mirror of
https://github.com/EFeru/hoverboard-sideboard-hack-STM.git
synced 2025-07-27 09:19:33 +00:00
UART with mainboard works
- the sideboard can now send and receive Serial data from the mainboard - fixed Processing sketch
This commit is contained in:
parent
e21f61ec2e
commit
5d9e79afaf
2
.gitignore
vendored
2
.gitignore
vendored
@ -2,7 +2,7 @@
|
|||||||
.pioenvs/
|
.pioenvs/
|
||||||
.vscode/
|
.vscode/
|
||||||
MDK-ARM/DebugConfig/
|
MDK-ARM/DebugConfig/
|
||||||
MDK-ARM/Listing/
|
MDK-ARM/Listings/
|
||||||
MDK-ARM/Objects/
|
MDK-ARM/Objects/
|
||||||
MDK-ARM/RTE/
|
MDK-ARM/RTE/
|
||||||
MDK-ARM/*.uvguix.*
|
MDK-ARM/*.uvguix.*
|
||||||
|
@ -72,8 +72,8 @@
|
|||||||
#ifdef BYPASS_CUBEMX_DEFINES
|
#ifdef BYPASS_CUBEMX_DEFINES
|
||||||
#define USART_MAIN_BAUD 38400 // [bit/s] MAIN Serial Tx/Rx baud rate
|
#define USART_MAIN_BAUD 38400 // [bit/s] MAIN Serial Tx/Rx baud rate
|
||||||
#endif
|
#endif
|
||||||
#define SERIAL_START_FRAME 0xAAAA // [-] Start frame definition for reliable serial communication
|
#define SERIAL_START_FRAME 0xABCD // [-] Start frame definition for reliable serial communication
|
||||||
#define SERIAL_TIMEOUT 300 // [-] Numer of wrong received data for Serial timeout detection
|
#define SERIAL_TIMEOUT 500 // [-] Numer of wrong received data for Serial timeout detection
|
||||||
|
|
||||||
|
|
||||||
/* ==================================== VALIDATE SETTINGS ==================================== */
|
/* ==================================== VALIDATE SETTINGS ==================================== */
|
||||||
|
@ -90,6 +90,7 @@
|
|||||||
/* =========================== Defines MPU-6050 =========================== */
|
/* =========================== Defines MPU-6050 =========================== */
|
||||||
#define log_i printf // redirect the log_i debug function to printf
|
#define log_i printf // redirect the log_i debug function to printf
|
||||||
#define RAD2DEG 57.295779513082323 // RAD2DEG = 180/pi. Example: angle[deg] = angle[rad] * RAD2DEG
|
#define RAD2DEG 57.295779513082323 // RAD2DEG = 180/pi. Example: angle[deg] = angle[rad] * RAD2DEG
|
||||||
|
#define q30 1073741824 // 1073741824 = 2^30
|
||||||
#define ACCEL_ON (0x01)
|
#define ACCEL_ON (0x01)
|
||||||
#define GYRO_ON (0x02)
|
#define GYRO_ON (0x02)
|
||||||
#define COMPASS_ON (0x04)
|
#define COMPASS_ON (0x04)
|
||||||
|
@ -75,7 +75,7 @@
|
|||||||
<OPTFL>
|
<OPTFL>
|
||||||
<tvExp>1</tvExp>
|
<tvExp>1</tvExp>
|
||||||
<tvExpOptDlg>0</tvExpOptDlg>
|
<tvExpOptDlg>0</tvExpOptDlg>
|
||||||
<IsCurrentTarget>1</IsCurrentTarget>
|
<IsCurrentTarget>0</IsCurrentTarget>
|
||||||
</OPTFL>
|
</OPTFL>
|
||||||
<CpuCode>18</CpuCode>
|
<CpuCode>18</CpuCode>
|
||||||
<DebugOpt>
|
<DebugOpt>
|
||||||
@ -233,7 +233,7 @@
|
|||||||
<OPTFL>
|
<OPTFL>
|
||||||
<tvExp>1</tvExp>
|
<tvExp>1</tvExp>
|
||||||
<tvExpOptDlg>0</tvExpOptDlg>
|
<tvExpOptDlg>0</tvExpOptDlg>
|
||||||
<IsCurrentTarget>0</IsCurrentTarget>
|
<IsCurrentTarget>1</IsCurrentTarget>
|
||||||
</OPTFL>
|
</OPTFL>
|
||||||
<CpuCode>18</CpuCode>
|
<CpuCode>18</CpuCode>
|
||||||
<DebugOpt>
|
<DebugOpt>
|
||||||
|
@ -74,14 +74,14 @@ make flash
|
|||||||
|
|
||||||
This firmware offers currently these variants (selectable in [platformio.ini](/platformio.ini) or [config.h](/Inc/config.h)):
|
This firmware offers currently these variants (selectable in [platformio.ini](/platformio.ini) or [config.h](/Inc/config.h)):
|
||||||
- **VARIANT_DEBUG**: In this variant the user can interact with sideboard by sending commands via a Serial Monitor to observe and check the capabilities of the sideboard.
|
- **VARIANT_DEBUG**: In this variant the user can interact with sideboard by sending commands via a Serial Monitor to observe and check the capabilities of the sideboard.
|
||||||
- **VARIANT_HOVERBOARD**: In this variant the sideboard is communicating with the mainboard of a hoverboard using the [FOC firmware repository](https://github.com/EmanuelFeru/hoverboard-firmware-hack-FOC). This Variant is not yet fully tested!
|
- **VARIANT_HOVERBOARD**: In this variant the sideboard is communicating with the mainboard of a hoverboard using the [FOC firmware repository](https://github.com/EmanuelFeru/hoverboard-firmware-hack-FOC).
|
||||||
|
|
||||||
Of course the firmware can be further customized for other needs or projects.
|
Of course the firmware can be further customized for other needs or projects.
|
||||||
|
|
||||||
---
|
---
|
||||||
## 3D Visualization Demo
|
## 3D Visualization Demo
|
||||||
|
|
||||||
By [converting Quaternions to Euler angles](https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles), we can make a [3D visualization example](/docs/sketch_processing/sketch_processing.pde) in [Processing](https://processing.org/) as shown below. For this Demo VARIANT_HOVERBOARD was used.
|
By [converting Quaternions to Euler angles](https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles), we can make a [3D visualization example](/docs/sketch_processing/sketch_processing.pde) in [Processing](https://processing.org/) as shown below. For this Demo VARIANT_DEBUG was used.
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
|
54
Src/main.c
54
Src/main.c
@ -100,8 +100,6 @@ typedef struct{
|
|||||||
uint16_t start;
|
uint16_t start;
|
||||||
int16_t cmd1;
|
int16_t cmd1;
|
||||||
int16_t cmd2;
|
int16_t cmd2;
|
||||||
int16_t speedR;
|
|
||||||
int16_t speedL;
|
|
||||||
int16_t speedR_meas;
|
int16_t speedR_meas;
|
||||||
int16_t speedL_meas;
|
int16_t speedL_meas;
|
||||||
int16_t batVoltage;
|
int16_t batVoltage;
|
||||||
@ -117,10 +115,10 @@ static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial comman
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
extern MPU_Data mpu; // holds the MPU-6050 data
|
extern MPU_Data mpu; // holds the MPU-6050 data
|
||||||
ErrorStatus mpuStatus = SUCCESS; // holds the MPU-6050 status: SUCCESS or ERROR
|
ErrorStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
|
||||||
|
|
||||||
FlagStatus sensor1, sensor2; // holds the sensor1 and sensor 2 values
|
GPIO_PinState sensor1, sensor2; // holds the sensor1 and sensor 2 values
|
||||||
FlagStatus sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
|
GPIO_PinState sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
|
||||||
|
|
||||||
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
|
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
|
||||||
/* USER CODE END 0 */
|
/* USER CODE END 0 */
|
||||||
@ -177,6 +175,7 @@ int main(void)
|
|||||||
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on RED LED
|
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on RED LED
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
|
mpuStatus = SUCCESS;
|
||||||
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
|
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
|
||||||
}
|
}
|
||||||
mpu_handle_input('h'); // Print the User Help commands to serial
|
mpu_handle_input('h'); // Print the User Help commands to serial
|
||||||
@ -216,6 +215,8 @@ int main(void)
|
|||||||
// Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically
|
// Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically
|
||||||
if (SUCCESS == mpuStatus) {
|
if (SUCCESS == mpuStatus) {
|
||||||
mpu_get_data();
|
mpu_get_data();
|
||||||
|
} else if (ERROR == mpuStatus && main_loop_counter % 100 == 0) {
|
||||||
|
HAL_GPIO_TogglePin(LED1_GPIO_Port, LED1_Pin); // Toggle the Red LED every 100 ms
|
||||||
}
|
}
|
||||||
// Print MPU data to Console
|
// Print MPU data to Console
|
||||||
if (main_loop_counter % 50 == 0) {
|
if (main_loop_counter % 50 == 0) {
|
||||||
@ -228,59 +229,59 @@ int main(void)
|
|||||||
sensor2_read = HAL_GPIO_ReadPin(SENSOR2_GPIO_Port, SENSOR2_Pin);
|
sensor2_read = HAL_GPIO_ReadPin(SENSOR2_GPIO_Port, SENSOR2_Pin);
|
||||||
|
|
||||||
// SENSOR1
|
// SENSOR1
|
||||||
if (sensor1 == RESET && sensor1_read == SET) {
|
if (sensor1 == GPIO_PIN_RESET && sensor1_read == GPIO_PIN_SET) {
|
||||||
sensor1 = SET;
|
sensor1 = GPIO_PIN_SET;
|
||||||
// Sensor ACTIVE: Do something here (one time task on activation)
|
// Sensor ACTIVE: Do something here (one time task on activation)
|
||||||
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET);
|
||||||
consoleLog("-- SENSOR 1 Active --\n");
|
consoleLog("-- SENSOR 1 Active --\n");
|
||||||
} else if(sensor1 == SET && sensor1_read == RESET) {
|
} else if(sensor1 == GPIO_PIN_SET && sensor1_read == GPIO_PIN_RESET) {
|
||||||
sensor1 = RESET;
|
sensor1 = GPIO_PIN_RESET;
|
||||||
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET);
|
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET);
|
||||||
}
|
}
|
||||||
|
|
||||||
// SENSOR2
|
// SENSOR2
|
||||||
if (sensor2 == RESET && sensor2_read == SET) {
|
if (sensor2 == GPIO_PIN_RESET && sensor2_read == GPIO_PIN_SET) {
|
||||||
sensor2 = SET;
|
sensor2 = GPIO_PIN_SET;
|
||||||
// Sensor ACTIVE: Do something here (one time task on activation)
|
// Sensor ACTIVE: Do something here (one time task on activation)
|
||||||
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET);
|
||||||
consoleLog("-- SENSOR 2 Active --\n");
|
consoleLog("-- SENSOR 2 Active --\n");
|
||||||
} else if (sensor2 == SET && sensor2_read == RESET) {
|
} else if (sensor2 == GPIO_PIN_SET && sensor2_read == GPIO_PIN_RESET) {
|
||||||
sensor2 = RESET;
|
sensor2 = GPIO_PIN_RESET;
|
||||||
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
|
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (sensor1 == SET) {
|
if (sensor1 == GPIO_PIN_SET) {
|
||||||
// Sensor ACTIVE: Do something here (continuous task)
|
// Sensor ACTIVE: Do something here (continuous task)
|
||||||
}
|
}
|
||||||
if (sensor2 == SET) {
|
if (sensor2 == GPIO_PIN_SET) {
|
||||||
// Sensor ACTIVE: Do something here (continuous task)
|
// Sensor ACTIVE: Do something here (continuous task)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// ==================================== SERIAL Tx/Rx Handling ====================================
|
// ==================================== SERIAL Tx/Rx Handling ====================================
|
||||||
#ifdef SERIAL_CONTROL
|
#ifdef SERIAL_CONTROL
|
||||||
if (main_loop_counter % 50 == 0) { // Transmit Tx data periodically using DMA
|
if (main_loop_counter % 5 == 0) { // Transmit Tx data periodically using DMA
|
||||||
Sideboard.start = (uint16_t)SERIAL_START_FRAME;
|
Sideboard.start = (uint16_t)SERIAL_START_FRAME;
|
||||||
Sideboard.roll = (int16_t)mpu.euler.roll;
|
Sideboard.roll = (int16_t)mpu.euler.roll;
|
||||||
Sideboard.pitch = (int16_t)mpu.euler.pitch;
|
Sideboard.pitch = (int16_t)mpu.euler.pitch;
|
||||||
Sideboard.yaw = (int16_t)mpu.euler.yaw;
|
Sideboard.yaw = (int16_t)mpu.euler.yaw;
|
||||||
Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1));
|
Sideboard.sensors = (uint16_t)(sensor1 | (sensor2 << 1) | (mpuStatus << 2));
|
||||||
Sideboard.checksum = (uint16_t)(Sideboard.start ^ Sideboard.roll ^ Sideboard.pitch ^ Sideboard.yaw ^ Sideboard.sensors);
|
Sideboard.checksum = (uint16_t)(Sideboard.start ^ Sideboard.roll ^ Sideboard.pitch ^ Sideboard.yaw ^ Sideboard.sensors);
|
||||||
|
|
||||||
HAL_UART_Transmit_DMA (&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef SERIAL_FEEDBACK
|
#ifdef SERIAL_FEEDBACK
|
||||||
uint16_t checksum;
|
uint16_t checksum;
|
||||||
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR ^ NewFeedback.speedL
|
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas
|
||||||
^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas ^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
|
^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
|
||||||
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
|
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
|
||||||
if (timeoutFlagSerial) { // Check for previous timeout flag
|
if (timeoutFlagSerial) { // Check for previous timeout flag
|
||||||
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
|
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
|
||||||
timeoutFlagSerial = 0; // Timeout flag cleared
|
timeoutFlagSerial = 0; // Timeout flag cleared
|
||||||
} else {
|
} else {
|
||||||
memcpy(&Feedback, &NewFeedback, sizeof(SerialFeedback)); // Copy the new data
|
memcpy(&Feedback, &NewFeedback, sizeof(Feedback)); // Copy the new data
|
||||||
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
|
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
|
||||||
timeoutCntSerial = 0; // Reset the timeout counter
|
timeoutCntSerial = 0; // Reset the timeout counter
|
||||||
}
|
}
|
||||||
@ -289,18 +290,15 @@ int main(void)
|
|||||||
timeoutFlagSerial = 1; // Timeout detected
|
timeoutFlagSerial = 1; // Timeout detected
|
||||||
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
|
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
|
||||||
}
|
}
|
||||||
// Check periodically the received Start Frame. If it is NOT OK, most probably we are out-of-sync. Try to re-sync by reseting the DMA
|
// Most probably we are out-of-sync. Try to re-sync by reseting the DMA
|
||||||
if (main_loop_counter % 50 == 0 && NewFeedback.start != SERIAL_START_FRAME && NewFeedback.start != 0xFFFF) {
|
if (main_loop_counter % 150 == 0) {
|
||||||
HAL_UART_DMAStop(&huart2);
|
HAL_UART_DMAStop(&huart2);
|
||||||
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
|
||||||
NewFeedback.start = 0xFFFF; // Change the Start Frame to avoid entering again here if no data is received
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State and indicate error if desired
|
if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired
|
||||||
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET); // Turn on Red LED
|
HAL_GPIO_TogglePin(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms
|
||||||
} else {
|
|
||||||
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET); // Follow the Normal behavior
|
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
@ -3230,9 +3230,7 @@ void mpu_start_self_test(void)
|
|||||||
#elif defined (MPU6050) || defined (MPU9150)
|
#elif defined (MPU6050) || defined (MPU9150)
|
||||||
result = mpu_run_self_test(gyro, accel);
|
result = mpu_run_self_test(gyro, accel);
|
||||||
#endif
|
#endif
|
||||||
if (result == 0x7) {
|
|
||||||
#ifdef SERIAL_DEBUG
|
#ifdef SERIAL_DEBUG
|
||||||
consoleLog("Passed!\n");
|
|
||||||
log_i("accel: %ld %ld %ld\n",
|
log_i("accel: %ld %ld %ld\n",
|
||||||
accel[0],
|
accel[0],
|
||||||
accel[1],
|
accel[1],
|
||||||
@ -3241,8 +3239,10 @@ void mpu_start_self_test(void)
|
|||||||
gyro[0],
|
gyro[0],
|
||||||
gyro[1],
|
gyro[1],
|
||||||
gyro[2]);
|
gyro[2]);
|
||||||
/* Test passed. We can trust the gyro data here, so now we need to update calibrated data*/
|
|
||||||
#endif
|
#endif
|
||||||
|
if (result == 0x7) {
|
||||||
|
consoleLog("Passed!\n");
|
||||||
|
/* Test passed. We can trust the gyro data here, so now we need to update calibrated data*/
|
||||||
|
|
||||||
#ifdef USE_CAL_HW_REGISTERS
|
#ifdef USE_CAL_HW_REGISTERS
|
||||||
/*
|
/*
|
||||||
@ -3639,10 +3639,10 @@ void mpu_calc_euler_angles(void) {
|
|||||||
float yaw, pitch, roll;
|
float yaw, pitch, roll;
|
||||||
|
|
||||||
// Convert quaternions[q30] to quaternion[float]
|
// Convert quaternions[q30] to quaternion[float]
|
||||||
w = (float)mpu.quat.w / 1073741824; // 1073741824 = 2^30
|
w = (float)mpu.quat.w / q30; // q30 = 2^30
|
||||||
x = (float)mpu.quat.x / 1073741824;
|
x = (float)mpu.quat.x / q30;
|
||||||
y = (float)mpu.quat.y / 1073741824;
|
y = (float)mpu.quat.y / q30;
|
||||||
z = (float)mpu.quat.z / 1073741824;
|
z = (float)mpu.quat.z / q30;
|
||||||
|
|
||||||
// Calculate Euler angles: source <https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles>
|
// Calculate Euler angles: source <https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles>
|
||||||
roll = atan2(2*(w*x + y*z), 1 - 2*(x*x + y*y)); // roll (x-axis rotation)
|
roll = atan2(2*(w*x + y*z), 1 - 2*(x*x + y*y)); // roll (x-axis rotation)
|
||||||
|
@ -69,7 +69,7 @@ void intro_demo_led(uint32_t tDelay)
|
|||||||
{
|
{
|
||||||
int i;
|
int i;
|
||||||
|
|
||||||
for (i = 0; i < 6; i++) {
|
for (i = 0; i < 3; i++) {
|
||||||
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
|
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
|
||||||
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
|
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
|
||||||
HAL_Delay(tDelay);
|
HAL_Delay(tDelay);
|
||||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,5 +1,5 @@
|
|||||||
/*
|
/*
|
||||||
hoverboard-sidebboard-hack MPU6050 IMU - 3D Visualization Example
|
hoverboard-sidebboard-hack MPU6050 IMU - 3D Visualization Example. Use with VARIANT_DEBUG.
|
||||||
Copyright (C) 2020-2021 Emanuel FERU
|
Copyright (C) 2020-2021 Emanuel FERU
|
||||||
*/
|
*/
|
||||||
import processing.serial.*;
|
import processing.serial.*;
|
||||||
@ -9,40 +9,32 @@ import java.io.IOException;
|
|||||||
Serial myPort;
|
Serial myPort;
|
||||||
float roll, pitch,yaw;
|
float roll, pitch,yaw;
|
||||||
int idx = 0;
|
int idx = 0;
|
||||||
int inBytePrev;
|
|
||||||
short bufWord;
|
String data="";
|
||||||
|
String check="";
|
||||||
|
|
||||||
void setup() {
|
void setup() {
|
||||||
size (1400, 800, P3D);
|
size (1400, 800, P3D);
|
||||||
printArray(Serial.list()); // List all the available serial ports
|
printArray(Serial.list()); // List all the available serial ports
|
||||||
myPort = new Serial(this, "COM5", 38400); // starts the serial communication
|
myPort = new Serial(this, "COM5", 38400); // starts the serial communication
|
||||||
|
myPort.bufferUntil('\n');
|
||||||
}
|
}
|
||||||
|
|
||||||
void draw() {
|
void draw() {
|
||||||
|
|
||||||
while (myPort.available() > 0) {
|
// If no data is received, send 'e' command to read the Euler angles
|
||||||
int inByte = myPort.read();
|
if(idx != -1 && myPort.available() == 0) {
|
||||||
bufWord = (short)(inBytePrev | (inByte << 8));
|
|
||||||
idx++;
|
idx++;
|
||||||
if(bufWord == -21846) { // check START_FRAME = 0xAAAA
|
if(idx > 20) {
|
||||||
idx = 0;
|
myPort.write('e');
|
||||||
|
idx = -1;
|
||||||
}
|
}
|
||||||
if (idx == 2) {
|
} else {
|
||||||
roll = float(bufWord) / 100;
|
idx = -1;
|
||||||
}
|
|
||||||
if (idx == 4) {
|
|
||||||
pitch = float(bufWord) / 100;
|
|
||||||
}
|
|
||||||
if (idx == 6) {
|
|
||||||
yaw = float(bufWord) / 100;
|
|
||||||
}
|
|
||||||
inBytePrev = inByte;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// println(bufWord); //<>//
|
// Display text
|
||||||
|
translate(width/2, height/2, 0); //<>//
|
||||||
translate(width/2, height/2, 0);
|
|
||||||
background(51);
|
background(51);
|
||||||
textSize(22);
|
textSize(22);
|
||||||
text("Roll: " + roll + " Pitch: " + pitch + " Yaw: " + yaw, -200, 300);
|
text("Roll: " + roll + " Pitch: " + pitch + " Yaw: " + yaw, -200, 300);
|
||||||
@ -53,7 +45,6 @@ void draw() {
|
|||||||
rotateY(radians(yaw));
|
rotateY(radians(yaw));
|
||||||
|
|
||||||
// 3D 0bject
|
// 3D 0bject
|
||||||
|
|
||||||
// Draw box with text
|
// Draw box with text
|
||||||
fill(0, 76, 153);; // Make board BLUE
|
fill(0, 76, 153);; // Make board BLUE
|
||||||
box (426, 30, 220);
|
box (426, 30, 220);
|
||||||
@ -80,3 +71,21 @@ void draw() {
|
|||||||
box (40, 40, 15); // Blue Led connector
|
box (40, 40, 15); // Blue Led connector
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Read data from the Serial Port
|
||||||
|
void serialEvent (Serial myPort) {
|
||||||
|
// reads the data from the Serial Port up to the character '\n' and puts it into the String variable "data".
|
||||||
|
data = myPort.readStringUntil('\n');
|
||||||
|
// if you got any bytes other than the linefeed:
|
||||||
|
if (data != null) {
|
||||||
|
data = trim(data);
|
||||||
|
// split the string at " " (character space)
|
||||||
|
String items[] = split(data, ' ');
|
||||||
|
if (items.length > 5) {
|
||||||
|
//--- Roll,Pitch in degrees
|
||||||
|
roll = float(items[2]) / 100;
|
||||||
|
pitch = float(items[4]) / 100;
|
||||||
|
yaw = float(items[6]) / 100;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user