if (old_pos == rx0_buffer_len) { // Check and manually update if we reached end of buffer
|
|
old_pos = 0;
|
|
}
|
|
#endif // SERIAL_AUX_RX
|
|
}
|
|
|
|
void usart1_rx_check(void)
|
|
{
|
|
#ifdef SERIAL_DEBUG
|
|
static uint32_t old_pos;
|
|
uint32_t pos;
|
|
|
|
pos = rx1_buffer_len - dma_transfer_number_get(USART1_RX_DMA_CH); // Calculate current position in buffer
|
|
if (pos != old_pos) { // Check change in received data
|
|
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
|
|
usart_process_debug(&rx1_buffer[old_pos], pos - old_pos); // Process data
|
|
} else { // "Overflow" buffer mode
|
|
usart_process_debug(&rx1_buffer[old_pos], rx1_buffer_len - old_pos); // First Process data from the end of buffer
|
|
if (pos > 0) { // Check and continue with beginning of buffer
|
|
usart_process_debug(&rx1_buffer[0], pos); // Process remaining data
|
|
}
|
|
}
|
|
}
|
|
old_pos = pos; // Update old position
|
|
if (old_pos == rx1_buffer_len) { // Check and manually update if we reached end of buffer
|
|
old_pos = 0;
|
|
}
|
|
#endif // SERIAL_DEBUG
|
|
|
|
#ifdef SERIAL_FEEDBACK
|
|
static uint32_t old_pos;
|
|
uint32_t pos;
|
|
uint8_t *ptr;
|
|
|
|
pos = rx1_buffer_len - dma_transfer_number_get(USART1_RX_DMA_CH); // Calculate current position in buffer
|
|
if (pos != old_pos) { // Check change in received data
|
|
ptr = (uint8_t *)&FeedbackRaw; // Initialize the pointer with FeedbackRaw address
|
|
if (pos > old_pos && (pos - old_pos) == Feedback_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
|
|
memcpy(ptr, &rx1_buffer[old_pos], Feedback_len); // Copy data. This is possible only if FeedbackRaw is contiguous! (meaning all the structure members have the same size)
|
|
usart_process_data(&FeedbackRaw, &Feedback); // Process data
|
|
} else if ((rx1_buffer_len - old_pos + pos) == Feedback_len) { // "Overflow" buffer mode: check if data length equals expected length
|
|
memcpy(ptr, &rx1_buffer[old_pos], rx1_buffer_len - old_pos); // First copy data from the end of buffer
|
|
if (pos > 0) { // Check and continue with beginning of buffer
|
|
ptr += rx1_buffer_len - old_pos; // Move to correct position in FeedbackRaw
|
|
memcpy(ptr, &rx1_buffer[0], pos); // Copy remaining data
|
|
}
|
|
usart_process_data(&FeedbackRaw, &Feedback); // Process data
|
|
}
|
|
}
|
|
old_pos = pos; // Updated old position
|
|
if (old_pos == rx1_buffer_len) { // Check and manually update if we reached end of buffer
|
|
old_pos = 0;
|
|
}
|
|
#endif // SERIAL_FEEDBACK
|
|
}
|
|
|
|
/*
|
|
* Process Rx debug user command input
|
|
*/
|
|
#ifdef SERIAL_DEBUG
|
|
void usart_process_debug(uint8_t *userCommand, uint32_t len)
|
|
{
|
|
for (; len > 0; len--, userCommand++) {
|
|
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
|
|
log_i("Command = %c\n", *userCommand);
|
|
#ifdef MPU_SENSOR_ENABLE
|
|
mpu_handle_input(*userCommand);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif // SERIAL_DEBUG
|
|
|
|
/*
|
|
* Process Rx data
|
|
* - if the Feedback_in data is valid (correct START_FRAME and checksum) copy the Feedback_in to Feedback_out
|
|
*/
|
|
#ifdef SERIAL_FEEDBACK
|
|
void usart_process_data(SerialFeedback *Feedback_in, SerialFeedback *Feedback_out)
|
|
{
|
|
uint16_t checksum;
|
|
if (Feedback_in->start == SERIAL_START_FRAME) {
|
|
checksum = (uint16_t)(Feedback_in->start ^ Feedback_in->cmd1 ^ Feedback_in->cmd2 ^ Feedback_in->speedR_meas ^ Feedback_in->speedL_meas
|
|
^ Feedback_in->batVoltage ^ Feedback_in->boardTemp ^ Feedback_in->cmdLed);
|
|
if (Feedback_in->checksum == checksum) {
|
|
*Feedback_out = *Feedback_in;
|
|
timeoutCntSerial = 0; // Reset timeout counter
|
|
timeoutFlagSerial = 0; // Clear timeout flag
|
|
}
|
|
}
|
|
}
|
|
#endif // SERIAL_FEEDBACK
|
|
|
|
/*
|
|
* Process command UART0 Rx data
|
|
* - if the command_in data is valid (correct START_FRAME and checksum) copy the command_in to command_out
|
|
*/
|
|
#ifdef SERIAL_AUX_RX
|
|
void usart_process_command(SerialCommand *command_in, SerialCommand *command_out)
|
|
{
|
|
#ifdef CONTROL_IBUS
|
|
if (command_in->start == IBUS_LENGTH && command_in->type == IBUS_COMMAND) {
|
|
ibus_chksum = 0xFFFF - IBUS_LENGTH - IBUS_COMMAND;
|
|
for (uint8_t i = 0; i < (IBUS_NUM_CHANNELS * 2); i++) {
|
|
ibus_chksum -= command_in->channels[i];
|
|
}
|
|
if (ibus_chksum == (uint16_t)((command_in->checksumh << 8) + command_in->checksuml)) {
|
|
*command_out = *command_in;
|
|
timeoutCntSerial0 = 0; // Reset timeout counter
|
|
timeoutFlagSerial0 = 0; // Clear timeout flag
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/* =========================== I2C WRITE Functions =========================== */
|
|
|
|
/*
|
|
* write bytes to chip register
|
|
*/
|
|
int8_t i2c_writeBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
|
|
{
|
|
|
|
// assign WRITE command
|
|
i2c_ReadWriteCmd = WRITE;
|
|
|
|
// assign inputs
|
|
i2c_status = -1;
|
|
i2c_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
|
|
i2c_regAddress = regAddr;
|
|
i2c_txbuffer = data;
|
|
i2c_nDABytes = length;
|
|
i2c_nRABytes = 1;
|
|
|
|
// enable the I2C0 interrupt
|
|
i2c_interrupt_enable(MPU_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
|
|
|
|
// the master waits until the I2C bus is idle
|
|
while(i2c_flag_get(MPU_I2C, I2C_FLAG_I2CBSY));
|
|
|
|
// the master sends a start condition to I2C bus
|
|
i2c_start_on_bus(MPU_I2C);
|
|
|
|
// Wait until all data bytes are sent/received
|
|
while(i2c_nDABytes > 0);
|
|
|
|
return i2c_status;
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* write 1 byte to chip register
|
|
*/
|
|
int8_t i2c_writeByte(uint8_t slaveAddr, uint8_t regAddr, uint8_t data)
|
|
{
|
|
return i2c_writeBytes(slaveAddr, regAddr, 1, &data);
|
|
}
|
|
|
|
|
|
/*
|
|
* write one bit to chip register
|
|
*/
|
|
int8_t i2c_writeBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data) {
|
|
uint8_t b;
|
|
i2c_readByte(slaveAddr, regAddr, &b);
|
|
b = (data != 0) ? (b | (1 << bitNum)) : (b & ~(1 << bitNum));
|
|
return i2c_writeByte(slaveAddr, regAddr, b);
|
|
}
|
|
|
|
|
|
|
|
/* =========================== I2C READ Functions =========================== */
|
|
|
|
/*
|
|
* read bytes from chip register
|
|
*/
|
|
int8_t i2c_readBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
|
|
{
|
|
|
|
// assign READ command
|
|
i2c_ReadWriteCmd = READ;
|
|
|
|
// assign inputs
|
|
i2c_status = -1;
|
|
i2c_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
|
|
i2c_regAddress = regAddr;
|
|
i2c_rxbuffer = data;
|
|
i2c_nDABytes = length;
|
|
i2c_nRABytes = 1;
|
|
|
|
// enable the I2C0 interrupt
|
|
i2c_interrupt_enable(MPU_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
|
|
|
|
if(2 == i2c_nDABytes){
|
|
i2c_ackpos_config(MPU_I2C, I2C_ACKPOS_NEXT); // send ACK for the next byte
|
|
}
|
|
|
|
// the master waits until the I2C bus is idle
|
|
while(i2c_flag_get(MPU_I2C, I2C_FLAG_I2CBSY));
|
|
|
|
// the master sends a start condition to I2C bus
|
|
i2c_start_on_bus(MPU_I2C);
|
|
|
|
// Wait until all data bytes are sent/received
|
|
while(i2c_nDABytes > 0);
|
|
|
|
// Return status
|
|
return i2c_status;
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* read 1 byte from chip register
|
|
*/
|
|
int8_t i2c_readByte(uint8_t slaveAddr, uint8_t regAddr, uint8_t *data)
|
|
{
|
|
return i2c_readBytes(slaveAddr, regAddr, 1, data);
|
|
}
|
|
|
|
|
|
/*
|
|
* read 1 bit from chip register
|
|
*/
|
|
int8_t i2c_readBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t *data)
|
|
{
|
|
uint8_t b;
|
|
int8_t status = i2c_readByte(slaveAddr, regAddr, &b);
|
|
*data = b & (1 << bitNum);
|
|
return status;
|
|
}
|
|
|
|
|
|
#ifdef AUX45_USE_I2C
|
|
/*
|
|
* write bytes to chip register
|
|
*/
|
|
int8_t i2c_aux_writeBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
|
|
{
|
|
|
|
// assign WRITE command
|
|
i2c_aux_ReadWriteCmd = WRITE;
|
|
|
|
// assign inputs
|
|
i2c_aux_status = -1;
|
|
i2c_aux_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
|
|
i2c_aux_regAddress = regAddr;
|
|
i2c_aux_txbuffer = data;
|
|
i2c_aux_nDABytes = length;
|
|
i2c_aux_nRABytes = 1;
|
|
|
|
// enable the I2C0 interrupt
|
|
i2c_interrupt_enable(AUX_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
|
|
|
|
// the master waits until the I2C bus is idle
|
|
while(i2c_flag_get(AUX_I2C, I2C_FLAG_I2CBSY));
|
|
|
|
// the master sends a start condition to I2C bus
|
|
i2c_start_on_bus(AUX_I2C);
|
|
|
|
// Wait until all data bytes are sent/received
|
|
while(i2c_aux_nDABytes > 0);
|
|
|
|
return i2c_aux_status;
|
|
|
|
}
|
|
|
|
/*
|
|
* read bytes from chip register
|
|
*/
|
|
int8_t i2c_aux_readBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
|
|
{
|
|
|
|
// assign READ command
|
|
i2c_aux_ReadWriteCmd = READ;
|
|
|
|
// assign inputs
|
|
i2c_aux_status = -1;
|
|
i2c_aux_slaveAddress = slaveAddr << 1; // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
|
|
i2c_aux_regAddress = regAddr;
|
|
i2c_aux_rxbuffer = data;
|
|
i2c_aux_nDABytes = length;
|
|
i2c_aux_nRABytes = 1;
|
|
|
|
// enable the I2C0 interrupt
|
|
i2c_interrupt_enable(AUX_I2C, I2C_INT_ERR | I2C_INT_BUF | I2C_INT_EV);
|
|
|
|
if(2 == i2c_aux_nDABytes){
|
|
i2c_ackpos_config(AUX_I2C, I2C_ACKPOS_NEXT); // send ACK for the next byte
|
|
}
|
|
|
|
// the master waits until the I2C bus is idle
|
|
while(i2c_flag_get(AUX_I2C, I2C_FLAG_I2CBSY));
|
|
|
|
// the master sends a start condition to I2C bus
|
|
i2c_start_on_bus(AUX_I2C);
|
|
|
|
// Wait until all data bytes are sent/received
|
|
while(i2c_aux_nDABytes > 0);
|
|
|
|
// Return status
|
|
return i2c_aux_status;
|
|
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|