mirror of
https://github.com/EFeru/hoverboard-sideboard-hack-STM.git
synced 2025-08-17 00:56:10 +00:00
UART with mainboard works
- the sideboard can now send and receive Serial data from the mainboard - fixed Processing sketch
This commit is contained in:
90
Src/main.c
90
Src/main.c
@@ -100,8 +100,6 @@ typedef struct{
|
||||
uint16_t start;
|
||||
int16_t cmd1;
|
||||
int16_t cmd2;
|
||||
int16_t speedR;
|
||||
int16_t speedL;
|
||||
int16_t speedR_meas;
|
||||
int16_t speedL_meas;
|
||||
int16_t batVoltage;
|
||||
@@ -117,10 +115,10 @@ static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial comman
|
||||
#endif
|
||||
|
||||
extern MPU_Data mpu; // holds the MPU-6050 data
|
||||
ErrorStatus mpuStatus = SUCCESS; // holds the MPU-6050 status: SUCCESS or ERROR
|
||||
ErrorStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
|
||||
|
||||
FlagStatus sensor1, sensor2; // holds the sensor1 and sensor 2 values
|
||||
FlagStatus sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
|
||||
GPIO_PinState sensor1, sensor2; // holds the sensor1 and sensor 2 values
|
||||
GPIO_PinState sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
|
||||
|
||||
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
|
||||
/* USER CODE END 0 */
|
||||
@@ -164,7 +162,7 @@ int main(void)
|
||||
#endif
|
||||
#ifdef SERIAL_CONTROL
|
||||
__HAL_UART_FLUSH_DRREGISTER(&huart2);
|
||||
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
||||
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
||||
#endif
|
||||
#ifdef SERIAL_FEEDBACK
|
||||
__HAL_UART_FLUSH_DRREGISTER(&huart2);
|
||||
@@ -177,6 +175,7 @@ int main(void)
|
||||
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on RED LED
|
||||
}
|
||||
else {
|
||||
mpuStatus = SUCCESS;
|
||||
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
|
||||
}
|
||||
mpu_handle_input('h'); // Print the User Help commands to serial
|
||||
@@ -216,6 +215,8 @@ int main(void)
|
||||
// Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically
|
||||
if (SUCCESS == mpuStatus) {
|
||||
mpu_get_data();
|
||||
} else if (ERROR == mpuStatus && main_loop_counter % 100 == 0) {
|
||||
HAL_GPIO_TogglePin(LED1_GPIO_Port, LED1_Pin); // Toggle the Red LED every 100 ms
|
||||
}
|
||||
// Print MPU data to Console
|
||||
if (main_loop_counter % 50 == 0) {
|
||||
@@ -228,80 +229,77 @@ int main(void)
|
||||
sensor2_read = HAL_GPIO_ReadPin(SENSOR2_GPIO_Port, SENSOR2_Pin);
|
||||
|
||||
// SENSOR1
|
||||
if (sensor1 == RESET && sensor1_read == SET) {
|
||||
sensor1 = SET;
|
||||
if (sensor1 == GPIO_PIN_RESET && sensor1_read == GPIO_PIN_SET) {
|
||||
sensor1 = GPIO_PIN_SET;
|
||||
// Sensor ACTIVE: Do something here (one time task on activation)
|
||||
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET);
|
||||
consoleLog("-- SENSOR 1 Active --\n");
|
||||
} else if(sensor1 == SET && sensor1_read == RESET) {
|
||||
sensor1 = RESET;
|
||||
} else if(sensor1 == GPIO_PIN_SET && sensor1_read == GPIO_PIN_RESET) {
|
||||
sensor1 = GPIO_PIN_RESET;
|
||||
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET);
|
||||
}
|
||||
|
||||
// SENSOR2
|
||||
if (sensor2 == RESET && sensor2_read == SET) {
|
||||
sensor2 = SET;
|
||||
if (sensor2 == GPIO_PIN_RESET && sensor2_read == GPIO_PIN_SET) {
|
||||
sensor2 = GPIO_PIN_SET;
|
||||
// Sensor ACTIVE: Do something here (one time task on activation)
|
||||
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET);
|
||||
consoleLog("-- SENSOR 2 Active --\n");
|
||||
} else if (sensor2 == SET && sensor2_read == RESET) {
|
||||
sensor2 = RESET;
|
||||
} else if (sensor2 == GPIO_PIN_SET && sensor2_read == GPIO_PIN_RESET) {
|
||||
sensor2 = GPIO_PIN_RESET;
|
||||
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
|
||||
}
|
||||
|
||||
if (sensor1 == SET) {
|
||||
if (sensor1 == GPIO_PIN_SET) {
|
||||
// Sensor ACTIVE: Do something here (continuous task)
|
||||
}
|
||||
if (sensor2 == SET) {
|
||||
if (sensor2 == GPIO_PIN_SET) {
|
||||
// Sensor ACTIVE: Do something here (continuous task)
|
||||
}
|
||||
|
||||
|
||||
// ==================================== SERIAL Tx/Rx Handling ====================================
|
||||
#ifdef SERIAL_CONTROL
|
||||
if (main_loop_counter % 50 == 0) { // Transmit Tx data periodically using DMA
|
||||
if (main_loop_counter % 5 == 0) { // Transmit Tx data periodically using DMA
|
||||
Sideboard.start = (uint16_t)SERIAL_START_FRAME;
|
||||
Sideboard.roll = (int16_t)mpu.euler.roll;
|
||||
Sideboard.pitch = (int16_t)mpu.euler.pitch;
|
||||
Sideboard.yaw = (int16_t)mpu.euler.yaw;
|
||||
Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1));
|
||||
Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1) | (mpuStatus << 2));
|
||||
Sideboard.checksum = (uint16_t)(Sideboard.start ^ Sideboard.roll ^ Sideboard.pitch ^ Sideboard.yaw ^ Sideboard.sensors);
|
||||
|
||||
HAL_UART_Transmit_DMA (&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
||||
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef SERIAL_FEEDBACK
|
||||
uint16_t checksum;
|
||||
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR ^ NewFeedback.speedL
|
||||
^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas ^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
|
||||
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
|
||||
if (timeoutFlagSerial) { // Check for previous timeout flag
|
||||
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
|
||||
timeoutFlagSerial = 0; // Timeout flag cleared
|
||||
uint16_t checksum;
|
||||
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas
|
||||
^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
|
||||
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
|
||||
if (timeoutFlagSerial) { // Check for previous timeout flag
|
||||
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
|
||||
timeoutFlagSerial = 0; // Timeout flag cleared
|
||||
} else {
|
||||
memcpy(&Feedback, &NewFeedback, sizeof(SerialFeedback)); // Copy the new data
|
||||
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
|
||||
timeoutCntSerial = 0; // Reset the timeout counter
|
||||
memcpy(&Feedback, &NewFeedback, sizeof(Feedback)); // Copy the new data
|
||||
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
|
||||
timeoutCntSerial = 0; // Reset the timeout counter
|
||||
}
|
||||
} else {
|
||||
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
|
||||
timeoutFlagSerial = 1; // Timeout detected
|
||||
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
|
||||
}
|
||||
// Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA
|
||||
if (main_loop_counter % 50 == 0 && NewFeedback.start != SERIAL_START_FRAME && NewFeedback.start != 0xFFFF) {
|
||||
HAL_UART_DMAStop(&huart2);
|
||||
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
||||
NewFeedback.start = 0xFFFF; // Change the Start Frame to avoid entering again here if no data is received
|
||||
}
|
||||
}
|
||||
|
||||
if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State and indicate error if desired
|
||||
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET); // Turn on Red LED
|
||||
} else {
|
||||
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET); // Follow the Normal behavior
|
||||
}
|
||||
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
|
||||
timeoutFlagSerial = 1; // Timeout detected
|
||||
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
|
||||
}
|
||||
// Most probably we are out-of-sync. Try to re-sync by reseting the DMA
|
||||
if (main_loop_counter % 150 == 0) {
|
||||
HAL_UART_DMAStop(&huart2);
|
||||
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
||||
}
|
||||
}
|
||||
|
||||
if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired
|
||||
HAL_GPIO_TogglePin(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms
|
||||
}
|
||||
#endif
|
||||
|
||||
main_loop_counter++;
|
||||
|
@@ -3230,19 +3230,19 @@ void mpu_start_self_test(void)
|
||||
#elif defined (MPU6050) || defined (MPU9150)
|
||||
result = mpu_run_self_test(gyro, accel);
|
||||
#endif
|
||||
#ifdef SERIAL_DEBUG
|
||||
log_i("accel: %ld %ld %ld\n",
|
||||
accel[0],
|
||||
accel[1],
|
||||
accel[2]);
|
||||
log_i("gyro: %ld %ld %ld\n",
|
||||
gyro[0],
|
||||
gyro[1],
|
||||
gyro[2]);
|
||||
#endif
|
||||
if (result == 0x7) {
|
||||
#ifdef SERIAL_DEBUG
|
||||
consoleLog("Passed!\n");
|
||||
log_i("accel: %ld %ld %ld\n",
|
||||
accel[0],
|
||||
accel[1],
|
||||
accel[2]);
|
||||
log_i("gyro: %ld %ld %ld\n",
|
||||
gyro[0],
|
||||
gyro[1],
|
||||
gyro[2]);
|
||||
/* Test passed. We can trust the gyro data here, so now we need to update calibrated data*/
|
||||
#endif
|
||||
consoleLog("Passed!\n");
|
||||
/* Test passed. We can trust the gyro data here, so now we need to update calibrated data*/
|
||||
|
||||
#ifdef USE_CAL_HW_REGISTERS
|
||||
/*
|
||||
@@ -3639,10 +3639,10 @@ void mpu_calc_euler_angles(void) {
|
||||
float yaw, pitch, roll;
|
||||
|
||||
// Convert quaternions[q30] to quaternion[float]
|
||||
w = (float)mpu.quat.w / 1073741824; // 1073741824 = 2^30
|
||||
x = (float)mpu.quat.x / 1073741824;
|
||||
y = (float)mpu.quat.y / 1073741824;
|
||||
z = (float)mpu.quat.z / 1073741824;
|
||||
w = (float)mpu.quat.w / q30; // q30 = 2^30
|
||||
x = (float)mpu.quat.x / q30;
|
||||
y = (float)mpu.quat.y / q30;
|
||||
z = (float)mpu.quat.z / q30;
|
||||
|
||||
// Calculate Euler angles: source <https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles>
|
||||
roll = atan2(2*(w*x + y*z), 1 - 2*(x*x + y*y)); // roll (x-axis rotation)
|
||||
|
@@ -69,7 +69,7 @@ void intro_demo_led(uint32_t tDelay)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
for (i = 0; i < 3; i++) {
|
||||
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
|
||||
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
|
||||
HAL_Delay(tDelay);
|
||||
|
Reference in New Issue
Block a user