mirror of
https://github.com/EFeru/hoverboard-sideboard-hack-GD.git
synced 2025-07-27 09:39:33 +00:00
233 lines
9.0 KiB
C
233 lines
9.0 KiB
C
/**
|
|
* This file is part of the hoverboard-sideboard-hack project.
|
|
*
|
|
* Copyright (C) 2020-2021 Emanuel FERU <aerdronix@gmail.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include "gd32f1x0.h"
|
|
#include "systick.h"
|
|
#include "i2c_it.h"
|
|
#include "defines.h"
|
|
#include "setup.h"
|
|
#include "config.h"
|
|
#include "util.h"
|
|
#include "mpu6050.h"
|
|
#include "mpu6050_dmp.h"
|
|
|
|
#ifdef SERIAL_CONTROL
|
|
typedef struct{
|
|
uint16_t start;
|
|
int16_t roll;
|
|
int16_t pitch;
|
|
int16_t yaw;
|
|
uint16_t sensors;
|
|
uint16_t checksum;
|
|
} SerialSideboard;
|
|
SerialSideboard Sideboard;
|
|
#endif
|
|
|
|
#ifdef SERIAL_FEEDBACK
|
|
typedef struct{
|
|
uint16_t start;
|
|
int16_t cmd1;
|
|
int16_t cmd2;
|
|
int16_t speedR_meas;
|
|
int16_t speedL_meas;
|
|
int16_t batVoltage;
|
|
int16_t boardTemp;
|
|
uint16_t cmdLed;
|
|
uint16_t checksum;
|
|
} SerialFeedback;
|
|
SerialFeedback Feedback;
|
|
SerialFeedback NewFeedback;
|
|
|
|
static int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
|
|
static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
|
|
#endif
|
|
|
|
extern MPU_Data mpu; // holds the MPU-6050 data
|
|
ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
|
|
|
|
uint8_t userCommand; // holds the user command input
|
|
FlagStatus sensor1, sensor2; // holds the sensor1 and sensor 2 values
|
|
FlagStatus sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
|
|
|
|
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
|
|
|
|
|
|
int main(void)
|
|
{
|
|
systick_config(); // SysTick config
|
|
gpio_config(); // GPIO config
|
|
usart_config(USART_MAIN, USART_MAIN_BAUD); // USART config
|
|
i2c_config(); // I2C config
|
|
i2c_nvic_config(); // NVIC peripheral config
|
|
|
|
#ifdef SERIAL_CONTROL
|
|
usart_Tx_DMA_config(USART_MAIN, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
|
#endif
|
|
#ifdef SERIAL_FEEDBACK
|
|
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
|
#endif
|
|
|
|
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
|
|
if(mpu_config()) { // IMU MPU-6050 config
|
|
mpuStatus = ERROR;
|
|
gpio_bit_set(LED1_GPIO_Port, LED1_Pin); // Turn on RED LED
|
|
}
|
|
else {
|
|
mpuStatus = SUCCESS;
|
|
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
|
|
}
|
|
mpu_handle_input('h'); // Print the User Help commands to serial
|
|
|
|
while(1) {
|
|
|
|
delay_1ms(DELAY_IN_MAIN_LOOP);
|
|
|
|
// ==================================== LEDs Handling ====================================
|
|
// toggle_led(LED4_GPIO_Port, LED4_Pin); // Toggle BLUE1 LED
|
|
#ifdef SERIAL_FEEDBACK
|
|
if (!timeoutFlagSerial) {
|
|
if (Feedback.cmdLed & LED1_SET) { gpio_bit_set(LED1_GPIO_Port, LED1_Pin); } else { gpio_bit_reset(LED1_GPIO_Port, LED1_Pin); }
|
|
if (Feedback.cmdLed & LED2_SET) { gpio_bit_set(LED2_GPIO_Port, LED2_Pin); } else { gpio_bit_reset(LED2_GPIO_Port, LED2_Pin); }
|
|
if (Feedback.cmdLed & LED3_SET) { gpio_bit_set(LED3_GPIO_Port, LED3_Pin); } else { gpio_bit_reset(LED3_GPIO_Port, LED3_Pin); }
|
|
if (Feedback.cmdLed & LED4_SET) { gpio_bit_set(LED4_GPIO_Port, LED4_Pin); } else { gpio_bit_reset(LED4_GPIO_Port, LED4_Pin); }
|
|
if (Feedback.cmdLed & LED5_SET) { gpio_bit_set(LED5_GPIO_Port, LED5_Pin); } else { gpio_bit_reset(LED5_GPIO_Port, LED5_Pin); }
|
|
if (Feedback.cmdLed & LED4_SET) { gpio_bit_set(AUX3_GPIO_Port, AUX3_Pin); } else { gpio_bit_reset(AUX3_GPIO_Port, AUX3_Pin); }
|
|
}
|
|
#endif
|
|
|
|
|
|
// ==================================== USER Handling ====================================
|
|
#ifdef SERIAL_DEBUG
|
|
// Get the user Input as one character from Serial
|
|
if(SET == usart_flag_get(USART_MAIN, USART_FLAG_RBNE)) { // Check if Read Buffer Not Empty meanind Serial data is available
|
|
userCommand = usart_data_receive(USART_MAIN);
|
|
if (userCommand != 10 && userCommand != 13) { // Do not accept 'new line' (ascii 10) and 'carriage return' (ascii 13) commands
|
|
log_i("Command = %c\n", userCommand);
|
|
mpu_handle_input(userCommand);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
// ==================================== MPU-6050 Handling ====================================
|
|
// Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically
|
|
if (SUCCESS == mpuStatus) {
|
|
mpu_get_data();
|
|
} else if (ERROR == mpuStatus && main_loop_counter % 100 == 0) {
|
|
toggle_led(LED1_GPIO_Port, LED1_Pin); // Toggle the Red LED every 100 ms
|
|
}
|
|
// Print MPU data to Console
|
|
if (main_loop_counter % 50 == 0) {
|
|
mpu_print_to_console();
|
|
}
|
|
|
|
|
|
// ==================================== SENSORS Handling ====================================
|
|
sensor1_read = gpio_input_bit_get(SENSOR1_GPIO_Port, SENSOR1_Pin);
|
|
sensor2_read = gpio_input_bit_get(SENSOR2_GPIO_Port, SENSOR2_Pin);
|
|
|
|
// SENSOR1
|
|
if (sensor1 == RESET && sensor1_read == SET) {
|
|
sensor1 = SET;
|
|
// Sensor ACTIVE: Do something here (one time task on activation)
|
|
gpio_bit_set(LED4_GPIO_Port, LED4_Pin);
|
|
consoleLog("-- SENSOR 1 Active --\n");
|
|
} else if(sensor1 == SET && sensor1_read == RESET) {
|
|
sensor1 = RESET;
|
|
gpio_bit_reset(LED4_GPIO_Port, LED4_Pin);
|
|
consoleLog("-- SENSOR 1 Deactive --\n");
|
|
}
|
|
|
|
// SENSOR2
|
|
if (sensor2 == RESET && sensor2_read == SET) {
|
|
sensor2 = SET;
|
|
// Sensor ACTIVE: Do something here (one time task on activation)
|
|
gpio_bit_set(LED5_GPIO_Port, LED5_Pin);
|
|
consoleLog("-- SENSOR 2 Active --\n");
|
|
} else if (sensor2 == SET && sensor2_read == RESET) {
|
|
sensor2 = RESET;
|
|
gpio_bit_reset(LED5_GPIO_Port, LED5_Pin);
|
|
consoleLog("-- SENSOR 2 Deactive --\n");
|
|
}
|
|
|
|
if (sensor1 == SET) {
|
|
// Sensor ACTIVE: Do something here (continuous task)
|
|
}
|
|
if (sensor2 == SET) {
|
|
// Sensor ACTIVE: Do something here (continuous task)
|
|
}
|
|
|
|
|
|
// ==================================== SERIAL Tx/Rx Handling ====================================
|
|
#ifdef SERIAL_CONTROL
|
|
// To transmit on USART
|
|
if (main_loop_counter % 5 == 0 && SET == dma_flag_get(DMA_CH3, DMA_FLAG_FTF)) { // check if DMA channel transfer complete (Full Transfer Finish flag == 1)
|
|
Sideboard.start = (uint16_t)SERIAL_START_FRAME;
|
|
Sideboard.roll = (int16_t)mpu.euler.roll;
|
|
Sideboard.pitch = (int16_t)mpu.euler.pitch;
|
|
Sideboard.yaw = (int16_t)mpu.euler.yaw;
|
|
Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1) | (mpuStatus << 2));
|
|
Sideboard.checksum = (uint16_t)(Sideboard.start ^ Sideboard.roll ^ Sideboard.pitch ^ Sideboard.yaw ^ Sideboard.sensors);
|
|
|
|
dma_channel_disable(DMA_CH3);
|
|
DMA_CHCNT(DMA_CH3) = sizeof(Sideboard);
|
|
DMA_CHMADDR(DMA_CH3) = (uint32_t)&Sideboard;
|
|
dma_channel_enable(DMA_CH3);
|
|
}
|
|
#endif
|
|
|
|
#ifdef SERIAL_FEEDBACK
|
|
uint16_t checksum;
|
|
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas
|
|
^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
|
|
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
|
|
if (timeoutFlagSerial) { // Check for previous timeout flag
|
|
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
|
|
timeoutFlagSerial = 0; // Timeout flag cleared
|
|
} else {
|
|
memcpy(&Feedback, &NewFeedback, sizeof(Feedback)); // Copy the new data
|
|
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
|
|
timeoutCntSerial = 0; // Reset the timeout counter
|
|
}
|
|
} else {
|
|
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
|
|
timeoutFlagSerial = 1; // Timeout detected
|
|
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
|
|
}
|
|
// Most probably we are out-of-sync. Try to re-sync by reseting the DMA
|
|
if (main_loop_counter % 150 == 0) {
|
|
dma_channel_disable(DMA_CH4);
|
|
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
|
}
|
|
}
|
|
|
|
if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired
|
|
toggle_led(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms
|
|
}
|
|
#endif
|
|
|
|
main_loop_counter++;
|
|
|
|
}
|
|
}
|
|
|
|
|