EmanuelFeru ee6ab3a886 Major UART communication improvement
- the UART communication is improved based on UART Idle line detection interrupt
- an Rx ring buffer is used to manage the UART incoming data
- both Tx and Rx are efficiently handled using DMA
- fixed #1

Other:
- minor visual improvements
2020-06-21 23:09:27 +02:00

331 lines
12 KiB
C

/**
* This file is part of the hoverboard-sideboard-hack project.
*
* Copyright (C) 2020-2021 Emanuel FERU <aerdronix@gmail.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Includes
#include <stdio.h>
#include <string.h>
#include "stm32f1xx_hal.h"
#include "usart.h"
#include "i2c.h"
#include "defines.h"
#include "config.h"
#include "util.h"
#include "mpu6050.h"
extern UART_HandleTypeDef huart2;
extern I2C_HandleTypeDef hi2c1;
// USART variables
#ifdef SERIAL_CONTROL
SerialSideboard Sideboard;
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
static uint8_t rx_buffer[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_len = ARRAY_LEN(rx_buffer);
#endif
#ifdef SERIAL_FEEDBACK
SerialFeedback Feedback;
SerialFeedback FeedbackRaw;
uint16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
static uint32_t Feedback_len = sizeof(Feedback);
#endif
// MPU variables
ErrorStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
/* =========================== General Functions =========================== */
void consoleLog(char *message)
{
#ifdef SERIAL_DEBUG
log_i("%s", message);
#endif
}
void get_tick_count_ms(unsigned long *count)
{
*count = HAL_GetTick();
}
/* retarget the C library printf function to the USART */
#ifdef SERIAL_DEBUG
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE {
HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 1000);
return ch;
}
#ifdef __GNUC__
int _write(int file, char *data, int len) {
int i;
for (i = 0; i < len; i++) { __io_putchar( *data++ );}
return len;
}
#endif
#endif
void intro_demo_led(uint32_t tDelay)
{
int i;
for (i = 0; i < 3; i++) {
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
HAL_Delay(tDelay);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET);
HAL_Delay(tDelay);
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
HAL_Delay(tDelay);
}
for (i = 0; i < 2; i++) {
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET);
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET);
HAL_Delay(tDelay);
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED3_GPIO_Port, LED3_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET);
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
}
}
/* =========================== Input Initialization Function =========================== */
void input_init(void) {
#ifdef SERIAL_CONTROL
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
HAL_UART_Receive_DMA (&huart2, (uint8_t *)rx_buffer, sizeof(rx_buffer));
#endif
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
#ifdef MPU_SENSOR_ENABLE
if(mpu_config()) { // IMU MPU-6050 config
mpuStatus = ERROR;
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET); // Turn on RED LED
}
else {
mpuStatus = SUCCESS;
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
}
mpu_handle_input('h'); // Print the User Help commands to serial
#else
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
#endif
}
/* =========================== USART READ Functions =========================== */
/*
* Check for new data received on USART with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart_rx_check(void)
{
#ifdef SERIAL_DEBUG
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer, Rx: DMA1_Channel6->CNDTR, Tx: DMA1_Channel7
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer[old_pos], rx_buffer_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer[0], pos); // Process remaining data
}
}
}
old_pos = pos; // Updated old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_DEBUG
#ifdef SERIAL_FEEDBACK
static uint32_t old_pos;
uint32_t pos;
uint8_t *ptr;
pos = rx_buffer_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer, Rx: DMA1_Channel6->CNDTR, Tx: DMA1_Channel7
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&FeedbackRaw; // Initialize the pointer with FeedbackRaw address
if (pos > old_pos && (pos - old_pos) == Feedback_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], Feedback_len); // Copy data. This is possible only if FeedbackRaw is contiguous! (meaning all the structure members have the same size)
usart_process_data(&FeedbackRaw, &Feedback); // Process data
} else if ((rx_buffer_len - old_pos + pos) == Feedback_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], rx_buffer_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_len - old_pos; // Move to correct position in FeedbackRaw
memcpy(ptr, &rx_buffer[0], pos); // Copy remaining data
}
usart_process_data(&FeedbackRaw, &Feedback); // Process data
}
}
old_pos = pos; // Update old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_FEEDBACK
}
/*
* Process Rx debug user command input
*/
#ifdef SERIAL_DEBUG
void usart_process_debug(uint8_t *userCommand, uint32_t len)
{
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
log_i("Command = %c\n", *userCommand);
mpu_handle_input(*userCommand);
}
}
}
#endif // SERIAL_DEBUG
/*
* Process Rx data
* - if the Feedback_in data is valid (correct START_FRAME and checksum) copy the Feedback_in to Feedback_out
*/
#ifdef SERIAL_FEEDBACK
void usart_process_data(SerialFeedback *Feedback_in, SerialFeedback *Feedback_out)
{
uint16_t checksum;
if (Feedback_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(Feedback_in->start ^ Feedback_in->cmd1 ^ Feedback_in->cmd2 ^ Feedback_in->speedR_meas ^ Feedback_in->speedL_meas
^ Feedback_in->batVoltage ^ Feedback_in->boardTemp ^ Feedback_in->cmdLed);
if (Feedback_in->checksum == checksum) {
*Feedback_out = *Feedback_in;
timeoutCntSerial = 0; // Reset timeout counter
timeoutFlagSerial = 0; // Clear timeout flag
}
}
}
#endif // SERIAL_FEEDBACK
/*
* UART User Error Callback
* - According to the STM documentation, when a DMA transfer error occurs during a DMA read or a write access,
* the faulty channel is automatically disabled through a hardware clear of its EN bit
* - For hoverboard applications, the UART communication can be unrealiable, disablind the DMA transfer
* - therefore the DMA needs to be re-started
*/
void HAL_UART_ErrorCallback(UART_HandleTypeDef *uartHandle) {
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
if(uartHandle->Instance == USART2) {
HAL_UART_Receive_DMA (uartHandle, (uint8_t *)rx_buffer, sizeof(rx_buffer));
}
#endif
}
/* =========================== I2C WRITE Functions =========================== */
/*
* write bytes to chip register
*/
int8_t i2c_writeBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
{
// !! Using the I2C Interrupt will fail writing the DMP.. could be that DMP memory writing requires more time !! So use the I2C without interrupt.
// HAL_I2C_Mem_Write_IT(&hi2c1, slaveAddr << 1, regAddr, 1, data, length);
// while(HAL_I2C_STATE_READY != HAL_I2C_GetState(&hi2c1)); // Wait until all data bytes are sent/received
// return 0;
return HAL_I2C_Mem_Write(&hi2c1, slaveAddr << 1, regAddr, 1, data, length, 100); // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
}
/*
* write 1 byte to chip register
*/
int8_t i2c_writeByte(uint8_t slaveAddr, uint8_t regAddr, uint8_t data)
{
return i2c_writeBytes(slaveAddr, regAddr, 1, &data);
}
/*
* write one bit to chip register
*/
int8_t i2c_writeBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t data) {
uint8_t b;
i2c_readByte(slaveAddr, regAddr, &b);
b = (data != 0) ? (b | (1 << bitNum)) : (b & ~(1 << bitNum));
return i2c_writeByte(slaveAddr, regAddr, b);
}
/* =========================== I2C READ Functions =========================== */
/*
* read bytes from chip register
*/
int8_t i2c_readBytes(uint8_t slaveAddr, uint8_t regAddr, uint8_t length, uint8_t *data)
{
// !! Using the I2C Interrupt will fail writing the DMP.. could be that DMP memory writing requires more time !! So use the I2C without interrupt.
// HAL_I2C_Mem_Read(&hi2c1, slaveAddr << 1, regAddr, 1, data, length);
// while(HAL_I2C_STATE_READY != HAL_I2C_GetState(&hi2c1)); // Wait until all data bytes are sent/received
// return 0;
return HAL_I2C_Mem_Read(&hi2c1, slaveAddr << 1, regAddr, 1, data, length, 100); // Address is shifted one position to the left. LSB is reserved for the Read/Write bit.
}
/*
* read 1 byte from chip register
*/
int8_t i2c_readByte(uint8_t slaveAddr, uint8_t regAddr, uint8_t *data)
{
return i2c_readBytes(slaveAddr, regAddr, 1, data);
}
/*
* read 1 bit from chip register
*/
int8_t i2c_readBit(uint8_t slaveAddr, uint8_t regAddr, uint8_t bitNum, uint8_t *data)
{
uint8_t b;
int8_t status = i2c_readByte(slaveAddr, regAddr, &b);
*data = b & (1 << bitNum);
return status;
}