8 Commits

Author SHA1 Message Date
Oleg Kalachev
f2dec78b16 Fix docker sim build 2025-04-24 19:21:23 +03:00
Oleg Kalachev
31ac562f67 Fix docker sim build again 2025-04-24 19:20:01 +03:00
Oleg Kalachev
feb686727b Fix Docker sim build 2025-04-24 18:47:51 +03:00
Oleg Kalachev
1975ed30b4 Make job using Ubuntu 22.02 2025-04-24 18:45:25 +03:00
Oleg Kalachev
1859fca150 Update APT before installing libsdl2-dev 2025-04-24 18:38:08 +03:00
Oleg Kalachev
42d844287e Fix docker run 2025-04-24 18:23:14 +03:00
Oleg Kalachev
226da71719 Run sim build in docker using container directive 2025-04-24 18:21:58 +03:00
Oleg Kalachev
405777dc46 Use ubuntu-22.04 for sim build, add job with building with docker 2025-04-24 18:20:44 +03:00
116 changed files with 1453 additions and 3659 deletions

View File

@@ -15,17 +15,8 @@ jobs:
- name: Install Arduino CLI
run: curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=/usr/local/bin sh
- name: Build firmware
env:
ARDUINO_SKETCH_ALWAYS_EXPORT_BINARIES: 1
run: make
- name: Upload binaries
uses: actions/upload-artifact@v4
with:
name: firmware-binary
path: flix/build
- name: Build firmware for ESP32-S3
run: make BOARD=esp32:esp32:esp32s3
- name: Build firmware with WiFi disabled
- name: Build firmware without Wi-Fi
run: sed -i 's/^#define WIFI_ENABLED 1$/#define WIFI_ENABLED 0/' flix/flix.ino && make
- name: Check c_cpp_properties.json
run: tools/check_c_cpp_properties.py
@@ -55,25 +46,35 @@ jobs:
run: python3 tools/check_c_cpp_properties.py
build_simulator:
runs-on: ubuntu-latest
container:
image: ubuntu:20.04
runs-on: ubuntu-22.04
steps:
- name: Install dependencies
run: |
apt-get update
DEBIAN_FRONTEND=noninteractive apt-get install -y curl wget build-essential cmake g++ pkg-config gnupg2 lsb-release sudo
- name: Install Arduino CLI
uses: arduino/setup-arduino-cli@v1.1.1
- uses: actions/checkout@v4
- name: Install Gazebo
run: |
sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget https://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt-get install -y gazebo11 libgazebo11-dev
run: curl -sSL http://get.gazebosim.org | sh
- name: Install SDL2
run: sudo apt-get install -y libsdl2-dev
run: sudo apt-get install libsdl2-dev
- name: Build simulator
run: make build_simulator
- uses: actions/upload-artifact@v4
with:
name: gazebo-plugin-binary
path: gazebo/build/*.so
retention-days: 1
build_simulator_docker:
runs-on: ubuntu-latest
container:
image: ubuntu:20.04
steps:
- name: Install Arduino CLI
uses: arduino/setup-arduino-cli@v1.1.1
- uses: actions/checkout@v4
- name: Install Gazebo
run: curl -sSL http://get.gazebosim.org | sh
- name: Install SDL2
run: apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install build-essential libsdl2-dev -y
- name: Build simulator
run: make build_simulator
- uses: actions/upload-artifact@v4

View File

@@ -19,21 +19,6 @@ jobs:
echo -e "t,x,y,z\n0,1,2,3\n1,4,5,6" > log.csv
./csv_to_ulog log.csv
test $(stat -c %s log.ulg) -eq 196
pyflix:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install Python build tools
run: pip install build
- name: Build pyflix
run: python3 -m build tools
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: pyflix
path: |
tools/dist/pyflix-*.tar.gz
tools/dist/pyflix-*.whl
python_tools:
runs-on: ubuntu-latest
steps:

2
.gitignore vendored
View File

@@ -2,8 +2,6 @@
*.elf
build/
tools/log/
tools/dist/
*.egg-info/
.dependencies
.vscode/*
!.vscode/settings.json

View File

@@ -7,7 +7,6 @@
"MD024": false,
"MD033": false,
"MD034": false,
"MD059": false,
"MD044": {
"html_elements": false,
"code_blocks": false,
@@ -35,7 +34,6 @@
"MPU-6050",
"MPU-9250",
"GY-91",
"GY-521",
"ICM-20948",
"Linux",
"Windows",
@@ -65,6 +63,5 @@
"PX4"
]
},
"MD045": false,
"MD060": false
"MD045": false
}

View File

@@ -5,20 +5,18 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"${workspaceFolder}/tools/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
"~/Arduino/libraries/**",
"/usr/include/gazebo-11/",
"/usr/include/ignition/math6/"
"/usr/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@@ -33,7 +31,7 @@
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@@ -53,19 +51,19 @@
"name": "Mac",
"includePath": [
"${workspaceFolder}/flix",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"${workspaceFolder}/gazebo",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**",
"/opt/homebrew/include/gazebo-11/",
"/opt/homebrew/include/ignition/math6/"
"/opt/homebrew/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/flix.ino",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
@@ -80,7 +78,7 @@
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@@ -102,18 +100,17 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"${workspaceFolder}/tools/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@@ -128,7 +125,7 @@
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++.exe",
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++.exe",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [

View File

@@ -1,6 +1,5 @@
{
"C_Cpp.intelliSenseEngineFallback": "enabled",
"C_Cpp.errorSquiggles": "disabled",
"files.associations": {
"*.sdf": "xml",
"*.ino": "cpp",

View File

@@ -13,7 +13,7 @@ monitor:
dependencies .dependencies:
arduino-cli core update-index --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.2.0 --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.1.0 --config-file arduino-cli.yaml
arduino-cli lib update-index
arduino-cli lib install "FlixPeriph"
arduino-cli lib install "MAVLink"@2.0.16
@@ -32,7 +32,7 @@ simulator: build_simulator
gazebo --verbose ${CURDIR}/gazebo/flix.world
log:
tools/log.py
PORT=$(PORT) tools/grab_log.py
plot:
plotjuggler -d $(shell ls -t tools/log/*.csv | head -n1)

127
README.md
View File

@@ -1,6 +1,6 @@
# Flix
**Flix** (*flight + X*) — open source ESP32-based quadcopter made from scratch.
**Flix** (*flight + X*) — making an open source ESP32-based quadcopter from scratch.
<table>
<tr>
@@ -15,16 +15,18 @@
## Features
* Dedicated for education and research.
* Made from general-purpose components.
* Simple and clean source code in Arduino (<2k lines firmware).
* Control using USB gamepad, remote control or smartphone.
* Wi-Fi and MAVLink support.
* Wireless command line interface and analyzing.
* Precise simulation with Gazebo.
* Python library.
* Textbook on flight control theory and practice ([in development](https://quadcopter.dev)).
* *Position control (using external camera) and autonomous flights¹*.
* Simple and clean Arduino based source code.
* Acro and Stabilized flight using remote control.
* Precise simulation using Gazebo.
* [In-RAM logging](docs/log.md).
* Command line interface through USB port.
* Wi-Fi support.
* MAVLink support.
* Control using mobile phone (with QGroundControl app).
* Completely 3D-printed frame.
* Textbook for students on writing a flight controller ([in development](https://quadcopter.dev)).
* *Position control and autonomous flights using external camera¹*.
* [Building and running instructions](docs/build.md).
*¹ — planned.*
@@ -38,43 +40,26 @@ Version 0 demo video: https://youtu.be/8GzzIQ3C6DQ.
<a href="https://youtu.be/8GzzIQ3C6DQ"><img width=500 src="https://i3.ytimg.com/vi/8GzzIQ3C6DQ/maxresdefault.jpg"></a>
Usage in education (RoboCamp): https://youtu.be/Wd3yaorjTx0.
See the [user builds gallery](docs/user.md).
<a href="https://youtu.be/Wd3yaorjTx0"><img width=500 src="https://i3.ytimg.com/vi/Wd3yaorjTx0/sddefault.jpg"></a>
See the [user builds gallery](docs/user.md):
<a href="docs/user.md"><img src="docs/img/user/user.jpg" width=500></a>
<a href="docs/user.md"><img src="docs/img/user/user.jpg" width=400></a>
## Simulation
The simulator is implemented using Gazebo and runs the original Arduino code:
<img src="docs/img/simulator1.png" width=500 alt="Flix simulator">
<img src="docs/img/simulator.png" width=500 alt="Flix simulator">
## Documentation
See [instructions on running the simulation](docs/build.md).
1. [Assembly instructions](docs/assembly.md).
2. [Usage: build, setup and flight](docs/usage.md).
3. [Simulation](gazebo/README.md).
4. [Python library](tools/pyflix/README.md).
Additional articles:
* [User builds gallery](docs/user.md).
* [Firmware architectural overview](docs/firmware.md).
* [Troubleshooting](docs/troubleshooting.md).
* [Log analysis](docs/log.md).
## Components
## Components (version 1)
|Type|Part|Image|Quantity|
|-|-|:-:|:-:|
|Microcontroller board|ESP32 Mini|<img src="docs/img/esp32.jpg" width=100>|1|
|IMU (and barometer¹) board|GY91, MPU-9265 (or other MPU9250/MPU6500 board)<br>ICM20948V2 (ICM20948)³<br>GY-521 (MPU-6050)³⁻¹|<img src="docs/img/gy-91.jpg" width=90 align=center><br><img src="docs/img/icm-20948.jpg" width=100><br><img src="docs/img/gy-521.jpg" width=100>|1|
|Boost converter (optional, for more stable power supply)|5V output|<img src="docs/img/buck-boost.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor.<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).<br>Make sure the motor shaft diameter and propeller hole diameter match!|<img src="docs/img/motor.jpeg" width=100>|4|
|Propeller|55 mm (alternatively 65 mm)|<img src="docs/img/prop.jpg" width=100>|4|
|IMU (and barometer²) board|GY91, MPU-9265 (or other MPU9250/MPU6500 board), ICM20948³|<img src="docs/img/gy-91.jpg" width=90 align=center><img src="docs/img/icm-20948.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (shaft 0.8mm).<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).|<img src="docs/img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="docs/img/prop.jpg" width=100>|4|
|MOSFET (transistor)|100N03A or [analog](https://t.me/opensourcequadcopter/33)|<img src="docs/img/100n03a.jpg" width=100>|4|
|Pull-down resistor|10 kΩ|<img src="docs/img/resistor10k.jpg" width=100>|4|
|3.7V Li-Po battery|LW 952540 (or any compatible by the size)|<img src="docs/img/battery.jpg" width=100>|1|
@@ -82,17 +67,18 @@ Additional articles:
|Li-Po Battery charger|Any|<img src="docs/img/charger.jpg" width=100>|1|
|Screws for IMU board mounting|M3x5|<img src="docs/img/screw-m3.jpg" width=100>|2|
|Screws for frame assembly|M1.4x5|<img src="docs/img/screw-m1.4.jpg" height=30 align=center>|4|
|Frame main part|3D printed²: [`stl`](docs/assets/flix-frame-1.1.stl) [`step`](docs/assets/flix-frame-1.1.step)<br>Recommended settings: layer 0.2 mm, line 0.4 mm, infill 100%.|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame top part|3D printed: [`stl`](docs/assets/esp32-holder.stl) [`step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|Washer for IMU board mounting|3D printed: [`stl`](docs/assets/washer-m3.stl) [`step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|Controller (recommended)|CC2500 transmitter, like BetaFPV LiteRadio CC2500 (RC receiver/Wi-Fi).<br>Two-sticks gamepad (Wi-Fi only) — see [recommended gamepads](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/setup_view/joystick.html#supported-joysticks).<br>Other⁵|<img src="docs/img/betafpv.jpg" width=100><img src="docs/img/logitech.jpg" width=80>|1|
|*RC receiver (optional)*|*DF500 or other³*|<img src="docs/img/rx.jpg" width=100>|1|
|Frame bottom part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame top part|3D printed:<br>[`esp32-holder.stl`](docs/assets/esp32-holder.stl) [`esp32-holder.step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|Washer for IMU board mounting|3D printed:<br>[`washer-m3.stl`](docs/assets/washer-m3.stl) [`washer-m3.step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|*RC transmitter (optional)*|*KINGKONG TINY X8 (warning: lacks USB support) or other⁵*|<img src="docs/img/tx.jpg" width=100>|1|
|*RC receiver (optional)*|*DF500 or other*|<img src="docs/img/rx.jpg" width=100>|1|
|Wires|28 AWG recommended|<img src="docs/img/wire-28awg.jpg" width=100>||
|Tape, double-sided tape||||
*¹ barometer is not used for now.*<br>
*² — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
*³ — you also may use any transmitter-receiver pair with SBUS interface.*
*² barometer is not used for now.*<br>
*³ — change `MPU9250` to `ICM20948` in `imu.ino` file if using ICM-20948 board.*<br>
* — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
*⁵ — you may use any transmitter-receiver pair with SBUS interface.*
Tools required for assembly:
@@ -102,15 +88,13 @@ Tools required for assembly:
* Screwdrivers.
* Multimeter.
Feel free to modify the design and or code, and create your own improved versions. Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
Feel free to modify the design and or code, and create your own improved versions of Flix! Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
## Schematics
## Schematics (version 1)
### Simplified connection diagram
<img src="docs/img/schematics1.svg" width=700 alt="Flix version 1 schematics">
*(Dashed elements are optional).*
<img src="docs/img/schematics1.svg" width=800 alt="Flix version 1 schematics">
Motor connection scheme:
@@ -118,6 +102,8 @@ Motor connection scheme:
You can see a user-contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14) of the drone.
See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
### Notes
* Power ESP32 Mini with Li-Po battery using VCC (+) and GND (-) pins.
@@ -135,15 +121,14 @@ You can see a user-contributed [variant of complete circuit diagram](https://mir
* Solder pull-down resistors to the MOSFETs.
* Connect the motors to the ESP32 Mini using MOSFETs, by following scheme:
|Motor|Position|Direction|Prop type|Motor wires|GPIO|
|-|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|B|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|A|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|B|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|A|Blue & Red|GPIO15 (*TD0*)|
|Motor|Position|Direction|Wires|GPIO|
|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|Blue & Red|GPIO15 (*TD0*)|
Clockwise motors have blue & red wires and correspond to propeller type A (marked on the propeller).
Counter-clockwise motors have black & white wires correspond to propeller type B.
Counter-clockwise motors have black and white wires and clockwise motors have blue and red wires.
* Optionally connect the RC receiver to the ESP32's UART2:
@@ -151,18 +136,28 @@ You can see a user-contributed [variant of complete circuit diagram](https://mir
|-|-|
|GND|GND|
|VIN|VCC (or 3.3V depending on the receiver)|
|Signal (TX)|GPIO4¹|
|Signal (TX)|GPIO4|
*¹ — UART2 RX pin was [changed](https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html#id14) to GPIO4 in Arduino ESP32 core 3.0.*
* — UART2 RX pin was [changed](https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html#id14) to GPIO4 in Arduino ESP32 core 3.0.*
## Resources
### IMU placement
* Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
* Official Telegram chat: https://t.me/opensourcequadcopterchat.
* Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.
Default IMU orientation in the code is **LFD** (Left-Forward-Down):
## Disclaimer
<img src="docs/img/gy91-lfd.svg" width=400 alt="GY-91 axes">
This is a DIY project, and I hope you find it interesting and useful. However, it's not easy to assemble and set up, and it's provided "as is" without any warranties. There's no guarantee that it will work perfectly, or even work at all.
In case of using other IMU orientation, modify the `rotateIMU` function in the `imu.ino` file.
⚠️ The author is not responsible for any damage, injury, or loss resulting from the use of this project. Use at your own risk!
See [FlixPeriph documentation](https://github.com/okalachev/flixperiph?tab=readme-ov-file#imu-axes-orientation) to learn axis orientation of other IMU boards.
## Version 0
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
## Materials
Subscribe to the Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
Join the official Telegram chat: https://t.me/opensourcequadcopterchat.
Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.

View File

@@ -1,5 +1,3 @@
board_manager:
additional_urls:
- https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
network:
connection_timeout: 1h

View File

@@ -27,27 +27,3 @@ Soldered components ([schematics variant](https://miro.com/app/board/uXjVN-dTjoo
<br>Assembled drone:
<img src="img/assembly/7.jpg" width=600>
## Motor directions
> [!WARNING]
> The drone above is an early build, and it has **inversed** motor directions scheme. The photos only illustrate the assembly process in general.
Use standard motor directions scheme:
<img src="img/motors.svg" width=200>
Motors connection table:
|Motor|Position|Direction|Prop type|Motor wires|GPIO|
|-|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|B|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|A|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|B|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|A|Blue & Red|GPIO15 (*TD0*)|
## Motors tightening
Motors should be installed very tightly — any vibration may lead to bad attitude estimation and unstable flight. If motors are loose, use tiny tape pieces to fix them tightly as shown below:
<img src="img/motor-tape.jpg" width=600>

View File

@@ -53,12 +53,6 @@ footer a.telegram, footer a.github {
border: 1px solid #c9c9c9;
}
@media (max-width: 600px) {
.MathJax_Display {
overflow-x: auto;
}
}
.firmware {
position: relative;
margin: 20px 0;

View File

@@ -10,7 +10,7 @@ description = "Учебник по разработке полетного ко
build-dir = "build"
[output.html]
additional-css = ["book.css", "zoom.css", "rotation.css"]
additional-css = ["book.css", "zoom.css"]
additional-js = ["zoom.js", "js.js"]
edit-url-template = "https://github.com/okalachev/flix/blob/master/docs/{path}?plain=1"
mathjax-support = true

View File

@@ -11,7 +11,6 @@
* [Светодиод]()
* [Моторы]()
* [Радиоуправление]()
* [Вектор, кватернион](geometry.md)
* [Гироскоп](gyro.md)
* [Акселерометр]()
* [Оценка состояния]()

View File

@@ -1,10 +1,8 @@
# Архитектура прошивки
Прошивка Flix это обычный скетч Arduino, реализованный в однопоточном стиле. Код инициализации находится в функции `setup()`, а главный цикл — в функции `loop()`. Скетч состоит из нескольких файлов, каждый из которых отвечает за определенную подсистему.
<img src="img/dataflow.svg" width=800 alt="Firmware dataflow diagram">
<img src="img/dataflow.svg" width=600 alt="Firmware dataflow diagram">
Главный цикл `loop()` работает на частоте 1000 Гц. Передача данных между подсистемами происходит через глобальные переменные:
Главный цикл работает на частоте 1000 Гц. Передача данных между подсистемами происходит через глобальные переменные:
* `t` *(float)* — текущее время шага, *с*.
* `dt` *(float)* — дельта времени между текущим и предыдущим шагами, *с*.
@@ -12,39 +10,23 @@
* `acc` *(Vector)* — данные с акселерометра, *м/с<sup>2</sup>*.
* `rates` *(Vector)* — отфильтрованные угловые скорости, *рад/с*.
* `attitude` *(Quaternion)* — оценка ориентации (положения) дрона.
* `controlRoll`, `controlPitch`, `controlYaw`, `controlThrottle`, `controlMode` *(float)*команды управления от пилота, в диапазоне [-1, 1].
* `motors` *(float[4])* — выходные сигналы на моторы, в диапазоне [0, 1].
* `controls` *(float[])*пользовательские управляющие сигналы с пульта, нормализованные в диапазоне [-1, 1].
* `motors` *(float[])* — выходные сигналы на моторы, нормализованные в диапазоне [-1, 1] (возможно вращение в обратную сторону).
## Исходные файлы
Исходные файлы прошивки находятся в директории `flix`. Основные файлы:
Исходные файлы прошивки находятся в директории `flix`. Ключевые файлы:
* [`flix.ino`](https://github.com/okalachev/flix/blob/master/flix/flix.ino) — основной файл Arduino-скетча. Определяет некоторые глобальные переменные и главный цикл.
* [`imu.ino`](https://github.com/okalachev/flix/blob/master/flix/imu.ino) — чтение данных с датчика IMU (гироскоп и акселерометр), калибровка IMU.
* [`rc.ino`](https://github.com/okalachev/flix/blob/master/flix/rc.ino) — чтение данных с RC-приемника, калибровка RC.
* [`estimate.ino`](https://github.com/okalachev/flix/blob/master/flix/estimate.ino) — оценка ориентации дрона, комплементарный фильтр.
* [`control.ino`](https://github.com/okalachev/flix/blob/master/flix/control.ino) — подсистема управления, трехмерный двухуровневый каскадный ПИД-регулятор.
* [`motors.ino`](https://github.com/okalachev/flix/blob/master/flix/motors.ino) — выход PWM на моторы.
* [`mavlink.ino`](https://github.com/okalachev/flix/blob/master/flix/mavlink.ino) — взаимодействие с QGroundControl или [pyflix](https://github.com/okalachev/flix/tree/master/tools/pyflix) через протокол MAVLink.
* [`flix.ino`](https://github.com/okalachev/flix/blob/canonical/flix/flix.ino) — основной входной файл, скетч Arduino. Включает определение глобальных переменных и главный цикл.
* [`imu.ino`](https://github.com/okalachev/flix/blob/canonical/flix/imu.ino) — чтение данных с датчика IMU (гироскоп и акселерометр), калибровка IMU.
* [`rc.ino`](https://github.com/okalachev/flix/blob/canonical/flix/rc.ino) — чтение данных с RC-приемника, калибровка RC.
* [`mavlink.ino`](https://github.com/okalachev/flix/blob/canonical/flix/mavlink.ino) — взаимодействие с QGroundControl через MAVLink.
* [`estimate.ino`](https://github.com/okalachev/flix/blob/canonical/flix/estimate.ino) — оценка ориентации дрона, комплементарный фильтр.
* [`control.ino`](https://github.com/okalachev/flix/blob/canonical/flix/control.ino) — управление ориентацией и угловыми скоростями дрона, трехмерный двухуровневый каскадный PID-регулятор.
* [`motors.ino`](https://github.com/okalachev/flix/blob/canonical/flix/motors.ino) — управление выходными сигналами на моторы через ШИМ.
Вспомогательные файлы:
Вспомогательные файлы включают:
* [`vector.h`](https://github.com/okalachev/flix/blob/master/flix/vector.h), [`quaternion.h`](https://github.com/okalachev/flix/blob/master/flix/quaternion.h) — библиотеки векторов и кватернионов.
* [`pid.h`](https://github.com/okalachev/flix/blob/master/flix/pid.h) — ПИД-регулятор.
* [`lpf.h`](https://github.com/okalachev/flix/blob/master/flix/lpf.h) — фильтр нижних частот.
### Подсистема управления
Состояние органов управления обрабатывается в функции `interpretControls()` и преобразуется в **команду управления**, которая включает следующее:
* `attitudeTarget` *(Quaternion)* — целевая ориентация дрона.
* `ratesTarget` *(Vector)* — целевые угловые скорости, *рад/с*.
* `ratesExtra` *(Vector)* — дополнительные (feed-forward) угловые скорости, для управления рысканием в режиме STAB, *рад/с*.
* `torqueTarget` *(Vector)* — целевой крутящий момент, диапазон [-1, 1].
* `thrustTarget` *(float)* — целевая общая тяга, диапазон [0, 1].
Команда управления обрабатывается в функциях `controlAttitude()`, `controlRates()`, `controlTorque()`. Если значение одной из переменных установлено в `NAN`, то соответствующая функция пропускается.
<img src="img/control.svg" width=300 alt="Control subsystem diagram">
Состояние *armed* хранится в переменной `armed`, а текущий режим — в переменной `mode`.
* [`vector.h`](https://github.com/okalachev/flix/blob/canonical/flix/vector.h), [`quaternion.h`](https://github.com/okalachev/flix/blob/canonical/flix/quaternion.h) — реализация библиотек векторов и кватернионов проекта.
* [`pid.h`](https://github.com/okalachev/flix/blob/canonical/flix/pid.h) — реализация общего ПИД-регулятора.
* [`lpf.h`](https://github.com/okalachev/flix/blob/canonical/flix/lpf.h) — реализация общего фильтра нижних частот.

View File

@@ -1,309 +0,0 @@
# Вектор, кватернион
В алгоритме управления квадрокоптером широко применяются геометрические (и алгебраические) объекты, такие как **векторы** и **кватернионы**. Они позволяют упростить математические вычисления и улучшить читаемость кода. В этой главе мы рассмотрим именно те геометрические объекты, которые используются в алгоритме управления квадрокоптером Flix, причем акцент будет сделан на практических аспектах их использования.
## Система координат
### Оси координат
Для работы с объектами в трехмерном пространстве необходимо определить *систему координат*. Как известно, система координат задается тремя взаимно перпендикулярными осями, которые обозначаются как *X*, *Y* и *Z*. Порядок обозначения этих осей зависит от того, какую систему координат мы выбрали — *левую* или *правую*:
|Левая система координат|Правая система координат|
|-----------------------|------------------------|
|<img src="img/left-axes.svg" alt="Левая система координат" width="200">|<img src="img/right-axes.svg" alt="Правая система координат" width="200">|
В Flix для всех математических расчетов используется **правая система координат**, что является стандартом в робототехнике и авиации.
Также необходимо выбрать направление осей — в Flix они выбраны в соответствии со стандартом [REP-103](https://www.ros.org/reps/rep-0103.html). Для величин, заданных в подвижной системе координат, связанной с корпусом дрона, применяется порядок <abbr title="Forward Left Up">FLU</abbr>:
* ось X — направлена **вперед**;
* ось Y — направлена **влево**;
* ось Z — направлена **вверх**.
Для величин, заданных в *мировой* системе координат (относительно фиксированной точки в пространстве) — <abbr title="East North Up">ENU</abbr>:
* ось X — направлена на **восток** (условный);
* ось Y — направлена на **север** (условный);
* ось Z — направлена **вверх**.
> [!NOTE]
> Для системы ENU важно только взаимное направление осей. Если доступен магнитометр, то используются реальные восток и север, но если нет — то произвольно выбранные.
Углы и угловые скорости определяются в соответствии с правилами математики: значения увеличиваются против часовой стрелки, если смотреть в сторону начала координат. Общий вид системы координат:
<img src="img/axes-rotation.svg" alt="Система координат" width="200">
> [!TIP]
> Оси координат <i>X</i>, <i>Y</i> и <i>Z</i> часто обозначаются красными, зелеными и синими цветами соответственно. Запомнить это можно с помощью сокращения <abbr title="Red Green Blue">RGB</abbr>.
## Вектор
<div class="firmware">
<strong>Файл прошивки:</strong>
<a href="https://github.com/okalachev/flix/blob/master/flix/vector.h"><code>vector.h</code></a>.<br>
</div>
**Вектор** — простой геометрический объект, который содержит три значения, соответствующие координатам *X*, *Y* и *Z*. Эти значения называются *компонентами вектора*. Вектор может описывать точку в пространстве, направление или ось вращения, скорость, ускорение, угловые скорости и другие физические величины. В Flix векторы задаются объектами `Vector` из библиотеки `vector.h`:
```cpp
Vector v(1, 2, 3);
v.x = 5;
v.y = 10;
v.z = 15;
```
> [!TIP]
> Не следует путать геометрический вектор — <code>vector</code> и динамический массив в стандартной библиотеке C++ — <code>std::vector</code>.
В прошивке в виде векторов представлены, например:
* `acc` собственное ускорение с акселерометра.
* `gyro` — угловые скорости с гироскопа.
* `rates` — рассчитанная угловая скорость дрона.
* `accBias`, `accScale`, `gyroBias` — параметры калибровки IMU.
### Операции с векторами
**Длина вектора** рассчитывается при помощи теоремы Пифагора; в прошивке используется метод `norm()`:
```cpp
Vector v(3, 4, 5);
float length = v.norm(); // 7.071
```
Любой вектор можно привести к **единичному вектору** (сохранить направление, но сделать длину равной 1) при помощи метода `normalize()`:
```cpp
Vector v(3, 4, 5);
v.normalize(); // 0.424, 0.566, 0.707
```
**Сложение и вычитание** векторов реализуется через простое покомпонентное сложение и вычитание. Геометрически сумма векторов представляет собой вектор, который соединяет начало первого вектора с концом второго. Разность векторов представляет собой вектор, который соединяет конец первого вектора с концом второго. Это удобно для расчета относительных позиций, суммарных скоростей и решения других задач. В коде эти операции интуитивно понятны:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
Vector sum = a + b; // 5, 7, 9
Vector diff = a - b; // -3, -3, -3
```
Операция **умножения на число** `n` увеличивает (или уменьшает) длину вектора в `n` раз (сохраняя направление):
```cpp
Vector a(1, 2, 3);
Vector b = a * 2; // 2, 4, 6
```
В некоторых случаях полезна операция **покомпонентного умножения** (или деления) векторов. Например, для применения коэффициентов калибровки к данным с IMU. В разных библиотеках эта операция обозначается по разному, но в библиотеке `vector.h` используется простые знаки `*` и `/`:
```cpp
acc = acc / accScale;
```
**Угол между векторами** можно найти при помощи статического метода `Vector::angleBetween()`:
```cpp
Vector a(1, 0, 0);
Vector b(0, 1, 0);
float angle = Vector::angleBetween(a, b); // 1.57 (90 градусов)
```
#### Скалярное произведение
Скалярное произведение векторов (*dot product*) — это произведение длин двух векторов на косинус угла между ними. В математике оно обозначается знаком `·` или слитным написанием векторов. Интуитивно, результат скалярного произведения показывает, насколько два вектора *сонаправлены*.
В Flix используется статический метод `Vector::dot()`:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
float dotProduct = Vector::dot(a, b); // 32
```
Операция скалярного произведения может помочь, например, при расчете проекции одного вектора на другой.
#### Векторное произведение
Векторное произведение (*cross product*) позволяет найти вектор, перпендикулярный двум другим векторам. В математике оно обозначается знаком `×`, а в прошивке используется статический метод `Vector::cross()`:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
Vector crossProduct = Vector::cross(a, b); // -3, 6, -3
```
## Кватернион
### Ориентация в трехмерном пространстве
В отличие от позиции и скорости, у ориентации в трехмерном пространстве нет универсального для всех случаев способа представления. В зависимости от задачи ориентация может быть представлена в виде *углов Эйлера*, *матрицы поворота*, *вектора вращения* или *кватерниона*. Рассмотрим используемые в полетной прошивке способы представления ориентации.
### Углы Эйлера
**Углы Эйлера***крен*, *тангаж* и *рыскание* — это наиболее «естественный» для человека способ представления ориентации. Они описывают последовательные вращения объекта вокруг трех осей координат.
В прошивке углы Эйлера сохраняются в обычный объект `Vector` (хоть и, строго говоря, не являются вектором):
* Угол по крену (*roll*) — `vector.x`.
* Угол по тангажу (*pitch*) — `vector.y`.
* Угол по рысканию (*yaw*) — `vector.z`.
Особенности углов Эйлера:
1. Углы Эйлера зависят от порядка применения вращений, то есть существует 6 типов углов Эйлера. Порядок вращений, принятый в Flix (и в роботехнике в целом) — рыскание, тангаж, крен (ZYX).
2. Для некоторых ориентаций углы Эйлера «вырождаются». Так, если объект «смотрит» строго вниз, то угол по рысканию и угол по крену становятся неразличимыми. Эта ситуация называется *gimbal lock* — потеря одной степени свободы.
Ввиду этих особенности для углов Эйлера не существует общих формул для самых базовых задач с ориентациями, таких как применение одного вращения (ориентации) к другому, расчет разницы между ориентациями и подобных. Поэтому в основном углы Эйлера применяются в пользовательском интерфейсе, но редко используются в математических расчетах.
> [!IMPORTANT]
> Для углов Эйлера не существует общих формул для самых базовых операций с ориентациями.
### Axis-angle
Помимо углов Эйлера, любую ориентацию в трехмерном пространстве можно представить в виде вращения вокруг некоторой оси на некоторый угол. В геометрии это доказывается, как **теорема вращения Эйлера**. В таком представлении ориентация задается двумя величинами:
* **Ось вращения** (*axis*) — единичный вектор, определяющий ось вращения.
* **Угол поворота** (*angle* или *θ*) — угол, на который нужно повернуть объект вокруг этой оси.
В Flix ось вращения задается объектом `Vector`, а угол поворота — числом типа `float` в радианах:
```cpp
// Вращение на 45 градусов вокруг оси (1, 2, 3)
Vector axis(1, 2, 3);
float angle = radians(45);
```
Этот способ более удобен для расчетов, чем углы Эйлера, но все еще не является оптимальным.
### Вектор вращения
Если умножить вектор *axis* на угол поворота *θ*, то получится **вектор вращения** (*rotation vector*). Этот вектор играет важную роль в алгоритмах управления ориентацией летательного аппарата.
Вектор вращения обладает замечательным свойством: если угловые скорости объекта (в собственной системе координат) в каждый момент времени совпадают с компонентами этого вектора, то за единичное время объект придет к заданной этим вектором ориентации. Это свойство позволяет использовать вектор вращения для управления ориентацией объекта посредством управления угловыми скоростями.
> [!IMPORTANT]
> Чтобы за единичное время прийти к заданной ориентации, собственные угловые скорости объекта должны быть равны компонентам вектора вращения.
Вектора вращения в Flix представляются в виде объектов `Vector`:
```cpp
// Вращение на 45 градусов вокруг оси (1, 2, 3)
Vector rotation = radians(45) * Vector(1, 2, 3);
```
### Кватернион
<div class="firmware">
<strong>Файл прошивки:</strong>
<a href="https://github.com/okalachev/flix/blob/master/flix/quaternion.h"><code>quaternion.h</code></a>.<br>
</div>
Вектор вращения удобен, но еще удобнее использовать **кватернион**. В Flix кватернионы задаются объектами `Quaternion` из библиотеки `quaternion.h`. Кватернион состоит из четырех значений: *w*, *x*, *y*, *z* и рассчитывается из вектора оси вращения (*axis*) и угла поворота (*θ*) по формуле:
\\[ q = \left( \begin{array}{c} w \\\\ x \\\\ y \\\\ z \end{array} \right) = \left( \begin{array}{c} \cos\left(\frac{\theta}{2}\right) \\\\ axis\_x \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_y \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_z \cdot \sin\left(\frac{\theta}{2}\right) \end{array} \right) \\]
На практике оказывается, что **именно такое представление наиболее удобно для математических расчетов**.
Проиллюстрируем кватернион и описанные выше способы представления ориентации на интерактивной визуализации. Изменяйте угол поворота *θ* с помощью ползунка (ось вращения константна) и изучите, как меняется ориентация объекта, вектор вращения и кватернион:
<div id="rotation-diagram" class="diagram">
<p>
<label class="angle" for="angle-range"></label>
<input type="range" name="angle" id="angle-range" min="0" max="360" value="0" step="1">
</p>
<p class="axis"></p>
<p class="rotation-vector"></p>
<p class="quaternion"></p>
<p class="euler"></p>
</div>
<script type="importmap">
{
"imports": {
"three": "https://cdn.jsdelivr.net/npm/three@0.176.0/build/three.module.js",
"three/addons/": "https://cdn.jsdelivr.net/npm/three@0.176.0/examples/jsm/"
}
}
</script>
<script type="module" src="js/rotation.js"></script>
> [!IMPORTANT]
> В контексте управляющих алгоритмов кватернион — это оптимизированный для расчетов аналог вектора вращения.
Кватернион это наиболее часто используемый способ представления ориентации в алгоритмах. Кроме этого, у кватерниона есть большое значение в теории чисел и алгебре, как у расширения понятия комплексного числа, но рассмотрение этого аспекта выходит за рамки описания работы с вращениями с практической точки зрения.
В прошивке в виде кватернионов представлены, например:
* `attitude` — текущая ориентация квадрокоптера.
* `attitudeTarget` — целевая ориентация квадрокоптера.
### Операции с кватернионами
Кватернион создается напрямую из четырех его компонент:
```cpp
// Кватернион, представляющий нулевую (исходную) ориентацию
Quaternion q(1, 0, 0, 0);
```
Кватернион можно создать из оси вращения и угла поворота, вектора вращения или углов Эйлера:
```cpp
Quaternion q1 = Quaternion::fromAxisAngle(axis, angle);
Quaternion q2 = Quaternion::fromRotationVector(rotation);
Quaternion q3 = Quaternion::fromEuler(Vector(roll, pitch, yaw));
```
И наоборот:
```cpp
q1.toAxisAngle(axis, angle);
Vector rotation = q2.toRotationVector();
Vector euler = q3.toEuler();
```
Возможно рассчитать вращение между двумя обычными векторами:
```cpp
Quaternion q = Quaternion::fromBetweenVectors(v1, v2); // в виде кватерниона
Vector rotation = Vector::rotationVectorBetween(v1, v2); // в виде вектора вращения
```
Шорткаты для работы с углом Эйлера по рысканью (удобно для алгоритмов управления полетом):
```cpp
float yaw = q.getYaw();
q.setYaw(yaw);
```
#### Применения вращений
Чтобы применить вращение, выраженное в кватернионе, к другому кватерниону, в математике используется операция **умножения кватернионов**. При использовании этой операции, необходимо учитывать, что она не является коммутативной, то есть порядок операндов имеет значение. Формула умножения кватернионов выглядит так:
\\[ q_1 \times q_2 = \left( \begin{array}{c} w_1 \\\\ x_1 \\\\ y_1 \\\\ z_1 \end{array} \right) \times \left( \begin{array}{c} w_2 \\\\ x_2 \\\\ y_2 \\\\ z_2 \end{array} \right) = \left( \begin{array}{c} w_1 w_2 - x_1 x_2 - y_1 y_2 - z_1 z_2 \\\\ w_1 x_2 + x_1 w_2 + y_1 z_2 - z_1 y_2 \\\\ w_1 y_2 - x_1 z_2 + y_1 w_2 + z_1 x_2 \\\\ w_1 z_2 + x_1 y_2 - y_1 x_2 + z_1 w_2 \end{array} \right) \\]
В библиотеке `quaternion.h` для этой операции используется статический метод `Quaternion::rotate()`:
```cpp
// Композиция вращений q1 и q2
Quaternion result = Quaternion::rotate(q1, q2);
```
Также полезной является операция применения вращения к вектору, которая делается похожим образом:
```cpp
// Вращение вектора v кватернионом q
Vector result = Quaternion::rotateVector(v, q);
```
Для расчета разницы между двумя ориентациями используется метод `Quaternion::between()`:
```cpp
// Расчет вращения от q1 к q2
Quaternion q = Quaternion::between(q1, q2);
```
## Дополнительные материалы
* [Интерактивный учебник по кватернионам](https://eater.net/quaternions).
* [Визуализация вращения вектора с помощью кватернионов](https://quaternions.online).

View File

@@ -1,7 +1,7 @@
# Гироскоп
<div class="firmware">
<strong>Файл прошивки:</strong>
<strong>Файл прошивки Flix:</strong>
<a href="https://github.com/okalachev/flix/blob/canonical/flix/imu.ino"><code>imu.ino</code></a> <small>(каноничная версия)</small>.<br>
Текущая версия: <a href="https://github.com/okalachev/flix/blob/master/flix/imu.ino"><code>imu.ino</code></a>.
</div>
@@ -100,7 +100,7 @@ void setup() {
Для однократного считывания данных используется метод `read()`. Затем данные с гироскопа получаются при помощи метода `getGyro(x, y, z)`. Этот метод записывает в переменные `x`, `y` и `z` угловые скорости вокруг соответствующих осей в радианах в секунду.
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
Программа для чтения данных с гироскопа и вывода их в консоль для построения графиков в Serial Plotter выглядит так:
@@ -153,7 +153,7 @@ IMU.setRate(IMU.RATE_1KHZ_APPROX);
* `RATE_MIN` — минимальная частота сэмплов для конкретного IMU.
* `RATE_50HZ_APPROX` — значение, близкое к 50 Гц.
* `RATE_1KHZ_APPROX` — значение, близкое к 1 кГц.
* `RATE_1KHZ_APPROX`  — значение, близкое к 1 кГц.
* `RATE_8KHZ_APPROX` — значение, близкое к 8 кГц.
* `RATE_MAX` — максимальная частота сэмплов для конкретного IMU.

View File

@@ -1,262 +0,0 @@
import * as THREE from 'three';
import { SVGRenderer, SVGObject } from 'three/addons/renderers/SVGRenderer.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
const diagramEl = document.getElementById('rotation-diagram');
const scene = new THREE.Scene();
scene.background = new THREE.Color(0xffffff);
const camera = new THREE.OrthographicCamera();
camera.position.set(9, 26, 20);
camera.up.set(0, 0, 1);
camera.lookAt(0, 0, 0);
const renderer = new SVGRenderer();
diagramEl.prepend(renderer.domElement);
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableZoom = false;
const LINE_WIDTH = 4;
function createLabel(text, x, y, z, min = false) {
const label = document.createElementNS('http://www.w3.org/2000/svg', 'text');
label.setAttribute('class', 'label' + (min ? ' min' : ''));
label.textContent = text;
label.setAttribute('y', -15);
const object = new SVGObject(label);
object.position.x = x;
object.position.y = y;
object.position.z = z;
return object;
}
function createLine(x1, y1, z1, x2, y2, z2, color) {
const geometry = new THREE.BufferGeometry().setFromPoints([
new THREE.Vector3(x1, y1, z1),
new THREE.Vector3(x2, y2, z2)
]);
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
const line = new THREE.Line(geometry, material);
scene.add(line);
return line;
}
function changeLine(line, x1, y1, z1, x2, y2, z2) {
line.geometry.setFromPoints([new THREE.Vector3(x1, y1, z1), new THREE.Vector3(x2, y2, z2)]);
return line;
}
function createVector(x1, y1, z1, x2, y2, z2, color, label = '') {
const HEAD_LENGTH = 1;
const HEAD_WIDTH = 0.2;
const group = new THREE.Group();
const direction = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).normalize();
const norm = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).length();
let end = new THREE.Vector3(x2, y2, z2);
if (norm > HEAD_LENGTH) {
end = new THREE.Vector3(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
}
// create line
const geometry = new THREE.BufferGeometry().setFromPoints([new THREE.Vector3(x1, y1, z1), end]);
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
const line = new THREE.Line(geometry, material);
group.add(line);
if (norm > HEAD_LENGTH) {
// Create arrow
const arrowGeometry = new THREE.ConeGeometry(HEAD_WIDTH, HEAD_LENGTH, 16);
const arrowMaterial = new THREE.MeshBasicMaterial({ color: color });
const arrow = new THREE.Mesh(arrowGeometry, arrowMaterial);
arrow.position.set(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
arrow.lookAt(new THREE.Vector3(x1, y1, z1));
arrow.rotateX(-Math.PI / 2);
group.add(arrow);
}
// create label
if (label) group.add(createLabel(label, x2, y2, z2));
scene.add(group);
return group;
}
function changeVector(vector, x1, y1, z1, x2, y2, z2, color, label = '') {
vector.removeFromParent();
return createVector(x1, y1, z1, x2, y2, z2, color, label);
}
function createDrone(x, y, z) {
const group = new THREE.Group();
// Fuselage and wing triangle (main body)
const fuselageGeometry = new THREE.BufferGeometry();
const fuselageVertices = new Float32Array([
1, 0, 0,
-1, 0.6, 0,
-1, -0.6, 0
]);
fuselageGeometry.setAttribute('position', new THREE.BufferAttribute(fuselageVertices, 3));
const fuselageMaterial = new THREE.MeshBasicMaterial({ color: 0xb3b3b3, side: THREE.DoubleSide, transparent: true, opacity: 0.8 });
const fuselage = new THREE.Mesh(fuselageGeometry, fuselageMaterial);
group.add(fuselage);
// Tail triangle
const tailGeometry = new THREE.BufferGeometry();
const tailVertices = new Float32Array([
-0.2, 0, 0,
-1, 0, 0,
-1, 0, 0.5,
]);
tailGeometry.setAttribute('position', new THREE.BufferAttribute(tailVertices, 3));
const tailMaterial = new THREE.MeshBasicMaterial({ color: 0xd80100, side: THREE.DoubleSide, transparent: true, opacity: 0.9 });
const tail = new THREE.Mesh(tailGeometry, tailMaterial);
group.add(tail);
group.position.set(x, y, z);
group.scale.set(2, 2, 2);
scene.add(group);
return group;
}
// Create axes
const AXES_LENGTH = 10;
createVector(0, 0, 0, AXES_LENGTH, 0, 0, 0xd80100, 'x');
createVector(0, 0, 0, 0, AXES_LENGTH, 0, 0x0076ba, 'y');
createVector(0, 0, 0, 0, 0, AXES_LENGTH, 0x57ed00, 'z');
// Rotation values
const rotationAxisSrc = new THREE.Vector3(2, 1, 3);
let rotationAngle = 0;
let rotationAxis = rotationAxisSrc.clone().normalize();
let rotationVector = new THREE.Vector3(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
let rotationVectorObj = createVector(0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
let axisObj = createLine(0, 0, 0, rotationAxis.x * AXES_LENGTH, rotationAxis.y * AXES_LENGTH, rotationAxis.z * AXES_LENGTH, 0xe8e8e8);
const drone = createDrone(0, 0, 0);
// UI
const angleInput = diagramEl.querySelector('input[name=angle]');
const rotationVectorEl = diagramEl.querySelector('.rotation-vector');
const angleEl = diagramEl.querySelector('.angle');
const quaternionEl = diagramEl.querySelector('.quaternion');
const eulerEl = diagramEl.querySelector('.euler');
diagramEl.querySelector('.axis').innerHTML = `<b style='color:#b6b6b6'>Ось вращения:</b> (${rotationAxisSrc.x}, ${rotationAxisSrc.y}, ${rotationAxisSrc.z}) ∥ (${rotationAxis.x.toFixed(1)}, ${rotationAxis.y.toFixed(1)}, ${rotationAxis.z.toFixed(1)})`;
function updateScene() {
rotationAngle = parseFloat(angleInput.value) * Math.PI / 180;
rotationVector.set(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
rotationVectorObj = changeVector(rotationVectorObj, 0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
// rotate drone
drone.rotation.set(0, 0, 0);
drone.rotateOnAxis(rotationAxis, rotationAngle);
// update labels
angleEl.innerHTML = `<b>Угол вращения:</b> ${parseFloat(angleInput.value).toFixed(0)}° = ${(rotationAngle).toFixed(2)} рад`;
rotationVectorEl.innerHTML = `<b style='color:#e49a44'>Вектор вращения:</b> (${rotationVector.x.toFixed(1)}, ${rotationVector.y.toFixed(1)}, ${rotationVector.z.toFixed(1)}) рад`;
let quaternion = new THREE.Quaternion();
quaternion.setFromAxisAngle(rotationAxis, rotationAngle);
quaternionEl.innerHTML = `<b>Кватернион:</b>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mo>(</mo>
<mrow>
<mi>cos</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>, </mo>
<mrow>
<mi>${rotationAxis.x.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>, </mo>
<mrow>
<mi>${rotationAxis.y.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mi>${rotationAxis.z.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math>
= (${quaternion.w.toFixed(1)}, ${(quaternion.x).toFixed(1)}, ${(quaternion.y).toFixed(1)}, ${(quaternion.z).toFixed(1)})`;
eulerEl.innerHTML = `<b>Углы Эйлера:</b> крен ${(drone.rotation.x * 180 / Math.PI).toFixed(0)}°,
тангаж ${(drone.rotation.y * 180 / Math.PI).toFixed(0)}°, рыскание ${(drone.rotation.z * 180 / Math.PI).toFixed(0)}°`;
}
function updateCamera() {
const RANGE = 8;
const VERT_SHIFT = 2;
const HOR_SHIFT = -2;
const width = renderer.domElement.clientWidth;
const height = renderer.domElement.clientHeight;
const ratio = width / height;
if (ratio > 1) {
camera.left = -RANGE * ratio;
camera.right = RANGE * ratio;
camera.top = RANGE + VERT_SHIFT;
camera.bottom = -RANGE + VERT_SHIFT;
} else {
camera.left = -RANGE + HOR_SHIFT;
camera.right = RANGE + HOR_SHIFT;
camera.top = RANGE / ratio + VERT_SHIFT;
camera.bottom = -RANGE / ratio + VERT_SHIFT;
}
camera.updateProjectionMatrix();
renderer.setSize(width, height);
}
function update() {
// requestAnimationFrame(update);
updateCamera();
updateScene();
controls.update();
renderer.render(scene, camera);
}
update();
window.addEventListener('resize', update);
angleInput.addEventListener('input', update);
angleInput.addEventListener('change', update);
diagramEl.addEventListener('mousemove', update);
diagramEl.addEventListener('touchmove', update);
diagramEl.addEventListener('scroll', update);
diagramEl.addEventListener('wheel', update);

View File

@@ -1,2 +1,205 @@
<!-- markdownlint-disable MD041 -->
Build instructions are moved to [usage article](usage.md).
# Building and running
To build the firmware or the simulator, you need to clone the repository using git:
```bash
git clone https://github.com/okalachev/flix.git
cd flix
```
## Simulation
### Ubuntu 20.04
The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you have a newer version, consider using a virtual machine.
1. Install Arduino CLI:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Install Gazebo 11:
```bash
curl -sSL http://get.gazebosim.org | sh
```
Set up your Gazebo environment variables:
```bash
echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc
source ~/.bashrc
```
3. Install SDL2 and other dependencies:
```bash
sudo apt-get update && sudo apt-get install build-essential libsdl2-dev
```
4. Add your user to the `input` group to enable joystick support (you need to re-login after this command):
```bash
sudo usermod -a -G input $USER
```
5. Run the simulation:
```bash
make simulator
```
### macOS
1. Install Homebrew package manager, if you don't have it installed:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
2. Install Arduino CLI, Gazebo 11 and SDL2:
```bash
brew tap osrf/simulation
brew install arduino-cli
brew install gazebo11
brew install sdl2
```
Set up your Gazebo environment variables:
```bash
echo "source /opt/homebrew/share/gazebo/setup.sh" >> ~/.zshrc
source ~/.zshrc
```
3. Run the simulation:
```bash
make simulator
```
### Setup and flight
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone. For **iOS**, use [QGroundControl build from TAJISOFT](https://apps.apple.com/ru/app/qgc-from-tajisoft/id1618653051).
2. Connect your smartphone to the same Wi-Fi network as the machine running the simulator.
3. If you're using a virtual machine, make sure that its network is set to the **bridged** mode with Wi-Fi adapter selected.
4. Run the simulation.
5. Open QGroundControl app. It should connect and begin showing the virtual drone's telemetry automatically.
6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
7. Use the virtual joystick to fly the drone!
#### Control with USB remote control
1. Connect your USB remote control to the machine running the simulator.
2. Run the simulation.
3. Calibrate the RC using `cr` command in the command line interface.
4. Run the simulation again.
5. Use the USB remote control to fly the drone!
## Firmware
### Arduino IDE (Windows, Linux, macOS)
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Install ESP32 core, version 3.1.0 (version 2.x is not supported). See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.16.
5. Clone the project using git or [download the source code as a ZIP archive](https://codeload.github.com/okalachev/flix/zip/refs/heads/master).
6. Open the downloaded Arduino sketch `flix/flix.ino` in Arduino IDE.
7. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
8. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
### Command line (Windows, Linux, macOS)
1. [Install Arduino CLI](https://arduino.github.io/arduino-cli/installation/).
On Linux, use:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Compile the firmware using `make`. Arduino dependencies will be installed automatically:
```bash
make
```
You can flash the firmware to the board using command:
```bash
make upload
```
You can also compile the firmware, upload it and start serial port monitoring using command:
```bash
make upload monitor
```
See other available Make commands in the [Makefile](../Makefile).
> [!TIP]
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including CLI and QGroundControl connection should work.
### Setup and flight
Before flight you need to calibrate the accelerometer:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
2. Type `ca` command there and follow the instructions.
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
3. Connect your smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Open QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
5. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
6. Use the virtual joystick to fly the drone!
#### Control with remote control
Before flight using remote control, you need to calibrate it:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
2. Type `cr` command there and follow the instructions.
3. Use the remote control to fly the drone!
#### Control with USB remote control
If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it.
1. Install [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html) app on your computer.
2. Connect your USB remote control to the computer.
3. Power up the drone.
4. Connect your computer to the appeared `flix` Wi-Fi network (password: `flixwifi`).
5. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
6. Go the the QGroundControl menu ⇒ *Vehicle Setup**Joystick*. Calibrate you USB remote control there.
7. Use the USB remote control to fly the drone!
#### Adjusting parameters
You can adjust some of the drone's parameters (include PID coefficients) in QGroundControl app. In order to do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Parameters*.
<img src="img/parameters.png" width="400">
#### CLI access
In addition to accessing the drone's command line interface (CLI) using the serial port, you can also access it with QGroundControl using Wi-Fi connection. To do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Analyze Tools**MAVLink Console*.
<img src="img/cli.png" width="400">
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
### Firmware code structure
See [firmware overview](firmware.md) for more details.

View File

@@ -1,72 +1,37 @@
# Firmware overview
The firmware is a regular Arduino sketch, and it follows the classic Arduino one-threaded design. The initialization code is in the `setup()` function, and the main loop is in the `loop()` function. The sketch includes several files, each responsible for a specific subsystem.
## Dataflow
<img src="img/dataflow.svg" width=600 alt="Firmware dataflow diagram">
<img src="img/dataflow.svg" width=800 alt="Firmware dataflow diagram">
The main loop is running at 1000 Hz. The dataflow goes through global variables, including:
The main loop is running at 1000 Hz. All the dataflow is happening through global variables (for simplicity):
* `t` *(float)* current step time, *s*.
* `t` *(double)* current step time, *s*.
* `dt` *(float)* — time delta between the current and previous steps, *s*.
* `gyro` *(Vector)* — data from the gyroscope, *rad/s*.
* `acc` *(Vector)* — acceleration data from the accelerometer, *m/s<sup>2</sup>*.
* `rates` *(Vector)* — filtered angular rates, *rad/s*.
* `attitude` *(Quaternion)* — estimated attitude (orientation) of drone.
* `controlRoll`, `controlPitch`, `controlYaw`, `controlThrottle`, `controlMode` *(float)* pilot control inputs, range [-1, 1].
* `motors` *(float[4])* motor outputs, range [0, 1].
* `controls` *(float[])* user control inputs from the RC, normalized to [-1, 1] range.
* `motors` *(float[])* motor outputs, normalized to [-1, 1] range; reverse rotation is possible.
## Source files
Firmware source files are located in `flix` directory.
Firmware source files are located in `flix` directory. The key files are:
* [`flix.ino`](../flix/flix.ino) — Arduino sketch main file, entry point.Includes some global variable definitions and the main loop.
* [`flix.ino`](../flix/flix.ino) — main entry point, Arduino sketch. Includes global variables definition and the main loop.
* [`imu.ino`](../flix/imu.ino) — reading data from the IMU sensor (gyroscope and accelerometer), IMU calibration.
* [`rc.ino`](../flix/rc.ino) — reading data from the RC receiver, RC calibration.
* [`estimate.ino`](../flix/estimate.ino) — attitude estimation, complementary filter.
* [`control.ino`](../flix/control.ino) — control subsystem, three-dimensional two-level cascade PID controller.
* [`motors.ino`](../flix/motors.ino) — PWM motor output control.
* [`mavlink.ino`](../flix/mavlink.ino) — interaction with QGroundControl or [pyflix](../tools/pyflix) via MAVLink protocol.
* [`cli.ino`](../flix/cli.ino) — serial and MAVLink console.
* [`estimate.ino`](../flix/estimate.ino) — drone's attitude estimation, complementary filter.
* [`control.ino`](../flix/control.ino) — drone's attitude and rates control, three-dimensional two-level cascade PID controller.
* [`motors.ino`](../flix/motors.ino) — PWM motor outputs control.
Utility files:
Utility files include:
* [`vector.h`](../flix/vector.h), [`quaternion.h`](../flix/quaternion.h) — vector and quaternion libraries.
* [`pid.h`](../flix/pid.h) — generic PID controller.
* [`lpf.h`](../flix/lpf.h) — generic low-pass filter.
* [`vector.h`](../flix/vector.h), [`quaternion.h`](../flix/quaternion.h) — project's vector and quaternion libraries implementation.
* [`pid.h`](../flix/pid.h) — generic PID controller implementation.
* [`lpf.h`](../flix/lpf.h) — generic low-pass filter implementation.
### Control subsystem
## Building
Pilot inputs are interpreted in `interpretControls()`, and then converted to the **control command**, which consists of the following:
* `attitudeTarget` *(Quaternion)* — target attitude of the drone.
* `ratesTarget` *(Vector)* — target angular rates, *rad/s*.
* `ratesExtra` *(Vector)* — additional (feed-forward) angular rates , used for yaw rate control in STAB mode, *rad/s*.
* `torqueTarget` *(Vector)* — target torque, range [-1, 1].
* `thrustTarget` *(float)* — collective motor thrust target, range [0, 1].
Control command is handled in `controlAttitude()`, `controlRates()`, `controlTorque()` functions. Each function may be skipped if the corresponding control target is set to `NAN`.
<img src="img/control.svg" width=300 alt="Control subsystem diagram">
Armed state is stored in `armed` variable, and current mode is stored in `mode` variable.
### Console
To write into the console, `print()` function is used. This function sends data both to the Serial console and to the MAVLink console (which can be accessed wirelessly in QGroundControl). The function supports formatting:
```cpp
print("Test value: %.2f\n", testValue);
```
In order to add a console command, modify the `doCommand()` function in `cli.ino` file.
> [!IMPORTANT]
> Avoid using delays in in-flight commands, it will **crash** the drone! (The design is one-threaded.)
>
> For on-the-ground commands, use `pause()` function, instead of `delay()`. This function allows to pause in a way that MAVLink connection will continue working.
## Building the firmware
See build instructions in [usage.md](usage.md).
See build instructions in [build.md](build.md).

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

View File

@@ -1,22 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 340.21 211.28">
<defs>
<style>
.a {
fill: #d5d5d5;
}
.b {
fill: #fff;
}
.c {
fill: #636363;
}
</style>
</defs>
<path class="a" d="M340,159.31c-4.74-86-35.9-128.7-35.9-128.7C288.3,9.53,269.17,2.91,251.87.39s-22.31,7.87-22.31,7.87C201.7,4,170.11,4.19,170.11,4.19S138.51,4,110.65,8.26c0,0-5-10.38-22.3-7.87S51.91,9.53,36.14,30.61c0,0-31.16,42.67-35.9,128.7-2.82,51.08,19.68,55.36,38.43,50.4a60.08,60.08,0,0,0,30.55-19.66c7.51-9,19.64-25.32,34-28,17.28-3.26,33.14-4.77,45.09-4.78l21.82,0,21.81,0c12,0,27.82,1.52,45.09,4.78,14.34,2.71,26.47,19,34,28a60.06,60.06,0,0,0,30.56,19.66C320.29,214.67,342.79,210.39,340,159.31Z"/>
<circle class="b" cx="88.54" cy="85.75" r="45.22"/>
<circle class="b" cx="251.67" cy="85.75" r="45.22"/>
<circle class="c" cx="251.67" cy="85.75" r="13.8"/>
<circle class="c" cx="103.8" cy="112.12" r="13.8"/>
</svg>

Before

Width:  |  Height:  |  Size: 971 B

View File

@@ -1,94 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
<defs>
<style>
.a {
font-size: 50px;
font-family: Tahoma;
}
.b {
opacity: 0.8;
}
.c, .e, .g, .i {
fill: none;
}
.c {
stroke: #0076ba;
}
.c, .e, .g {
stroke-linejoin: bevel;
stroke-width: 13px;
}
.d {
fill: #0076ba;
}
.e {
stroke: #d80100;
}
.f {
fill: #d80100;
}
.g {
stroke: #57ed00;
}
.h {
fill: #57ed00;
}
.i {
stroke: #000;
stroke-miterlimit: 10;
stroke-width: 10px;
}
</style>
</defs>
<g>
<text class="a" transform="translate(58.62 636.12)">x</text>
<text class="a" transform="translate(505.06 562.18)">y</text>
<text class="a" transform="translate(370.06 43.18)">z</text>
<g class="b">
<g>
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<g class="b">
<g>
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="b">
<g>
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M103.19,617.68a52.66,52.66,0,1,0-55.51-89.19"/>
<polygon points="41.63 516.97 34.76 541.97 59.85 535.42 41.63 516.97"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M295.58,87.51a52.66,52.66,0,1,0,103.78,16.31"/>
<polygon points="412.03 106.78 397.6 85.24 386.16 108.51 412.03 106.78"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M505,452.58a52.66,52.66,0,1,0-76,72.53"/>
<polygon points="418.96 533.38 444.84 535 433.31 511.78 418.96 533.38"/>
</g>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 2.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 15 KiB

View File

@@ -1,123 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 464.2 249.05">
<defs>
<style>
.a {
fill: #d5d5d5;
}
.b {
fill: #fff;
}
.c {
fill: #636363;
}
.d {
opacity: 0.7;
}
.e {
fill: none;
stroke: #0076ba;
stroke-linecap: round;
stroke-miterlimit: 10;
stroke-width: 13px;
}
.f {
fill: #0076ba;
}
.g {
font-size: 30px;
font-family: Tahoma;
}
.h {
letter-spacing: 0em;
}
.i {
letter-spacing: -0.01em;
}
.j {
letter-spacing: -0.06em;
}
.k {
letter-spacing: 0em;
}
.l {
letter-spacing: -0.02em;
}
.m {
letter-spacing: 0em;
}
.n {
opacity: 0.6;
}
</style>
</defs>
<path class="a" d="M408.84,197.08c-4.74-86-35.9-128.7-35.9-128.7C357.17,47.3,338,40.68,320.73,38.17S298.43,46,298.43,46C270.57,41.81,239,42,239,42s-31.59-.15-59.45,4.07c0,0-5-10.38-22.31-7.86S120.78,47.3,105,68.38c0,0-31.16,42.68-35.9,128.7-2.82,51.08,19.68,55.36,38.42,50.4a60.06,60.06,0,0,0,30.56-19.66c7.51-9,19.64-25.32,34-28,17.27-3.26,33.14-4.77,45.09-4.78L239,195l21.82,0c11.95,0,27.81,1.52,45.09,4.78,14.34,2.71,26.47,19,34,28a60.08,60.08,0,0,0,30.55,19.66C389.16,252.44,411.66,248.16,408.84,197.08Z"/>
<circle class="b" cx="157.41" cy="123.52" r="45.22"/>
<circle class="b" cx="320.54" cy="123.52" r="45.22"/>
<circle class="c" cx="320.54" cy="123.52" r="13.8"/>
<circle class="c" cx="157.41" cy="149.89" r="13.8"/>
<g class="d">
<g>
<line class="e" x1="157.41" y1="149.89" x2="157.41" y2="49.87"/>
<polygon class="f" points="180.74 56.7 157.41 16.29 134.07 56.7 180.74 56.7"/>
</g>
</g>
<text class="g" transform="translate(38.38 25.91)">Th<tspan class="h" x="34.25" y="0">r</tspan><tspan x="44.91" y="0">o</tspan><tspan class="i" x="61.2" y="0">t</tspan><tspan x="71" y="0">tle</tspan></text>
<g class="d">
<g>
<line class="e" x1="157.41" y1="149.89" x2="82.41" y2="149.89"/>
<polygon class="f" points="89.24 126.56 48.82 149.89 89.24 173.23 89.24 126.56"/>
</g>
</g>
<text class="g" transform="translate(0.18 176.36)"><tspan class="j">Y</tspan><tspan class="h" x="15.37" y="0">a</tspan><tspan x="30.97" y="0">w</tspan></text>
<g class="d">
<g>
<line class="e" x1="320.54" y1="123.52" x2="320.54" y2="50.32"/>
<polygon class="f" points="343.88 57.15 320.54 16.74 297.2 57.15 343.88 57.15"/>
</g>
</g>
<text class="g" transform="translate(336.56 26.36)">P<tspan class="k" x="16.54" y="0">i</tspan><tspan x="23.45" y="0">tch</tspan></text>
<g class="d">
<g>
<line class="e" x1="320.54" y1="123.52" x2="395.54" y2="123.52"/>
<polygon class="f" points="388.71 146.86 429.12 123.52 388.71 100.19 388.71 146.86"/>
</g>
</g>
<text class="g" transform="translate(416.03 160.01)"><tspan class="l">R</tspan><tspan x="18.08" y="0">o</tspan><tspan class="m" x="34.37" y="0">l</tspan><tspan x="41.31" y="0">l</tspan></text>
<g class="d">
<g>
<line class="e" x1="157.41" y1="149.89" x2="213.73" y2="149.89"/>
<polygon class="f" points="206.9 173.23 247.32 149.89 206.9 126.56 206.9 173.23"/>
</g>
</g>
<g class="d">
<g>
<line class="e" x1="320.54" y1="124.52" x2="320.54" y2="197.73"/>
<polygon class="f" points="297.2 190.9 320.54 231.31 343.88 190.9 297.2 190.9"/>
</g>
</g>
<g class="n">
<g>
<line class="e" x1="318.03" y1="123.52" x2="262.32" y2="123.52"/>
<polygon class="f" points="269.14 100.19 228.73 123.52 269.14 146.86 269.14 100.19"/>
</g>
</g>
<g class="d">
<g>
<line class="e" x1="157.41" y1="151.66" x2="157.41" y2="197.73"/>
<polygon class="f" points="134.07 190.9 157.41 231.31 180.74 190.9 134.07 190.9"/>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 3.9 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 13 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -1,22 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 340.21 211.28">
<defs>
<style>
.a {
fill: #d5d5d5;
}
.b {
fill: #fff;
}
.c {
fill: #636363;
}
</style>
</defs>
<path class="a" d="M340,159.31c-4.74-86-35.9-128.7-35.9-128.7C288.3,9.53,269.17,2.91,251.87.39s-22.31,7.87-22.31,7.87C201.7,4,170.11,4.19,170.11,4.19S138.51,4,110.65,8.26c0,0-5-10.38-22.3-7.87S51.91,9.53,36.14,30.61c0,0-31.16,42.67-35.9,128.7-2.82,51.08,19.68,55.36,38.43,50.4a60.08,60.08,0,0,0,30.55-19.66c7.51-9,19.64-25.32,34-28,17.28-3.26,33.14-4.77,45.09-4.78l21.82,0,21.81,0c12,0,27.82,1.52,45.09,4.78,14.34,2.71,26.47,19,34,28a60.06,60.06,0,0,0,30.56,19.66C320.29,214.67,342.79,210.39,340,159.31Z"/>
<circle class="b" cx="88.54" cy="85.75" r="45.22"/>
<circle class="b" cx="251.67" cy="85.75" r="45.22"/>
<circle class="c" cx="251.67" cy="85.75" r="13.8"/>
<circle class="c" cx="73.28" cy="112.12" r="13.8"/>
</svg>

Before

Width:  |  Height:  |  Size: 971 B

View File

@@ -1,136 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 813.79 508.65">
<defs>
<style>
.a, .d, .f, .j, .p {
fill: none;
}
.a {
stroke: #d5d5d5;
stroke-width: 31px;
}
.a, .p {
stroke-miterlimit: 10;
}
.b {
fill: #ff9400;
}
.c {
opacity: 0.8;
}
.d {
stroke: #d80100;
}
.d, .f, .j {
stroke-linejoin: bevel;
stroke-width: 13px;
}
.e {
fill: #d80100;
}
.f {
stroke: #57ed00;
}
.g {
fill: #57ed00;
}
.h {
fill: #c1c1c1;
}
.i {
opacity: 0.12;
}
.j {
stroke: #0076ba;
}
.k {
fill: #0076ba;
}
.l {
font-size: 50px;
font-family: Tahoma;
}
.m {
letter-spacing: -0.01em;
}
.n {
letter-spacing: -0.01em;
}
.o {
letter-spacing: 0em;
}
.p {
stroke: #000;
stroke-width: 10px;
}
</style>
</defs>
<g>
<g>
<line class="a" x1="259.14" y1="432.84" x2="532.46" y2="340.23"/>
<line class="a" x1="311.69" y1="313.16" x2="481.62" y2="461.39"/>
<ellipse class="b" cx="311.35" cy="312.8" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="532.53" cy="340.42" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="479.72" cy="460.7" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="259.21" cy="433.03" rx="88.68" ry="47.94"/>
</g>
<g class="c">
<g>
<line class="d" x1="396.65" y1="386.83" x2="564.66" y2="35.72"/>
<polygon class="e" points="582.76 51.95 579.15 5.42 540.66 31.8 582.76 51.95"/>
</g>
</g>
<g class="c">
<g>
<line class="f" x1="396.77" y1="387.06" x2="69.41" y2="341.09"/>
<polygon class="g" points="79.42 318.93 36.15 336.42 72.93 365.15 79.42 318.93"/>
</g>
</g>
<ellipse class="h" cx="396.36" cy="386.61" rx="47.21" ry="25.52"/>
<path class="i" d="M398,375.67l-14.42,12.95a4.32,4.32,0,0,0,2.35,7.5l16.81,2.11a4.33,4.33,0,0,0,4.8-5l-2.39-15.06A4.32,4.32,0,0,0,398,375.67Z"/>
<g class="c">
<g>
<line class="j" x1="396.77" y1="385.56" x2="396.77" y2="92.64"/>
<polygon class="k" points="420.1 99.47 396.77 59.06 373.43 99.47 420.1 99.47"/>
</g>
</g>
<text class="l" transform="translate(0 292.27)">y/left</text>
<text class="l" transform="translate(268.4 81.58)">z/up</text>
<text class="l" transform="translate(600.99 43.18)">x/<tspan class="m" x="43.87" y="0">f</tspan><tspan x="59.3" y="0">or</tspan><tspan class="n" x="104.47" y="0">w</tspan><tspan x="141.14" y="0">a</tspan><tspan class="o" x="167.38" y="0">r</tspan><tspan x="185.16" y="0">d</tspan></text>
<g class="c">
<g>
<path class="p" d="M470.35,114a52.71,52.71,0,0,1,103.57-2.31,51.67,51.67,0,0,1-1.33,25.92"/>
<polygon points="562.15 128.29 563.93 154.16 585.44 139.69 562.15 128.29"/>
</g>
</g>
<g class="c">
<g>
<path class="p" d="M344.16,164.77a52.66,52.66,0,1,0,103.78,16.31"/>
<polygon points="460.61 184.04 446.18 162.5 434.74 185.76 460.61 184.04"/>
</g>
</g>
<g class="c">
<g>
<path class="p" d="M138.4,411.11a52.71,52.71,0,0,1,18.43-101.94A51.68,51.68,0,0,1,182,315.65"/>
<polygon points="170.73 324.01 196.43 327.44 186.55 303.47 170.73 324.01"/>
</g>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 3.5 KiB

View File

@@ -1,110 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 664.49 478.47">
<defs>
<style>
.a, .d, .f, .j {
fill: none;
}
.a {
stroke: #d5d5d5;
stroke-miterlimit: 10;
stroke-width: 31px;
}
.b {
fill: #ff9400;
}
.c {
opacity: 0.8;
}
.d {
stroke: #d80100;
}
.d, .f, .j {
stroke-linejoin: bevel;
stroke-width: 13px;
}
.e {
fill: #d80100;
}
.f {
stroke: #57ed00;
}
.g {
fill: #57ed00;
}
.h {
fill: #c1c1c1;
}
.i {
opacity: 0.12;
}
.j {
stroke: #0076ba;
}
.k {
fill: #0076ba;
}
.l {
font-size: 50px;
font-family: Tahoma;
}
.m {
letter-spacing: -0.01em;
}
.n {
letter-spacing: -0.01em;
}
.o {
letter-spacing: 0em;
}
</style>
</defs>
<g>
<g>
<line class="a" x1="207.39" y1="402.28" x2="480.71" y2="309.67"/>
<line class="a" x1="259.93" y1="282.6" x2="429.86" y2="430.83"/>
<ellipse class="b" cx="259.59" cy="282.24" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="480.77" cy="309.86" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="427.96" cy="430.14" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="207.45" cy="402.47" rx="88.68" ry="47.94"/>
</g>
<g class="c">
<g>
<line class="d" x1="344.89" y1="356.27" x2="422.02" y2="172.47"/>
<polygon class="e" points="440.89 187.79 435.01 141.5 397.86 169.74 440.89 187.79"/>
</g>
</g>
<g class="c">
<g>
<line class="f" x1="345.01" y1="356.5" x2="79.27" y2="319.17"/>
<polygon class="g" points="89.28 297.01 46.01 314.5 82.78 343.23 89.28 297.01"/>
</g>
</g>
<ellipse class="h" cx="344.6" cy="356.05" rx="47.21" ry="25.52"/>
<path class="i" d="M346.25,345.11l-14.41,12.95a4.32,4.32,0,0,0,2.34,7.5L351,367.67a4.33,4.33,0,0,0,4.8-5l-2.39-15.06A4.31,4.31,0,0,0,346.25,345.11Z"/>
<g class="c">
<g>
<line class="j" x1="345.01" y1="355" x2="345.01" y2="62.08"/>
<polygon class="k" points="368.35 68.91 345.01 28.5 321.67 68.91 368.35 68.91"/>
</g>
</g>
<text class="l" transform="translate(-0.76 281.71)">y/left</text>
<text class="l" transform="translate(371.65 38.02)">z/up</text>
<text class="l" transform="translate(455.23 152.62)">x/<tspan class="m" x="43.87" y="0">f</tspan><tspan x="59.3" y="0">or</tspan><tspan class="n" x="104.47" y="0">w</tspan><tspan x="141.14" y="0">a</tspan><tspan class="o" x="167.38" y="0">r</tspan><tspan x="185.16" y="0">d</tspan></text>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 2.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -1,67 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.68">
<defs>
<style>
.a {
font-size: 50px;
font-family: Tahoma;
}
.b {
opacity: 0.8;
}
.c, .e, .g {
fill: none;
stroke-linejoin: bevel;
stroke-width: 13px;
}
.c {
stroke: #0076ba;
}
.d {
fill: #0076ba;
}
.e {
stroke: #57ed00;
}
.f {
fill: #57ed00;
}
.g {
stroke: #d80100;
}
.h {
fill: #d80100;
}
</style>
</defs>
<g>
<text class="a" transform="translate(500.62 556.12)">x</text>
<text class="a" transform="translate(370.06 43.18)">z</text>
<g class="b">
<g>
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<g class="b">
<g>
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="b">
<g>
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<text class="a" transform="translate(58.06 635.89)">y</text>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 1.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 46 KiB

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 61 KiB

View File

@@ -1,89 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 356.79 357.11">
<defs>
<style>
.a, .e {
fill: none;
stroke-miterlimit: 10;
}
.a {
stroke: #d5d5d5;
stroke-width: 31px;
}
.b {
fill: #c1c1c1;
}
.c {
fill: #ff9400;
}
.d {
opacity: 0.12;
}
.e {
stroke: #cc5200;
stroke-width: 8px;
}
.f {
fill: #cc5200;
}
.g {
font-size: 50px;
fill: #fff;
}
.g, .h {
font-family: Tahoma;
}
.h {
font-size: 20px;
}
.i {
letter-spacing: 0em;
}
</style>
</defs>
<g>
<g>
<line class="a" x1="77.4" y1="278.67" x2="277.4" y2="77.67"/>
<line class="a" x1="78.4" y1="78.67" x2="278.4" y2="279.67"/>
<circle class="b" cx="177.9" cy="178.17" r="41.5"/>
<circle class="c" cx="77.97" cy="78.17" r="77.95"/>
<circle class="c" cx="277.52" cy="77.95" r="77.95"/>
</g>
<path class="d" d="M174.29,163.6l-8.45,26.05A4.32,4.32,0,0,0,170,195.3h16.9a4.32,4.32,0,0,0,4.11-5.65l-8.45-26.05A4.32,4.32,0,0,0,174.29,163.6Z"/>
<g>
<path class="e" d="M307.47,122.53a52.66,52.66,0,1,0-72.08-76"/>
<polygon class="f" points="228.68 38.51 227.44 59.21 245.99 49.94 228.68 38.51"/>
</g>
<g>
<path class="e" d="M48.11,122.22a52.66,52.66,0,1,1,72.08-75.95"/>
<polygon class="f" points="109.59 49.63 128.14 58.91 126.9 38.2 109.59 49.63"/>
</g>
<text class="g" transform="translate(64.89 98.77)">3</text>
<text class="g" transform="translate(260.92 98.8)">2</text>
<text class="h" transform="translate(66.06 129.25)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op A</tspan></text>
<text class="h" transform="translate(232.55 128.95)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op B</tspan></text>
<circle class="c" cx="278.83" cy="277.92" r="77.95"/>
<g>
<path class="e" d="M249,322a52.66,52.66,0,1,1,72.09-76"/>
<polygon class="f" points="310.45 249.38 329 258.66 327.76 237.95 310.45 249.38"/>
</g>
<text class="g" transform="translate(265.76 298.52)">1</text>
<text class="h" transform="translate(266.92 329.01)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op A</tspan></text>
<circle class="c" cx="77.95" cy="277.92" r="77.95"/>
<g>
<path class="e" d="M107.9,322.49a52.66,52.66,0,1,0-72.08-76"/>
<polygon class="f" points="29.11 238.47 27.87 259.18 46.42 249.91 29.11 238.47"/>
</g>
<text class="g" transform="translate(61.35 298.76)">0</text>
<text class="h" transform="translate(32.98 328.92)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op B</tspan></text>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 2.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

View File

@@ -1,67 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
<defs>
<style>
.a {
opacity: 0.8;
}
.b, .d, .f {
fill: none;
stroke-linejoin: bevel;
stroke-width: 13px;
}
.b {
stroke: #57ed00;
}
.c {
fill: #57ed00;
}
.d {
stroke: #d80100;
}
.e {
fill: #d80100;
}
.f {
stroke: #0076ba;
}
.g {
fill: #0076ba;
}
.h {
font-size: 50px;
font-family: Tahoma;
}
</style>
</defs>
<g>
<g class="a">
<g>
<line class="b" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="c" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<g class="a">
<g>
<line class="d" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="e" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="a">
<g>
<line class="f" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="g" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<text class="h" transform="translate(58.62 636.12)">x</text>
<text class="h" transform="translate(505.06 562.18)">y</text>
<text class="h" transform="translate(370.06 43.18)">z</text>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 1.4 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 326 KiB

View File

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -2,7 +2,11 @@
Flix quadcopter uses RAM to store flight log data. The default log capacity is 10 seconds at 100 Hz. This configuration can be adjusted in the `log.ino` file.
To perform log analysis, you need to download the flight log. To to that, ensure you're connected to the drone using Wi-Fi and run the following command:
To perform log analysis, you need to download the log right after the flight without powering off the drone. Then you can use several tools to analyze the log data.
## Log download
To download the log, connect the ESP32 using USB right after the flight and run the following command:
```bash
make log

View File

@@ -1,29 +0,0 @@
.diagram svg {
display: block;
width: 100%;
height: 400px;
}
.diagram .label {
font-family: Arial, sans-serif;
font-size: 20px;
pointer-events: none;
color: black;
opacity: 0.8;
user-select: none;
}
.diagram label {
display: block;
}
@media (min-width: 800px) {
.diagram b {
width: 200px;
display: inline-block;
}
}
.diagram p.quaternion {
overflow-x: auto;
}
.diagram input {
text-align: center;
width: 100%;
}

View File

@@ -118,7 +118,7 @@
<a href="https://t.me/opensourcequadcopter" class="telegram">Telegram-канал</a>
💰 Поддержать проект:
<iframe style="margin-top: 0.4em;" src="https://yoomoney.ru/quickpay/fundraise/button?billNumber=16U9OH2S4IT.241205&" width="330" height="50" frameborder="0" allowtransparency="true" scrolling="no"></iframe>
&copy; 2025 Олег Калачев
&copy; 2024 Олег Калачев
</footer>
</mdbook-sidebar-scrollbox>
<noscript>

View File

@@ -4,9 +4,8 @@
Do the following:
* **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](usage.md#building-the-firmware).
* **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](build.md#firmware).
* **Check libraries**. Install all the required libraries from the tutorial. Make sure there are no MPU9250 or other peripherals libraries that may conflict with the ones used in the tutorial.
* **Check the chosen board**. The correct board to choose in Arduino IDE for ESP32 Mini is *WEMOS D1 MINI ESP32*.
## The drone doesn't fly
@@ -14,26 +13,23 @@ Do the following:
* **Check the battery voltage**. Use a multimeter to measure the battery voltage. It should be in range of 3.7-4.2 V.
* **Check if there are some startup errors**. Connect the ESP32 to the computer and check the Serial Monitor output. Use the Reset button to make sure you see the whole ESP32 output.
* **Check the baudrate is correct**. If you see garbage characters in the Serial Monitor, make sure the baudrate is set to 115200.
* **Make sure correct IMU model is chosen**. If using ICM-20948/MPU-6050 board, change `MPU9250` to `ICM20948`/`MPU6050` in the `imu.ino` file.
* **Make sure correct IMU model is chosen**. If using ICM-20948 board, change `MPU9250` to `ICM20948` everywhere in the `imu.ino` file.
* **Check if the CLI is working**. Perform `help` command in Serial Monitor. You should see the list of available commands. You can also access the CLI using QGroundControl (*Vehicle Setup* ⇒ *Analyze Tools**MAVLink Console*).
* **Configure QGroundControl correctly before connecting to the drone** if you use it to control the drone. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
* **If QGroundControl doesn't connect**, you might need to disable the firewall and/or VPN on your computer.
* **Check the IMU is working**. Perform `imu` command and check its output:
* The `status` field should be `OK`.
* The `rate` field should be about 1000 (Hz).
* The `accel` and `gyro` fields should change as you move the drone.
* **Calibrate the accelerometer.** if is wasn't done before. Type `ca` command in Serial Monitor and follow the instructions.
* **Check the attitude estimation**. Connect to the drone using QGroundControl. Rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct.
* **Check the IMU orientation is set correctly**. If the attitude estimation is rotated, set the correct IMU orientation as described in the [tutorial](usage.md#define-imu-orientation).
* **Check the IMU orientation is set correctly**. If the attitude estimation is rotated, make sure `rotateIMU` function is defined correctly in `imu.ino` file.
* **Check the motors type**. Motors with exact 3.7V voltage are needed, not ranged working voltage (3.7V — 6V).
* **Check the motors**. Perform the following commands using Serial Monitor:
* `mfr` — should rotate front right motor (counter-clockwise).
* `mfl` — should rotate front left motor (clockwise).
* `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise).
* **Check the propeller directions are correct**. Make sure your propeller types (A or B) are installed as on the picture:
<img src="img/user/peter_ukhov-2/1.jpg" width="200">
* **Check the remote control**. Using `rc` command, check the control values reflect your sticks movement. All the controls should change between -1 and 1, and throttle between 0 and 1.
* If using SBUS receiver, **calibrate the RC**. Type `cr` command in Serial Monitor and follow the instructions.
* **Calibrate the RC** if you use it. Type `cr` command in Serial Monitor and follow the instructions.
* **Check the RC data** if you use it. Use `rc` command, `Control` should show correct values between -1 and 1, and between 0 and 1 for the throttle.
* **Check the IMU output using QGroundControl**. Connect to the drone using QGroundControl on your computer. Go to the *Analyze* tab, *MAVLINK Inspector*. Plot the data from the `SCALED_IMU` message. The gyroscope and accelerometer data should change according to the drone movement.
* **Check the gyroscope only attitude estimation**. Comment out `applyAcc();` line in `estimate.ino` and check if the attitude estimation in QGroundControl. It should be stable, but only drift very slowly.

View File

@@ -1,254 +0,0 @@
# Usage: build, setup and flight
To fly Flix quadcopter, you need to build the firmware, upload it to the ESP32 board, and set up the drone for flight.
To get the firmware sources, clone the repository using git:
```bash
git clone https://github.com/okalachev/flix.git && cd flix
```
Beginners can [download the source code as a ZIP archive](https://github.com/okalachev/flix/archive/refs/heads/master.zip).
## Building the firmware
You can build and upload the firmware using either **Arduino IDE** (easier for beginners) or **command line**.
### Arduino IDE (Windows, Linux, macOS)
<img src="img/arduino-ide.png" width="400" alt="Flix firmware open in Arduino IDE">
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. *Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).*
3. Install ESP32 core, version 3.2.0. See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.16.
5. Open the `flix/flix.ino` sketch from downloaded firmware sources in Arduino IDE.
6. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
7. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
### Command line (Windows, Linux, macOS)
1. [Install Arduino CLI](https://arduino.github.io/arduino-cli/installation/).
On Linux, install it like this:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Compile the firmware using `make`. Arduino dependencies will be installed automatically:
```bash
make
```
You can flash the firmware to the board using command:
```bash
make upload
```
You can also compile the firmware, upload it and start serial port monitoring using command:
```bash
make upload monitor
```
See other available Make commands in [Makefile](../Makefile).
> [!TIP]
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including console and QGroundControl connection should work.
## Before first flight
### Choose the IMU model
In case if using different IMU model than MPU9250, change `imu` variable declaration in the `imu.ino`:
```cpp
ICM20948 imu(SPI); // For ICM-20948
MPU6050 imu(Wire); // For MPU-6050
```
### Connect using QGroundControl
QGroundControl is a ground control station software that can be used to monitor and control the drone.
1. Install mobile or desktop version of [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html).
2. Power up the drone.
3. Connect your computer or smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
### Access console
The console is a command line interface (CLI) that allows to interact with the drone, change parameters, and perform various actions. There are two ways of accessing the console: using **serial port** or using **QGroundControl (wirelessly)**.
To access the console using serial port:
1. Connect the ESP32 board to the computer using USB cable.
2. Open Serial Monitor in Arduino IDE (or use `make monitor` in the command line).
3. In Arduino IDE, make sure the baudrate is set to 115200.
To access the console using QGroundControl:
1. Connect to the drone using QGroundControl app.
2. Go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Analyze Tools* ⇒ *MAVLink Console*.
<img src="img/cli.png" width="400">
> [!TIP]
> Use `help` command to see the list of available commands.
### Access parameters
The drone is configured using parameters. To access and modify them, go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Parameters*:
<img src="img/parameters.png" width="400">
You can also work with parameters using `p` command in the console.
### Define IMU orientation
Use parameters, to define the IMU board axes orientation relative to the drone's axes: `IMU_ROT_ROLL`, `IMU_ROT_PITCH`, and `IMU_ROT_YAW`.
The drone has *X* axis pointing forward, *Y* axis pointing left, and *Z* axis pointing up, and the supported IMU boards have *X* axis pointing to the pins side and *Z* axis pointing up from the component side:
<img src="img/imu-axes.png" width="200">
Use the following table to set the parameters for common IMU orientations:
|Orientation|Parameters|Orientation|Parameters|
|:-:|-|-|-|
|<img src="img/imu-rot-1.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 0 |<img src="img/imu-rot-5.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 0|
|<img src="img/imu-rot-2.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 1.571|<img src="img/imu-rot-6.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = -1.571|
|<img src="img/imu-rot-3.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 3.142|<img src="img/imu-rot-7.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 3.142|
|<img src="img/imu-rot-4.png" width="180"><br>☑️ **Default**|<br>`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = -1.571|<img src="img/imu-rot-8.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 1.571|
### Calibrate accelerometer
Before flight you need to calibrate the accelerometer:
1. Access the console using QGroundControl (recommended) or Serial Monitor.
2. Type `ca` command there and follow the instructions.
### Check everything works
1. Check the IMU is working: perform `imu` command and check its output:
* The `status` field should be `OK`.
* The `rate` field should be about 1000 (Hz).
* The `accel` and `gyro` fields should change as you move the drone.
* The `landed` field should be `1` when the drone is still on the ground and `0` when you lift it up.
2. Check the attitude estimation: connect to the drone using QGroundControl, rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct. Attitude indicator in QGroundControl is shown below:
<img src="img/qgc-attitude.png" height="200">
3. Perform motor tests in the console. Use the following commands **— remove the propellers before running the tests!**
* `mfr` — should rotate front right motor (counter-clockwise).
* `mfl` — should rotate front left motor (clockwise).
* `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise).
Rotation diagram:
<img src="img/motors.svg" width=200>
> [!WARNING]
> Never run the motors when powering the drone from USB, always use the battery for that.
## Setup remote control
There are several ways to control the drone's flight: using **smartphone** (Wi-Fi), using **SBUS remote control**, or using **USB remote control** (Wi-Fi).
### Control with a smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
3. Connect your smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Open QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
5. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
6. Use the virtual joystick to fly the drone!
> [!TIP]
> Decrease `CTL_TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
### Control with a remote control
Before using remote SBUS-connected remote control, you need to calibrate it:
1. Access the console using QGroundControl (recommended) or Serial Monitor.
2. Type `cr` command and follow the instructions.
3. Use the remote control to fly the drone!
### Control with a USB remote control
If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it.
1. Install [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html) app on your computer.
2. Connect your USB remote control to the computer.
3. Power up the drone.
4. Connect your computer to the appeared `flix` Wi-Fi network (password: `flixwifi`).
5. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
6. Go the the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Joystick*. Calibrate you USB remote control there.
7. Use the USB remote control to fly the drone!
## Flight
For both virtual sticks and a physical joystick, the default control scheme is left stick for throttle and yaw and right stick for pitch and roll:
<img src="img/controls.svg" width="300">
### Arming and disarming
To start the motors, you should **arm** the drone. To do that, move the left stick to the bottom right corner:
<img src="img/arming.svg" width="150">
After that, the motors **will start spinning** at low speed, indicating that the drone is armed and ready to fly.
When finished flying, **disarm** the drone, moving the left stick to the bottom left corner:
<img src="img/disarming.svg" width="150">
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
### Flight modes
Flight mode is changed using mode switch on the remote control or using the command line.
#### STAB
The default mode is *STAB*. In this mode, the drone stabilizes its attitude (orientation). The left stick controls throttle and yaw rate, the right stick controls pitch and roll angles.
> [!IMPORTANT]
> The drone doesn't stabilize its position, so slight drift is possible. The pilot should compensate it manually.
#### ACRO
In this mode, the pilot controls the angular rates. This control method is difficult to fly and mostly used in FPV racing.
#### RAW
*RAW* mode disables all the stabilization, and the pilot inputs are mixed directly to the motors. The IMU sensor is not involved. This mode is intended for testing and demonstration purposes only, and basically the drone **cannot fly in this mode**.
#### AUTO
In this mode, the pilot inputs are ignored (except the mode switch, if configured). The drone can be controlled using [pyflix](../tools/pyflix/) Python library, or by modifying the firmware to implement the needed autonomous behavior.
If the pilot moves the control sticks, the drone will switch back to *STAB* mode.
## Flight log
After the flight, you can download the flight log for analysis wirelessly. Use the following for that:
```bash
make log
```
See more details about log analysis in the [log analysis](log.md) article.

View File

@@ -4,107 +4,7 @@ This page contains user-built drones based on the Flix project. Publish your pro
---
Author: [goldarte](https://t.me/goldarte).<br>
<img src="img/user/goldarte/1.jpg" height=150> <img src="img/user/goldarte/2.jpg" height=150>
**Flight video:**
<a href="https://drive.google.com/file/d/1nQtFjEcGGLx-l4xkL5ko9ZpOTVU-WDjL/view?usp=sharing"><img height=200 src="img/user/goldarte/video.jpg"></a>
---
## School 548 course
Special course on quadcopter design and engineering took place in october-november 2025 in School 548, Moscow. The course included UAV control theory, electronics, drone assembly and setup practice, using the Flix project.
<img height=200 src="img/user/school548/1.jpg"> <img height=200 src="img/user/school548/2.jpg"> <img height=200 src="img/user/school548/3.jpg">
STL files and other materials: see [here](https://drive.google.com/drive/folders/1wTUzj087LjKQQl3Lz5CjHCuobxoykhyp?usp=share_link).
### Selected works
Author: [KiraFlux](https://t.me/@kiraflux_0XC0000005).<br>
Description: **custom ESPNOW remote control** was implemented, modified firmware to support ESPNOW protocol.<br>
Telegram posts: [1](https://t.me/opensourcequadcopter/106), [2](https://t.me/opensourcequadcopter/114).<br>
Modified Flix firmware: https://github.com/KiraFlux/flix/tree/klyax.<br>
Remote control project: https://github.com/KiraFlux/ESP32-DJC.<br>
Drone design: https://github.com/KiraFlux/Klyax.<br>
<img src="img/user/school548/kiraflux1.jpg" height=150> <img src="img/user/school548/kiraflux2.jpg" height=150>
**ESPNOW remote control demonstration**:
<img height=200 src="img/user/school548/kiraflux-video.jpg"><a href="https://drive.google.com/file/d/1soHDAeHQWnm97Y4dg4nWevJuMiTdJJXW/view?usp=sharing"></a>
Author: [tolyan4krut](https://t.me/tolyan4krut).<br>
Description: the first drone based on ESP32-S3-CAM board **with a camera**, implementing Wi-Fi video streaming. Runs HTTP server and HTTP video stream.<br>
Modified Flix firmware: https://github.com/CatRey/Flix-Camera-Streaming.<br>
[Telegram post](https://t.me/opensourcequadcopter/117).
<img src="img/user/school548/tolyan4krut.jpg" height=150>
**Video streaming and flight demonstration**:
<a href="https://drive.google.com/file/d/1KuOBsujLsk7q8FoqKD8u7uoq4ptS5onp/view?usp=sharing"><img height=200 src="img/user/school548/tolyan4krut-video.jpg"></a>
Author: [Vlad Tolshinov](https://t.me/Vlad_Tolshinov).<br>
Description: custom frame with enlarged arm length, which provides very high flight stability, 65 mm props.
<img src="img/user/school548/vlad_tolshinov1.jpg" height=150> <img src="img/user/school548/vlad_tolshinov2.jpg" height=150>
**Flight video**:
<a href="https://drive.google.com/file/d/1zu00DZxhC7DJ9Z2mYjtxdNQqOOLAyYbp/view?usp=sharing"><img height=200 src="img/user/school548/vlad_tolshinov-video.jpg"></a>
---
## RoboCamp
Author: RoboCamp participants.<br>
Description: 3D-printed and wooden frames, ESP32 Mini, DC-DC buck-boost converters. BetaFPV LiteRadio 3 to control the drones via Wi-Fi connection.<br>
Features: altitude hold, obstacle avoidance, autonomous flight elements.<br>
Some of the designed model files: see [here](https://drive.google.com/drive/folders/18YHWGquKeIevzrMH4-OUT-zKXMETTEUu?usp=share_link).
RoboCamp took place in July 2025, Saint Petersburg, where 9 participants designed and built their own drones using the Flix project, and then modified the firmware to complete specific flight tasks.
See the detailed video about the event:
<a href="https://youtu.be/Wd3yaorjTx0"><img width=500 src="https://img.youtube.com/vi/Wd3yaorjTx0/sddefault.jpg"></a>
Built drones:
<img src="img/user/robocamp/1.jpg" width=500>
---
Author: chkroko.<br>
Description: the first Flix drone built with **brushless motors** (DShot interface).<br>
Features: SpeedyBee BLS 35A Mini V2 ESC, ESP32-S3 board, EMAX ECO 2 2207 1700kv motors, ICM20948V2 IMU, INA226 power monitor and Bluetooth gamepad for control.<br>
Patch for DShot ESC: https://github.com/Krokodilushka/flix/commit/568345a45ca7ed5b458a11a9d0a9f4c8a91e70ac.
**Flight video:**
<a href="https://drive.google.com/file/d/1GFRanASxKmXINi70fxS5RuzV3LJp7f3m/view?usp=share_link"><img height=300 src="img/user/chkroko-bldc/video.jpg"></a>
<img src="img/user/chkroko-bldc/1.jpg" height=150> <img src="img/user/chkroko-bldc/2.jpg" height=150> <img src="img/user/chkroko-bldc/3.jpg" height=150>
---
Author: chkroko.<br>
Modification: Control using Bluetooth with **Flydigi Vader 3** gamepad. Source code: https://github.com/Krokodilushka/flix/tree/dev.<br>
Features: ESP32-C3 SuperMini, BMP580 barometer, INA226 power monitor, IRLZ44N MOSFETs.<br>
Full description: https://telegra.ph/Flix-dron-06-13.
**Flight video:**
<a href="https://drive.google.com/file/d/1orVKA_-gsezDTns2Xt8xW1BCWPcyPitR/view?usp=sharing"><img height=300 src="img/user/chkroko/video.jpg"></a>
<img src="img/user/chkroko/1.jpg" height=150> <img src="img/user/chkroko/2.jpg" height=150>
---
Author: chkroko.<br>
Author: [@cryptokobans](https://t.me/cryptokobans).<br>
Features: ESP32-C3 SuperMini board, INA226 power monitor, IRLZ44N MOSFETs, MPU-6500 IMU.
**Flight video:**

View File

@@ -14,7 +14,7 @@ Flix version 0 (obsolete):
|Motor|8520 3.7V brushed motor (**shaft 0.8mm!**)|<img src="img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="img/prop.jpg" width=100>|4|
|Motor ESC|2.7A 1S Dual Way Micro Brush ESC|<img src="img/esc.jpg" width=100>|4|
|RC transmitter|KINGKONG TINY X8|<img src="img/kingkong.jpg" width=100>|1|
|RC transmitter|KINGKONG TINY X8|<img src="img/tx.jpg" width=100>|1|
|RC receiver|DF500 (SBUS)|<img src="img/rx.jpg" width=100>|1|
|~~SBUS inverter~~*||<img src="img/inv.jpg" width=100>|~~1~~|
|Battery|3.7 Li-Po 850 MaH 60C|||

View File

@@ -8,12 +8,9 @@
#include "util.h"
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern const int RAW, ACRO, STAB, AUTO;
extern float t, dt, loopRate;
extern uint16_t channels[16];
extern float controlTime;
extern int mode;
extern bool armed;
extern float loopRate, dt;
extern double t;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
const char* motd =
"\nWelcome to\n"
@@ -33,17 +30,12 @@ const char* motd =
"ps - show pitch/roll/yaw\n"
"psq - show attitude quaternion\n"
"imu - show IMU data\n"
"arm - arm the drone\n"
"disarm - disarm the drone\n"
"raw/stab/acro/auto - set mode\n"
"rc - show RC data\n"
"wifi - show Wi-Fi info\n"
"mot - show motor output\n"
"log [dump] - print log header [and data]\n"
"log - dump in-RAM log\n"
"cr - calibrate RC\n"
"ca - calibrate accel\n"
"mfr, mfl, mrr, mrl - test motor (remove props)\n"
"sys - show system info\n"
"reset - reset drone's state\n"
"reboot - reboot the drone\n";
@@ -60,30 +52,31 @@ void print(const char* format, ...) {
}
void pause(float duration) {
float start = t;
#if ARDUINO
double start = t;
while (t - start < duration) {
step();
handleInput();
#if WIFI_ENABLED
processMavlink();
#endif
delay(50);
}
#else
// Code above won't work in the simulation
delay(duration * 1000);
#endif
}
void doCommand(String str, bool echo = false) {
// parse command
String command, arg0, arg1;
splitString(str, command, arg0, arg1);
if (command.isEmpty()) return;
// echo command
if (echo) {
if (echo && !command.isEmpty()) {
print("> %s\n", str.c_str());
}
command.toLowerCase();
// execute command
if (command == "help" || command == "motd") {
print("%s\n", motd);
@@ -102,49 +95,33 @@ void doCommand(String str, bool echo = false) {
resetParameters();
} else if (command == "time") {
print("Time: %f\n", t);
print("Loop rate: %.0f\n", loopRate);
print("Loop rate: %f\n", loopRate);
print("dt: %f\n", dt);
} else if (command == "ps") {
Vector a = attitude.toEuler();
Vector a = attitude.toEulerZYX();
print("roll: %f pitch: %f yaw: %f\n", degrees(a.x), degrees(a.y), degrees(a.z));
} else if (command == "psq") {
print("qw: %f qx: %f qy: %f qz: %f\n", attitude.w, attitude.x, attitude.y, attitude.z);
print("qx: %f qy: %f qz: %f qw: %f\n", attitude.x, attitude.y, attitude.z, attitude.w);
} else if (command == "imu") {
printIMUInfo();
printIMUCalibration();
print("gyro: %f %f %f\n", rates.x, rates.y, rates.z);
print("acc: %f %f %f\n", acc.x, acc.y, acc.z);
printIMUCal();
print("rate: %f\n", loopRate);
print("landed: %d\n", landed);
} else if (command == "arm") {
armed = true;
} else if (command == "disarm") {
armed = false;
} else if (command == "raw") {
mode = RAW;
} else if (command == "stab") {
mode = STAB;
} else if (command == "acro") {
mode = ACRO;
} else if (command == "auto") {
mode = AUTO;
} else if (command == "rc") {
print("channels: ");
for (int i = 0; i < 16; i++) {
print("%u ", channels[i]);
}
print("\nroll: %g pitch: %g yaw: %g throttle: %g mode: %g\n",
controlRoll, controlPitch, controlYaw, controlThrottle, controlMode);
print("time: %.1f\n", controlTime);
print("mode: %s\n", getModeName());
print("armed: %d\n", armed);
} else if (command == "wifi") {
#if WIFI_ENABLED
printWiFiInfo();
#endif
print("Raw: throttle %d yaw %d pitch %d roll %d armed %d mode %d\n",
channels[throttleChannel], channels[yawChannel], channels[pitchChannel],
channels[rollChannel], channels[armedChannel], channels[modeChannel]);
print("Control: throttle %g yaw %g pitch %g roll %g armed %g mode %g\n",
controls[throttleChannel], controls[yawChannel], controls[pitchChannel],
controls[rollChannel], controls[armedChannel], controls[modeChannel]);
print("Mode: %s\n", getModeName());
} else if (command == "mot") {
print("front-right %g front-left %g rear-right %g rear-left %g\n",
print("Motors: front-right %g front-left %g rear-right %g rear-left %g\n",
motors[MOTOR_FRONT_RIGHT], motors[MOTOR_FRONT_LEFT], motors[MOTOR_REAR_RIGHT], motors[MOTOR_REAR_LEFT]);
} else if (command == "log") {
printLogHeader();
if (arg0 == "dump") printLogData();
dumpLog();
} else if (command == "cr") {
calibrateRC();
} else if (command == "ca") {
@@ -157,29 +134,12 @@ void doCommand(String str, bool echo = false) {
testMotor(MOTOR_REAR_RIGHT);
} else if (command == "mrl") {
testMotor(MOTOR_REAR_LEFT);
} else if (command == "sys") {
#ifdef ESP32
print("Chip: %s\n", ESP.getChipModel());
print("Temperature: %.1f °C\n", temperatureRead());
print("Free heap: %d\n", ESP.getFreeHeap());
// Print tasks table
print("Num Task Stack Prio Core CPU%%\n");
int taskCount = uxTaskGetNumberOfTasks();
TaskStatus_t *systemState = new TaskStatus_t[taskCount];
uint32_t totalRunTime;
uxTaskGetSystemState(systemState, taskCount, &totalRunTime);
for (int i = 0; i < taskCount; i++) {
String core = systemState[i].xCoreID == tskNO_AFFINITY ? "*" : String(systemState[i].xCoreID);
int cpuPercentage = systemState[i].ulRunTimeCounter / (totalRunTime / 100);
print("%-5d%-20s%-7d%-6d%-6s%d\n",systemState[i].xTaskNumber, systemState[i].pcTaskName,
systemState[i].usStackHighWaterMark, systemState[i].uxCurrentPriority, core, cpuPercentage);
}
delete[] systemState;
#endif
} else if (command == "reset") {
attitude = Quaternion();
} else if (command == "reboot") {
ESP.restart();
} else if (command == "") {
// do nothing
} else {
print("Invalid command: %s\n", command.c_str());
}

View File

@@ -21,7 +21,7 @@
#define YAWRATE_I 0.0
#define YAWRATE_D 0.0
#define YAWRATE_I_LIM 0.3
#define ROLL_P 6
#define ROLL_P 4.5
#define ROLL_I 0
#define ROLL_D 0
#define PITCH_P ROLL_P
@@ -32,10 +32,11 @@
#define ROLLRATE_MAX radians(360)
#define YAWRATE_MAX radians(300)
#define TILT_MAX radians(30)
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
const int RAW = 0, ACRO = 1, STAB = 2, AUTO = 3; // flight modes
int mode = STAB;
enum { MANUAL, ACRO, STAB, USER } mode = STAB;
enum { YAW, YAW_RATE } yawMode = YAW;
bool armed = false;
PID rollRatePID(ROLLRATE_P, ROLLRATE_I, ROLLRATE_D, ROLLRATE_I_LIM, RATES_D_LPF_ALPHA);
@@ -49,97 +50,111 @@ float tiltMax = TILT_MAX;
Quaternion attitudeTarget;
Vector ratesTarget;
Vector ratesExtra; // feedforward rates
Vector torqueTarget;
float thrustTarget;
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlMode;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
void control() {
interpretControls();
interpretRC();
failsafe();
controlAttitude();
controlRates();
controlTorque();
if (mode == STAB) {
controlAttitude();
controlRate();
controlTorque();
} else if (mode == ACRO) {
controlRate();
controlTorque();
} else if (mode == MANUAL) {
controlTorque();
}
}
void interpretControls() {
if (controlMode < 0.25) mode = STAB;
if (controlMode < 0.75) mode = STAB;
if (controlMode > 0.75) mode = STAB;
void interpretRC() {
armed = controls[throttleChannel] >= 0.05 &&
(controls[armedChannel] >= 0.5 || isnan(controls[armedChannel])); // assume armed if armed channel is not defined
if (mode == AUTO) return; // pilot is not effective in AUTO mode
if (controlThrottle < 0.05 && controlYaw > 0.95) armed = true; // arm gesture
if (controlThrottle < 0.05 && controlYaw < -0.95) armed = false; // disarm gesture
if (abs(controlYaw) < 0.1) controlYaw = 0; // yaw dead zone
thrustTarget = controlThrottle;
if (mode == STAB) {
float yawTarget = attitudeTarget.getYaw();
if (!armed || invalid(yawTarget) || controlYaw != 0) yawTarget = attitude.getYaw(); // reset yaw target
attitudeTarget = Quaternion::fromEuler(Vector(controlRoll * tiltMax, controlPitch * tiltMax, yawTarget));
ratesExtra = Vector(0, 0, -controlYaw * maxRate.z); // positive yaw stick means clockwise rotation in FLU
// NOTE: put ACRO or MANUAL modes there if you want to use them
if (controls[modeChannel] < 0.25) {
mode = STAB;
} else if (controls[modeChannel] < 0.75) {
mode = STAB;
} else {
mode = STAB;
}
thrustTarget = controls[throttleChannel];
if (mode == ACRO) {
attitudeTarget.invalidate(); // skip attitude control
ratesTarget.x = controlRoll * maxRate.x;
ratesTarget.y = controlPitch * maxRate.y;
ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU
yawMode = YAW_RATE;
ratesTarget.x = controls[rollChannel] * maxRate.x;
ratesTarget.y = controls[pitchChannel] * maxRate.y;
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
} else if (mode == STAB) {
yawMode = controls[yawChannel] == 0 ? YAW : YAW_RATE;
attitudeTarget = Quaternion::fromEulerZYX(Vector(
controls[rollChannel] * tiltMax,
controls[pitchChannel] * tiltMax,
attitudeTarget.getYaw()));
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
} else if (mode == MANUAL) {
// passthrough mode
yawMode = YAW_RATE;
torqueTarget = Vector(controls[rollChannel], controls[pitchChannel], -controls[yawChannel]) * 0.01;
}
if (mode == RAW) { // direct torque control
attitudeTarget.invalidate(); // skip attitude control
ratesTarget.invalidate(); // skip rate control
torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.1;
if (yawMode == YAW_RATE || !motorsActive()) {
// update yaw target as we don't have control over the yaw
attitudeTarget.setYaw(attitude.getYaw());
}
}
void controlAttitude() {
if (!armed || attitudeTarget.invalid() || thrustTarget < 0.1) return; // skip attitude control
if (!armed) {
rollPID.reset();
pitchPID.reset();
yawPID.reset();
return;
}
const Vector up(0, 0, 1);
Vector upActual = Quaternion::rotateVector(up, attitude);
Vector upTarget = Quaternion::rotateVector(up, attitudeTarget);
Vector upActual = attitude.rotateVector(up);
Vector upTarget = attitudeTarget.rotateVector(up);
Vector error = Vector::rotationVectorBetween(upTarget, upActual);
Vector error = Vector::angularRatesBetweenVectors(upTarget, upActual);
ratesTarget.x = rollPID.update(error.x) + ratesExtra.x;
ratesTarget.y = pitchPID.update(error.y) + ratesExtra.y;
ratesTarget.x = rollPID.update(error.x, dt);
ratesTarget.y = pitchPID.update(error.y, dt);
float yawError = wrapAngle(attitudeTarget.getYaw() - attitude.getYaw());
ratesTarget.z = yawPID.update(yawError) + ratesExtra.z;
if (yawMode == YAW) {
float yawError = wrapAngle(attitudeTarget.getYaw() - attitude.getYaw());
ratesTarget.z = yawPID.update(yawError, dt);
}
}
void controlRates() {
if (!armed || ratesTarget.invalid() || thrustTarget < 0.1) return; // skip rates control
void controlRate() {
if (!armed) {
rollRatePID.reset();
pitchRatePID.reset();
yawRatePID.reset();
return;
}
Vector error = ratesTarget - rates;
// Calculate desired torque, where 0 - no torque, 1 - maximum possible torque
torqueTarget.x = rollRatePID.update(error.x);
torqueTarget.y = pitchRatePID.update(error.y);
torqueTarget.z = yawRatePID.update(error.z);
torqueTarget.x = rollRatePID.update(error.x, dt);
torqueTarget.y = pitchRatePID.update(error.y, dt);
torqueTarget.z = yawRatePID.update(error.z, dt);
}
void controlTorque() {
if (!torqueTarget.valid()) return; // skip torque control
if (!armed) {
memset(motors, 0, sizeof(motors)); // stop motors if disarmed
return;
}
if (thrustTarget < 0.1) {
motors[0] = 0.1; // idle thrust
motors[1] = 0.1;
motors[2] = 0.1;
motors[3] = 0.1;
memset(motors, 0, sizeof(motors));
return;
}
@@ -156,10 +171,10 @@ void controlTorque() {
const char* getModeName() {
switch (mode) {
case RAW: return "RAW";
case MANUAL: return "MANUAL";
case ACRO: return "ACRO";
case STAB: return "STAB";
case AUTO: return "AUTO";
case USER: return "USER";
default: return "UNKNOWN";
}
}

View File

@@ -8,12 +8,10 @@
#include "lpf.h"
#include "util.h"
Vector rates; // estimated angular rates, rad/s
Quaternion attitude; // estimated attitude
bool landed;
#define WEIGHT_ACC 0.003
#define RATES_LFP_ALPHA 0.2 // cutoff frequency ~ 40 Hz
float accWeight = 0.003;
LowPassFilter<Vector> ratesFilter(0.2); // cutoff frequency ~ 40 Hz
LowPassFilter<Vector> ratesFilter(RATES_LFP_ALPHA);
void estimate() {
applyGyro();
@@ -25,7 +23,7 @@ void applyGyro() {
rates = ratesFilter.update(gyro);
// apply rates to attitude
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(rates * dt));
attitude = attitude.rotate(Quaternion::fromAngularRates(rates * dt));
}
void applyAcc() {
@@ -36,9 +34,9 @@ void applyAcc() {
if (!landed) return;
// calculate accelerometer correction
Vector up = Quaternion::rotateVector(Vector(0, 0, 1), attitude);
Vector correction = Vector::rotationVectorBetween(acc, up) * accWeight;
Vector up = attitude.rotateVector(Vector(0, 0, 1));
Vector correction = Vector::angularRatesBetweenVectors(acc, up) * WEIGHT_ACC;
// apply correction
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(correction));
attitude = attitude.rotate(Quaternion::fromAngularRates(correction));
}

41
flix/failsafe.ino Normal file
View File

@@ -0,0 +1,41 @@
// Copyright (c) 2024 Oleg Kalachev <okalachev@gmail.com>
// Repository: https://github.com/okalachev/flix
// Fail-safe functions
#define RC_LOSS_TIMEOUT 0.2
#define DESCEND_TIME 3.0 // time to descend from full throttle to zero
extern double controlsTime;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel;
void failsafe() {
armingFailsafe();
rcLossFailsafe();
}
// Prevent arming without zero throttle input
void armingFailsafe() {
static double zeroThrottleTime;
static double armingTime;
if (!armed) armingTime = t; // stores the last time when the drone was disarmed, therefore contains arming time
if (controlsTime > 0 && controls[throttleChannel] < 0.05) zeroThrottleTime = controlsTime;
if (armingTime - zeroThrottleTime > 0.1) armed = false; // prevent arming if there was no zero throttle for 0.1 sec
}
// RC loss failsafe
void rcLossFailsafe() {
if (t - controlsTime > RC_LOSS_TIMEOUT) {
descend();
}
}
// Smooth descend on RC lost
void descend() {
mode = STAB;
controls[rollChannel] = 0;
controls[pitchChannel] = 0;
controls[yawChannel] = 0;
controls[throttleChannel] -= dt / DESCEND_TIME;
if (controls[throttleChannel] < 0) controls[throttleChannel] = 0;
}

View File

@@ -7,19 +7,23 @@
#include "quaternion.h"
#include "util.h"
#define SERIAL_BAUDRATE 115200
#define WIFI_ENABLED 1
extern float t, dt;
extern float controlRoll, controlPitch, controlYaw, controlThrottle, controlMode;
extern Vector gyro, acc;
extern Vector rates;
extern Quaternion attitude;
extern bool landed;
extern float motors[4];
double t = NAN; // current step time, s
float dt; // time delta from previous step, s
int16_t channels[16]; // raw rc channels
float controls[16]; // normalized controls in range [-1..1] ([0..1] for throttle)
Vector gyro; // gyroscope data
Vector acc; // accelerometer data, m/s/s
Vector rates; // filtered angular rates, rad/s
Quaternion attitude; // estimated attitude
bool landed; // are we landed and stationary
float motors[4]; // normalized motors thrust in range [-1..1]
void setup() {
Serial.begin(115200);
print("Initializing flix\n");
Serial.begin(SERIAL_BAUDRATE);
print("Initializing flix");
disableBrownOut();
setupParameters();
setupLED();
@@ -31,7 +35,7 @@ void setup() {
setupIMU();
setupRC();
setLED(false);
print("Initializing complete\n");
print("Initializing complete");
}
void loop() {

View File

@@ -4,81 +4,82 @@
// Work with the IMU sensor
#include <SPI.h>
#include <FlixPeriph.h>
#include "vector.h"
#include <MPU9250.h>
#include "lpf.h"
#include "util.h"
MPU9250 imu(SPI);
Vector imuRotation(0, 0, -PI / 2); // imu orientation as Euler angles
MPU9250 IMU(SPI);
Vector gyro; // gyroscope output, rad/s
Vector gyroBias;
Vector acc; // accelerometer output, m/s/s
Vector accBias;
Vector gyroBias;
Vector accScale(1, 1, 1);
void setupIMU() {
print("Setup IMU\n");
imu.begin();
IMU.begin();
configureIMU();
}
void configureIMU() {
imu.setAccelRange(imu.ACCEL_RANGE_4G);
imu.setGyroRange(imu.GYRO_RANGE_2000DPS);
imu.setDLPF(imu.DLPF_MAX);
imu.setRate(imu.RATE_1KHZ_APPROX);
imu.setupInterrupt();
IMU.setAccelRange(IMU.ACCEL_RANGE_4G);
IMU.setGyroRange(IMU.GYRO_RANGE_2000DPS);
IMU.setDLPF(IMU.DLPF_MAX);
IMU.setRate(IMU.RATE_1KHZ_APPROX);
}
void readIMU() {
imu.waitForData();
imu.getGyro(gyro.x, gyro.y, gyro.z);
imu.getAccel(acc.x, acc.y, acc.z);
IMU.waitForData();
IMU.getGyro(gyro.x, gyro.y, gyro.z);
IMU.getAccel(acc.x, acc.y, acc.z);
calibrateGyroOnce();
// apply scale and bias
acc = (acc - accBias) / accScale;
gyro = gyro - gyroBias;
// rotate to body frame
Quaternion rotation = Quaternion::fromEuler(imuRotation);
acc = Quaternion::rotateVector(acc, rotation.inversed());
gyro = Quaternion::rotateVector(gyro, rotation.inversed());
// rotate
rotateIMU(acc);
rotateIMU(gyro);
}
void rotateIMU(Vector& data) {
// Rotate from LFD to FLU
// NOTE: In case of using other IMU orientation, change this line:
data = Vector(data.y, data.x, -data.z);
// Axes orientation for various boards: https://github.com/okalachev/flixperiph#imu-axes-orientation
}
void calibrateGyroOnce() {
static Delay landedDelay(2);
if (!landedDelay.update(landed)) return; // calibrate only if definitely stationary
static float landedTime = 0;
landedTime = landed ? landedTime + dt : 0;
if (landedTime < 2) return; // calibrate only if definitely stationary
static LowPassFilter<Vector> gyroBiasFilter(0.001);
gyroBias = gyroBiasFilter.update(gyro);
static LowPassFilter<Vector> gyroCalibrationFilter(0.001);
gyroBias = gyroCalibrationFilter.update(gyro);
}
void calibrateAccel() {
print("Calibrating accelerometer\n");
imu.setAccelRange(imu.ACCEL_RANGE_2G); // the most sensitive mode
IMU.setAccelRange(IMU.ACCEL_RANGE_2G); // the most sensitive mode
print("1/6 Place level [8 sec]\n");
print("Place level [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("2/6 Place nose up [8 sec]\n");
print("Place nose up [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("3/6 Place nose down [8 sec]\n");
print("Place nose down [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("4/6 Place on right side [8 sec]\n");
print("Place on right side [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("5/6 Place on left side [8 sec]\n");
print("Place on left side [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("6/6 Place upside down [8 sec]\n");
print("Place upside down [8 sec]\n");
pause(8);
calibrateAccelOnce();
printIMUCalibration();
printIMUCal();
print("✓ Calibration done!\n");
configureIMU();
}
@@ -91,9 +92,9 @@ void calibrateAccelOnce() {
// Compute the average of the accelerometer readings
acc = Vector(0, 0, 0);
for (int i = 0; i < samples; i++) {
imu.waitForData();
IMU.waitForData();
Vector sample;
imu.getAccel(sample.x, sample.y, sample.z);
IMU.getAccel(sample.x, sample.y, sample.z);
acc = acc + sample;
}
acc = acc / samples;
@@ -110,23 +111,14 @@ void calibrateAccelOnce() {
accBias = (accMax + accMin) / 2;
}
void printIMUCalibration() {
void printIMUCal() {
print("gyro bias: %f %f %f\n", gyroBias.x, gyroBias.y, gyroBias.z);
print("accel bias: %f %f %f\n", accBias.x, accBias.y, accBias.z);
print("accel scale: %f %f %f\n", accScale.x, accScale.y, accScale.z);
}
void printIMUInfo() {
imu.status() ? print("status: ERROR %d\n", imu.status()) : print("status: OK\n");
print("model: %s\n", imu.getModel());
print("who am I: 0x%02X\n", imu.whoAmI());
print("rate: %.0f\n", loopRate);
print("gyro: %f %f %f\n", rates.x, rates.y, rates.z);
print("acc: %f %f %f\n", acc.x, acc.y, acc.z);
imu.waitForData();
Vector rawGyro, rawAcc;
imu.getGyro(rawGyro.x, rawGyro.y, rawGyro.z);
imu.getAccel(rawAcc.x, rawAcc.y, rawAcc.z);
print("raw gyro: %f %f %f\n", rawGyro.x, rawGyro.y, rawGyro.z);
print("raw acc: %f %f %f\n", rawAcc.x, rawAcc.y, rawAcc.z);
IMU.status() ? print("status: ERROR %d\n", IMU.status()) : print("status: OK\n");
print("model: %s\n", IMU.getModel());
print("who am I: 0x%02X\n", IMU.whoAmI());
}

View File

@@ -4,12 +4,13 @@
// In-RAM logging
#include "vector.h"
#include "util.h"
#define LOG_RATE 100
#define LOG_DURATION 10
#define LOG_PERIOD 1.0 / LOG_RATE
#define LOG_SIZE LOG_DURATION * LOG_RATE
float tFloat;
Vector attitudeEuler;
Vector attitudeTargetEuler;
@@ -19,7 +20,7 @@ struct LogEntry {
};
LogEntry logEntries[] = {
{"t", &t},
{"t", &tFloat},
{"rates.x", &rates.x},
{"rates.y", &rates.y},
{"rates.z", &rates.z},
@@ -39,15 +40,17 @@ const int logColumns = sizeof(logEntries) / sizeof(logEntries[0]);
float logBuffer[LOG_SIZE][logColumns];
void prepareLogData() {
attitudeEuler = attitude.toEuler();
attitudeTargetEuler = attitudeTarget.toEuler();
tFloat = t;
attitudeEuler = attitude.toEulerZYX();
attitudeTargetEuler = attitudeTarget.toEulerZYX();
}
void logData() {
if (!armed) return;
static int logPointer = 0;
static Rate period(LOG_RATE);
if (!period) return;
static double logTime = 0;
if (t - logTime < LOG_PERIOD) return;
logTime = t;
prepareLogData();
@@ -61,13 +64,12 @@ void logData() {
}
}
void printLogHeader() {
void dumpLog() {
// Print header
for (int i = 0; i < logColumns; i++) {
print("%s%s", logEntries[i].name, i < logColumns - 1 ? "," : "\n");
}
}
void printLogData() {
// Print data
for (int i = 0; i < LOG_SIZE; i++) {
if (logBuffer[i][0] == 0) continue; // skip empty records
for (int j = 0; j < logColumns; j++) {

View File

@@ -22,8 +22,7 @@ public:
output = input;
initialized = true;
}
return output += alpha * (input - output);
return output = output * (1 - alpha) + input * alpha;
}
void setCutOffFrequency(float cutOffFreq, float dt) {

View File

@@ -6,16 +6,17 @@
#if WIFI_ENABLED
#include <MAVLink.h>
#include "util.h"
#define SYSTEM_ID 1
#define MAVLINK_RATE_SLOW 1
#define MAVLINK_RATE_FAST 10
#define PERIOD_SLOW 1.0
#define PERIOD_FAST 0.1
#define MAVLINK_CONTROL_SCALE 0.7f
#define MAVLINK_CONTROL_YAW_DEAD_ZONE 0.1f
extern float controlTime;
float mavlinkControlScale = 0.7;
bool mavlinkConnected = false;
String mavlinkPrintBuffer;
extern double controlsTime;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
void processMavlink() {
sendMavlink();
@@ -23,46 +24,48 @@ void processMavlink() {
}
void sendMavlink() {
sendMavlinkPrint();
static double lastSlow = 0;
static double lastFast = 0;
mavlink_message_t msg;
uint32_t time = t * 1000;
static Rate slow(MAVLINK_RATE_SLOW), fast(MAVLINK_RATE_FAST);
if (t - lastSlow >= PERIOD_SLOW) {
lastSlow = t;
if (slow) {
mavlink_msg_heartbeat_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, MAV_TYPE_QUADROTOR, MAV_AUTOPILOT_GENERIC,
(armed ? MAV_MODE_FLAG_SAFETY_ARMED : 0) |
((mode == STAB) ? MAV_MODE_FLAG_STABILIZE_ENABLED : 0) |
((mode == AUTO) ? MAV_MODE_FLAG_AUTO_ENABLED : MAV_MODE_FLAG_MANUAL_INPUT_ENABLED),
mode, MAV_STATE_STANDBY);
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED | (armed * MAV_MODE_FLAG_SAFETY_ARMED) | ((mode == STAB) * MAV_MODE_FLAG_STABILIZE_ENABLED),
0, MAV_STATE_STANDBY);
sendMessage(&msg);
if (!mavlinkConnected) return; // send only heartbeat until connected
mavlink_msg_extended_sys_state_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
MAV_VTOL_STATE_UNDEFINED, landed ? MAV_LANDED_STATE_ON_GROUND : MAV_LANDED_STATE_IN_AIR);
sendMessage(&msg);
}
if (fast && mavlinkConnected) {
if (t - lastFast >= PERIOD_FAST) {
lastFast = t;
const float zeroQuat[] = {0, 0, 0, 0};
Quaternion att = fluToFrd(attitude); // MAVLink uses FRD coordinate system
mavlink_msg_attitude_quaternion_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
time, attitude.w, attitude.x, -attitude.y, -attitude.z, rates.x, -rates.y, -rates.z, zeroQuat); // convert to frd
time, att.w, att.x, att.y, att.z, rates.x, rates.y, rates.z, zeroQuat);
sendMessage(&msg);
mavlink_msg_rc_channels_raw_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlTime * 1000, 0,
channels[0], channels[1], channels[2], channels[3], channels[4], channels[5], channels[6], channels[7], UINT8_MAX);
if (channels[0] != 0) sendMessage(&msg); // 0 means no RC input
mavlink_msg_rc_channels_scaled_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlsTime * 1000, 0,
controls[0] * 10000, controls[1] * 10000, controls[2] * 10000,
controls[3] * 10000, controls[4] * 10000, controls[5] * 10000,
INT16_MAX, INT16_MAX, UINT8_MAX);
sendMessage(&msg);
float controls[8];
memcpy(controls, motors, sizeof(motors));
mavlink_msg_actuator_control_target_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time, 0, controls);
float actuator[32];
memcpy(actuator, motors, sizeof(motors));
mavlink_msg_actuator_output_status_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time, 4, actuator);
sendMessage(&msg);
mavlink_msg_scaled_imu_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time,
acc.x * 1000, -acc.y * 1000, -acc.z * 1000, // convert to frd
gyro.x * 1000, -gyro.y * 1000, -gyro.z * 1000,
acc.x * 1000, acc.y * 1000, acc.z * 1000,
gyro.x * 1000, gyro.y * 1000, gyro.z * 1000,
0, 0, 0, 0);
sendMessage(&msg);
}
@@ -77,7 +80,6 @@ void sendMessage(const void *msg) {
void receiveMavlink() {
uint8_t buf[MAVLINK_MAX_PACKET_LEN];
int len = receiveWiFi(buf, MAVLINK_MAX_PACKET_LEN);
if (len) mavlinkConnected = true;
// New packet, parse it
mavlink_message_t msg;
@@ -97,12 +99,15 @@ void handleMavlink(const void *_msg) {
mavlink_msg_manual_control_decode(&msg, &m);
if (m.target && m.target != SYSTEM_ID) return; // 0 is broadcast
controlThrottle = m.z / 1000.0f;
controlPitch = m.x / 1000.0f;
controlRoll = m.y / 1000.0f;
controlYaw = m.r / 1000.0f;
controlMode = NAN;
controlTime = t;
controls[throttleChannel] = m.z / 1000.0f;
controls[pitchChannel] = m.x / 1000.0f * mavlinkControlScale;
controls[rollChannel] = m.y / 1000.0f * mavlinkControlScale;
controls[yawChannel] = m.r / 1000.0f * mavlinkControlScale;
controls[modeChannel] = 1; // STAB mode
controls[armedChannel] = 1; // armed
controlsTime = t;
if (abs(controls[yawChannel]) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controls[yawChannel] = 0;
}
if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_LIST) {
@@ -170,109 +175,43 @@ void handleMavlink(const void *_msg) {
doCommand(data, true);
}
if (msg.msgid == MAVLINK_MSG_ID_SET_ATTITUDE_TARGET) {
if (mode != AUTO) return;
mavlink_set_attitude_target_t m;
mavlink_msg_set_attitude_target_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
// copy attitude, rates and thrust targets
ratesTarget.x = m.body_roll_rate;
ratesTarget.y = -m.body_pitch_rate; // convert to flu
ratesTarget.z = -m.body_yaw_rate;
attitudeTarget.w = m.q[0];
attitudeTarget.x = m.q[1];
attitudeTarget.y = -m.q[2];
attitudeTarget.z = -m.q[3];
thrustTarget = m.thrust;
ratesExtra = Vector(0, 0, 0);
if (m.type_mask & ATTITUDE_TARGET_TYPEMASK_ATTITUDE_IGNORE) attitudeTarget.invalidate();
armed = m.thrust > 0;
}
if (msg.msgid == MAVLINK_MSG_ID_SET_ACTUATOR_CONTROL_TARGET) {
if (mode != AUTO) return;
mavlink_set_actuator_control_target_t m;
mavlink_msg_set_actuator_control_target_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
attitudeTarget.invalidate();
ratesTarget.invalidate();
torqueTarget.invalidate();
memcpy(motors, m.controls, sizeof(motors)); // copy motor thrusts
armed = motors[0] > 0 || motors[1] > 0 || motors[2] > 0 || motors[3] > 0;
}
if (msg.msgid == MAVLINK_MSG_ID_LOG_REQUEST_DATA) {
mavlink_log_request_data_t m;
mavlink_msg_log_request_data_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
// Send all log records
for (int i = 0; i < sizeof(logBuffer) / sizeof(logBuffer[0]); i++) {
mavlink_message_t msg;
mavlink_msg_log_data_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, 0, i,
sizeof(logBuffer[0]), (uint8_t *)logBuffer[i]);
sendMessage(&msg);
}
}
// Handle commands
if (msg.msgid == MAVLINK_MSG_ID_COMMAND_LONG) {
mavlink_command_long_t m;
mavlink_msg_command_long_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
mavlink_message_t ack;
mavlink_message_t response;
bool accepted = false;
if (m.command == MAV_CMD_REQUEST_MESSAGE && m.param1 == MAVLINK_MSG_ID_AUTOPILOT_VERSION) {
accepted = true;
mavlink_msg_command_ack_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &ack, m.command, MAV_RESULT_ACCEPTED, UINT8_MAX, 0, msg.sysid, msg.compid);
sendMessage(&ack);
mavlink_msg_autopilot_version_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &response,
MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT | MAV_PROTOCOL_CAPABILITY_MAVLINK2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0);
sendMessage(&response);
} else {
mavlink_msg_command_ack_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &ack, m.command, MAV_RESULT_UNSUPPORTED, UINT8_MAX, 0, msg.sysid, msg.compid);
sendMessage(&ack);
}
if (m.command == MAV_CMD_COMPONENT_ARM_DISARM) {
if (m.param1 && controlThrottle > 0.05) return; // don't arm if throttle is not low
accepted = true;
armed = m.param1 == 1;
}
if (m.command == MAV_CMD_DO_SET_MODE) {
if (m.param2 < 0 || m.param2 > AUTO) return; // incorrect mode
accepted = true;
mode = m.param2;
}
// send command ack
mavlink_message_t ack;
mavlink_msg_command_ack_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &ack, m.command, accepted ? MAV_RESULT_ACCEPTED : MAV_RESULT_UNSUPPORTED, UINT8_MAX, 0, msg.sysid, msg.compid);
sendMessage(&ack);
}
}
// Send shell output to GCS
void mavlinkPrint(const char* str) {
mavlinkPrintBuffer += str;
}
void sendMavlinkPrint() {
// Send mavlink print data in chunks
const char *str = mavlinkPrintBuffer.c_str();
// Send data in chunks
for (int i = 0; i < strlen(str); i += MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN) {
char data[MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN + 1];
strlcpy(data, str + i, sizeof(data));
mavlink_message_t msg;
mavlink_msg_serial_control_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
SERIAL_CONTROL_DEV_SHELL,
i + MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN < strlen(str) ? SERIAL_CONTROL_FLAG_MULTI : 0, // more chunks to go
0, 0, strlen(data), (uint8_t *)data, 0, 0);
SERIAL_CONTROL_DEV_SHELL, 0, 0, 0, strlen(data), (uint8_t *)data, 0, 0);
sendMessage(&msg);
}
mavlinkPrintBuffer.clear();
}
// Convert Forward-Left-Up to Forward-Right-Down quaternion
inline Quaternion fluToFrd(const Quaternion &q) {
return Quaternion(q.w, q.x, -q.y, -q.z);
}
#endif

View File

@@ -11,14 +11,13 @@
#define MOTOR_2_PIN 14 // front right
#define MOTOR_3_PIN 15 // front left
#define PWM_FREQUENCY 78000
#define PWM_RESOLUTION 10
#define PWM_FREQUENCY 1000
#define PWM_RESOLUTION 12
#define PWM_STOP 0
#define PWM_MIN 0
#define PWM_MAX 1000000 / PWM_FREQUENCY
float motors[4]; // normalized motor thrusts in range [0..1]
// Motors array indexes:
const int MOTOR_REAR_LEFT = 0;
const int MOTOR_REAR_RIGHT = 1;
const int MOTOR_FRONT_RIGHT = 2;
@@ -39,9 +38,9 @@ void setupMotors() {
int getDutyCycle(float value) {
value = constrain(value, 0, 1);
float pwm = mapf(value, 0, 1, PWM_MIN, PWM_MAX);
float pwm = mapff(value, 0, 1, PWM_MIN, PWM_MAX);
if (value == 0) pwm = PWM_STOP;
float duty = mapf(pwm, 0, 1000000 / PWM_FREQUENCY, 0, (1 << PWM_RESOLUTION) - 1);
float duty = mapff(pwm, 0, 1000000 / PWM_FREQUENCY, 0, (1 << PWM_RESOLUTION) - 1);
return round(duty);
}
@@ -56,7 +55,7 @@ bool motorsActive() {
return motors[0] != 0 || motors[1] != 0 || motors[2] != 0 || motors[3] != 0;
}
void testMotor(int n) {
void testMotor(uint8_t n) {
print("Testing motor %d\n", n);
motors[n] = 1;
delay(50); // ESP32 may need to wait until the end of the current cycle to change duty https://github.com/espressif/arduino-esp32/issues/5306

View File

@@ -4,66 +4,59 @@
// Parameters storage in flash memory
#include <Preferences.h>
#include "util.h"
extern float channelZero[16];
extern float channelNeutral[16];
extern float channelMax[16];
extern float rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern float mavlinkControlScale;
Preferences storage;
struct Parameter {
const char *name; // max length is 15 (Preferences key limit)
const char *name;
float *variable;
float value; // cache
};
Parameter parameters[] = {
// control
{"CTL_R_RATE_P", &rollRatePID.p},
{"CTL_R_RATE_I", &rollRatePID.i},
{"CTL_R_RATE_D", &rollRatePID.d},
{"CTL_R_RATE_WU", &rollRatePID.windup},
{"CTL_P_RATE_P", &pitchRatePID.p},
{"CTL_P_RATE_I", &pitchRatePID.i},
{"CTL_P_RATE_D", &pitchRatePID.d},
{"CTL_P_RATE_WU", &pitchRatePID.windup},
{"CTL_Y_RATE_P", &yawRatePID.p},
{"CTL_Y_RATE_I", &yawRatePID.i},
{"CTL_Y_RATE_D", &yawRatePID.d},
{"CTL_R_P", &rollPID.p},
{"CTL_R_I", &rollPID.i},
{"CTL_R_D", &rollPID.d},
{"CTL_P_P", &pitchPID.p},
{"CTL_P_I", &pitchPID.i},
{"CTL_P_D", &pitchPID.d},
{"CTL_Y_P", &yawPID.p},
{"CTL_P_RATE_MAX", &maxRate.y},
{"CTL_R_RATE_MAX", &maxRate.x},
{"CTL_Y_RATE_MAX", &maxRate.z},
{"CTL_TILT_MAX", &tiltMax},
{"ROLLRATE_P", &rollRatePID.p},
{"ROLLRATE_I", &rollRatePID.i},
{"ROLLRATE_D", &rollRatePID.d},
{"ROLLRATE_I_LIM", &rollRatePID.windup},
{"PITCHRATE_P", &pitchRatePID.p},
{"PITCHRATE_I", &pitchRatePID.i},
{"PITCHRATE_D", &pitchRatePID.d},
{"PITCHRATE_I_LIM", &pitchRatePID.windup},
{"YAWRATE_P", &yawRatePID.p},
{"YAWRATE_I", &yawRatePID.i},
{"YAWRATE_D", &yawRatePID.d},
{"ROLL_P", &rollPID.p},
{"ROLL_I", &rollPID.i},
{"ROLL_D", &rollPID.d},
{"PITCH_P", &pitchPID.p},
{"PITCH_I", &pitchPID.i},
{"PITCH_D", &pitchPID.d},
{"YAW_P", &yawPID.p},
{"PITCHRATE_MAX", &maxRate.y},
{"ROLLRATE_MAX", &maxRate.x},
{"YAWRATE_MAX", &maxRate.z},
{"TILT_MAX", &tiltMax},
// imu
{"IMU_ROT_ROLL", &imuRotation.x},
{"IMU_ROT_PITCH", &imuRotation.y},
{"IMU_ROT_YAW", &imuRotation.z},
{"IMU_ACC_BIAS_X", &accBias.x},
{"IMU_ACC_BIAS_Y", &accBias.y},
{"IMU_ACC_BIAS_Z", &accBias.z},
{"IMU_ACC_SCALE_X", &accScale.x},
{"IMU_ACC_SCALE_Y", &accScale.y},
{"IMU_ACC_SCALE_Z", &accScale.z},
// estimate
{"EST_ACC_WEIGHT", &accWeight},
{"EST_RATES_LPF_A", &ratesFilter.alpha},
{"ACC_BIAS_X", &accBias.x},
{"ACC_BIAS_Y", &accBias.y},
{"ACC_BIAS_Z", &accBias.z},
{"ACC_SCALE_X", &accScale.x},
{"ACC_SCALE_Y", &accScale.y},
{"ACC_SCALE_Z", &accScale.z},
// rc
{"RC_ZERO_0", &channelZero[0]},
{"RC_ZERO_1", &channelZero[1]},
{"RC_ZERO_2", &channelZero[2]},
{"RC_ZERO_3", &channelZero[3]},
{"RC_ZERO_4", &channelZero[4]},
{"RC_ZERO_5", &channelZero[5]},
{"RC_ZERO_6", &channelZero[6]},
{"RC_ZERO_7", &channelZero[7]},
{"RC_NEUTRAL_0", &channelNeutral[0]},
{"RC_NEUTRAL_1", &channelNeutral[1]},
{"RC_NEUTRAL_2", &channelNeutral[2]},
{"RC_NEUTRAL_3", &channelNeutral[3]},
{"RC_NEUTRAL_4", &channelNeutral[4]},
{"RC_NEUTRAL_5", &channelNeutral[5]},
{"RC_NEUTRAL_6", &channelNeutral[6]},
{"RC_NEUTRAL_7", &channelNeutral[7]},
{"RC_MAX_0", &channelMax[0]},
{"RC_MAX_1", &channelMax[1]},
{"RC_MAX_2", &channelMax[2]},
@@ -72,11 +65,10 @@ Parameter parameters[] = {
{"RC_MAX_5", &channelMax[5]},
{"RC_MAX_6", &channelMax[6]},
{"RC_MAX_7", &channelMax[7]},
{"RC_ROLL", &rollChannel},
{"RC_PITCH", &pitchChannel},
{"RC_THROTTLE", &throttleChannel},
{"RC_YAW", &yawChannel},
{"RC_MODE", &modeChannel},
#if WIFI_ENABLED
// MAVLink
{"MAV_CTRL_SCALE", &mavlinkControlScale},
#endif
};
void setupParameters() {
@@ -125,9 +117,10 @@ bool setParameter(const char *name, const float value) {
}
void syncParameters() {
static Rate rate(1);
if (!rate) return; // sync once per second
static double lastSync = 0;
if (t - lastSync < 1) return; // sync once per second
if (motorsActive()) return; // don't use flash while flying, it may cause a delay
lastSync = t;
for (auto &parameter : parameters) {
if (parameter.value == *parameter.variable) continue;

View File

@@ -9,44 +9,40 @@
class PID {
public:
float p, i, d;
float windup;
float dtMax;
float p = 0;
float i = 0;
float d = 0;
float windup = 0;
float derivative = 0;
float integral = 0;
LowPassFilter<float> lpf; // low pass filter for derivative term
PID(float p, float i, float d, float windup = 0, float dAlpha = 1, float dtMax = 0.1) :
p(p), i(i), d(d), windup(windup), lpf(dAlpha), dtMax(dtMax) {}
PID(float p, float i, float d, float windup = 0, float dAlpha = 1) : p(p), i(i), d(d), windup(windup), lpf(dAlpha) {};
float update(float error) {
float dt = t - prevTime;
float update(float error, float dt) {
integral += error * dt;
if (dt > 0 && dt < dtMax) {
integral += error * dt;
derivative = lpf.update((error - prevError) / dt); // compute derivative and apply low-pass filter
} else {
integral = 0;
derivative = 0;
if (isfinite(prevError) && dt > 0) {
// calculate derivative if both dt and prevError are valid
derivative = (error - prevError) / dt;
// apply low pass filter to derivative
derivative = lpf.update(derivative);
}
prevError = error;
prevTime = t;
return p * error + constrain(i * integral, -windup, windup) + d * derivative; // PID
}
void reset() {
prevError = NAN;
prevTime = NAN;
integral = 0;
derivative = 0;
lpf.reset();
}
private:
float prevError = NAN;
float prevTime = NAN;
};

View File

@@ -15,22 +15,22 @@ public:
Quaternion(float w, float x, float y, float z): w(w), x(x), y(y), z(z) {};
static Quaternion fromAxisAngle(const Vector& axis, float angle) {
static Quaternion fromAxisAngle(float a, float b, float c, float angle) {
float halfAngle = angle * 0.5;
float sin2 = sin(halfAngle);
float cos2 = cos(halfAngle);
float sinNorm = sin2 / axis.norm();
return Quaternion(cos2, axis.x * sinNorm, axis.y * sinNorm, axis.z * sinNorm);
float sinNorm = sin2 / sqrt(a * a + b * b + c * c);
return Quaternion(cos2, a * sinNorm, b * sinNorm, c * sinNorm);
}
static Quaternion fromRotationVector(const Vector& rotation) {
if (rotation.zero()) {
static Quaternion fromAngularRates(const Vector& rates) {
if (rates.zero()) {
return Quaternion();
}
return Quaternion::fromAxisAngle(rotation, rotation.norm());
return Quaternion::fromAxisAngle(rates.x, rates.y, rates.z, rates.norm());
}
static Quaternion fromEuler(const Vector& euler) {
static Quaternion fromEulerZYX(const Vector& euler) {
float cx = cos(euler.x / 2);
float cy = cos(euler.y / 2);
float cz = cos(euler.z / 2);
@@ -45,7 +45,7 @@ public:
cx * cy * sz - sx * sy * cz);
}
static Quaternion fromBetweenVectors(const Vector& u, const Vector& v) {
static Quaternion fromBetweenVectors(Vector u, Vector v) {
float dot = u.x * v.x + u.y * v.y + u.z * v.z;
float w1 = u.y * v.z - u.z * v.y;
float w2 = u.z * v.x - u.x * v.z;
@@ -60,54 +60,14 @@ public:
return ret;
}
bool finite() const {
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
}
bool valid() const {
return finite();
}
bool invalid() const {
return !valid();
}
void invalidate() {
w = NAN;
x = NAN;
y = NAN;
z = NAN;
}
float norm() const {
return sqrt(w * w + x * x + y * y + z * z);
}
void normalize() {
float n = norm();
w /= n;
x /= n;
y /= n;
z /= n;
}
void toAxisAngle(Vector& axis, float& angle) const {
void toAxisAngle(float& a, float& b, float& c, float& angle) const {
angle = acos(w) * 2;
axis.x = x / sin(angle / 2);
axis.y = y / sin(angle / 2);
axis.z = z / sin(angle / 2);
a = x / sin(angle / 2);
b = y / sin(angle / 2);
c = z / sin(angle / 2);
}
Vector toRotationVector() const {
if (w == 1 && x == 0 && y == 0 && z == 0) return Vector(0, 0, 0); // neutral quaternion
float angle;
Vector axis;
toAxisAngle(axis, angle);
return angle * axis;
}
Vector toEuler() const {
Vector toEulerZYX() const {
// https://github.com/ros/geometry2/blob/589caf083cae9d8fae7effdb910454b4681b9ec1/tf2/include/tf2/impl/utils.h#L87
Vector euler;
float sqx = x * x;
@@ -132,31 +92,38 @@ public:
return euler;
}
float getRoll() const {
return toEuler().x;
}
float getPitch() const {
return toEuler().y;
}
float getYaw() const {
return toEuler().z;
}
void setRoll(float roll) {
Vector euler = toEuler();
*this = Quaternion::fromEuler(Vector(roll, euler.y, euler.z));
}
void setPitch(float pitch) {
Vector euler = toEuler();
*this = Quaternion::fromEuler(Vector(euler.x, pitch, euler.z));
// https://github.com/ros/geometry2/blob/589caf083cae9d8fae7effdb910454b4681b9ec1/tf2/include/tf2/impl/utils.h#L122
float yaw;
float sqx = x * x;
float sqy = y * y;
float sqz = z * z;
float sqw = w * w;
double sarg = -2 * (x * z - w * y) / (sqx + sqy + sqz + sqw);
if (sarg <= -0.99999) {
yaw = -2 * atan2(y, x);
} else if (sarg >= 0.99999) {
yaw = 2 * atan2(y, x);
} else {
yaw = atan2(2 * (x * y + w * z), sqw + sqx - sqy - sqz);
}
return yaw;
}
void setYaw(float yaw) {
Vector euler = toEuler();
*this = Quaternion::fromEuler(Vector(euler.x, euler.y, yaw));
// TODO: optimize?
Vector euler = toEulerZYX();
euler.z = yaw;
(*this) = Quaternion::fromEulerZYX(euler);
}
Quaternion& operator *= (const Quaternion& q) {
Quaternion ret(
w * q.w - x * q.x - y * q.y - z * q.z,
w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y + y * q.w + z * q.x - x * q.z,
w * q.z + z * q.w + x * q.y - y * q.x);
return (*this = ret);
}
Quaternion operator * (const Quaternion& q) const {
@@ -167,14 +134,6 @@ public:
w * q.z + z * q.w + x * q.y - y * q.x);
}
bool operator == (const Quaternion& q) const {
return w == q.w && x == q.x && y == q.y && z == q.z;
}
bool operator != (const Quaternion& q) const {
return !(*this == q);
}
Quaternion inversed() const {
float normSqInv = 1 / (w * w + x * x + y * y + z * z);
return Quaternion(
@@ -184,6 +143,18 @@ public:
-z * normSqInv);
}
float norm() const {
return sqrt(w * w + x * x + y * y + z * z);
}
void normalize() {
float n = norm();
w /= n;
x /= n;
y /= n;
z /= n;
}
Vector conjugate(const Vector& v) const {
Quaternion qv(0, v.x, v.y, v.z);
Quaternion res = (*this) * qv * inversed();
@@ -196,27 +167,22 @@ public:
return Vector(res.x, res.y, res.z);
}
// Rotate vector by quaternion
Vector rotateVector(const Vector& v) const {
return conjugateInversed(v);
}
// Rotate quaternion by quaternion
static Quaternion rotate(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
Quaternion rotated = a * b;
Quaternion rotate(const Quaternion& q, const bool normalize = true) const {
Quaternion rotated = (*this) * q;
if (normalize) {
rotated.normalize();
}
return rotated;
}
// Rotate vector by quaternion
static Vector rotateVector(const Vector& v, const Quaternion& q) {
return q.conjugateInversed(v);
}
// Quaternion between two quaternions a and b
static Quaternion between(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
Quaternion q = a * b.inversed();
if (normalize) {
q.normalize();
}
return q;
bool finite() const {
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
}
size_t printTo(Print& p) const {

View File

@@ -6,94 +6,64 @@
#include <SBUS.h>
#include "util.h"
SBUS rc(Serial2);
SBUS RC(Serial2); // NOTE: Use RC(Serial2, 16, 17) if you use the old UART2 pins
uint16_t channels[16]; // raw rc channels
float channelZero[16]; // calibration zero values
float channelMax[16]; // calibration max values
// RC channels mapping:
int rollChannel = 0;
int pitchChannel = 1;
int throttleChannel = 2;
int yawChannel = 3;
int armedChannel = 4;
int modeChannel = 5;
float controlRoll, controlPitch, controlYaw, controlThrottle; // pilot's inputs, range [-1, 1]
float controlMode = NAN; //
float controlTime; // time of the last controls update (0 when no RC)
// Channels mapping (using float to store in parameters):
float rollChannel = NAN, pitchChannel = NAN, throttleChannel = NAN, yawChannel = NAN, modeChannel = NAN;
double controlsTime; // time of the last controls update
float channelNeutral[16] = {NAN}; // first element NAN means not calibrated
float channelMax[16];
void setupRC() {
print("Setup RC\n");
rc.begin();
RC.begin();
}
bool readRC() {
if (rc.read()) {
SBUSData data = rc.data();
for (int i = 0; i < 16; i++) channels[i] = data.ch[i]; // copy channels data
if (RC.read()) {
SBUSData data = RC.data();
memcpy(channels, data.ch, sizeof(channels)); // copy channels data
normalizeRC();
controlTime = t;
controlsTime = t;
return true;
}
return false;
}
void normalizeRC() {
float controls[16];
for (int i = 0; i < 16; i++) {
controls[i] = mapf(channels[i], channelZero[i], channelMax[i], 0, 1);
if (isnan(channelNeutral[0])) return; // skip if not calibrated
for (uint8_t i = 0; i < 16; i++) {
controls[i] = mapf(channels[i], channelNeutral[i], channelMax[i], 0, 1);
}
// Update control values
controlRoll = rollChannel >= 0 ? controls[(int)rollChannel] : 0;
controlPitch = pitchChannel >= 0 ? controls[(int)pitchChannel] : 0;
controlYaw = yawChannel >= 0 ? controls[(int)yawChannel] : 0;
controlThrottle = throttleChannel >= 0 ? controls[(int)throttleChannel] : 0;
controlMode = modeChannel >= 0 ? controls[(int)modeChannel] : NAN; // mode switch should not have affect if not set
}
void calibrateRC() {
uint16_t zero[16];
uint16_t center[16];
uint16_t max[16];
print("1/8 Calibrating RC: put all switches to default positions [3 sec]\n");
pause(3);
calibrateRCChannel(NULL, zero, zero, "2/8 Move sticks [3 sec]\n... ...\n... .o.\n.o. ...\n");
calibrateRCChannel(NULL, center, center, "3/8 Move sticks [3 sec]\n... ...\n.o. .o.\n... ...\n");
calibrateRCChannel(&throttleChannel, zero, max, "4/8 Move sticks [3 sec]\n.o. ...\n... .o.\n... ...\n");
calibrateRCChannel(&yawChannel, center, max, "5/8 Move sticks [3 sec]\n... ...\n..o .o.\n... ...\n");
calibrateRCChannel(&pitchChannel, zero, max, "6/8 Move sticks [3 sec]\n... .o.\n... ...\n.o. ...\n");
calibrateRCChannel(&rollChannel, zero, max, "7/8 Move sticks [3 sec]\n... ...\n... ..o\n.o. ...\n");
calibrateRCChannel(&modeChannel, zero, max, "8/8 Put mode switch to max [3 sec]\n");
printRCCalibration();
}
void calibrateRCChannel(float *channel, uint16_t in[16], uint16_t out[16], const char *str) {
print("%s", str);
pause(3);
for (int i = 0; i < 30; i++) readRC(); // try update 30 times max
memcpy(out, channels, sizeof(channels));
if (channel == NULL) return; // no channel to calibrate
// Find channel that changed the most between in and out
int ch = -1, diff = 0;
print("Calibrate RC: move all sticks to maximum positions [4 sec]\n");
print("··o ··o\n··· ···\n··· ···\n");
pause(4);
while (!readRC());
for (int i = 0; i < 16; i++) {
if (abs(out[i] - in[i]) > diff) {
ch = i;
diff = abs(out[i] - in[i]);
}
channelMax[i] = channels[i];
}
if (ch >= 0 && diff > 10) { // difference threshold is 10
*channel = ch;
channelZero[ch] = in[ch];
channelMax[ch] = out[ch];
} else {
*channel = NAN;
print("Calibrate RC: move all sticks to neutral positions [4 sec]\n");
print("··· ···\n··· ·o·\n·o· ···\n");
pause(4);
while (!readRC());
for (int i = 0; i < 16; i++) {
channelNeutral[i] = channels[i];
}
printRCCal();
}
void printRCCalibration() {
print("Control Ch Zero Max\n");
print("Roll %-7g%-7g%-7g\n", rollChannel, rollChannel >= 0 ? channelZero[(int)rollChannel] : NAN, rollChannel >= 0 ? channelMax[(int)rollChannel] : NAN);
print("Pitch %-7g%-7g%-7g\n", pitchChannel, pitchChannel >= 0 ? channelZero[(int)pitchChannel] : NAN, pitchChannel >= 0 ? channelMax[(int)pitchChannel] : NAN);
print("Yaw %-7g%-7g%-7g\n", yawChannel, yawChannel >= 0 ? channelZero[(int)yawChannel] : NAN, yawChannel >= 0 ? channelMax[(int)yawChannel] : NAN);
print("Throttle %-7g%-7g%-7g\n", throttleChannel, throttleChannel >= 0 ? channelZero[(int)throttleChannel] : NAN, throttleChannel >= 0 ? channelMax[(int)throttleChannel] : NAN);
print("Mode %-7g%-7g%-7g\n", modeChannel, modeChannel >= 0 ? channelZero[(int)modeChannel] : NAN, modeChannel >= 0 ? channelMax[(int)modeChannel] : NAN);
void printRCCal() {
for (int i = 0; i < sizeof(channelNeutral) / sizeof(channelNeutral[0]); i++) print("%g ", channelNeutral[i]);
print("\n");
for (int i = 0; i < sizeof(channelMax) / sizeof(channelMax[0]); i++) print("%g ", channelMax[i]);
print("\n");
}

View File

@@ -1,48 +0,0 @@
// Copyright (c) 2024 Oleg Kalachev <okalachev@gmail.com>
// Repository: https://github.com/okalachev/flix
// Fail-safe functions
#define RC_LOSS_TIMEOUT 1
#define DESCEND_TIME 10
extern float controlTime;
extern float controlRoll, controlPitch, controlThrottle, controlYaw;
void failsafe() {
rcLossFailsafe();
autoFailsafe();
}
// RC loss failsafe
void rcLossFailsafe() {
if (controlTime == 0) return; // no RC at all
if (!armed) return;
if (t - controlTime > RC_LOSS_TIMEOUT) {
descend();
}
}
// Smooth descend on RC lost
void descend() {
mode = AUTO;
attitudeTarget = Quaternion();
thrustTarget -= dt / DESCEND_TIME;
if (thrustTarget < 0) {
thrustTarget = 0;
armed = false;
}
}
// Allow pilot to interrupt automatic flight
void autoFailsafe() {
static float roll, pitch, yaw, throttle;
if (roll != controlRoll || pitch != controlPitch || yaw != controlYaw || abs(throttle - controlThrottle) > 0.05) {
// controls changed
if (mode == AUTO) mode = STAB; // regain control by the pilot
}
roll = controlRoll;
pitch = controlPitch;
yaw = controlYaw;
throttle = controlThrottle;
}

View File

@@ -3,12 +3,10 @@
// Time related functions
float t = NAN; // current time, s
float dt; // time delta with the previous step, s
float loopRate; // Hz
void step() {
float now = micros() / 1000000.0;
double now = micros() / 1000000.0;
dt = now - t;
t = now;
@@ -20,7 +18,7 @@ void step() {
}
void computeLoopRate() {
static float windowStart = 0;
static double windowStart = 0;
static uint32_t rate = 0;
rate++;
if (t - windowStart >= 1) { // 1 second window

View File

@@ -10,20 +10,15 @@
#include <soc/rtc_cntl_reg.h>
const float ONE_G = 9.80665;
extern float t;
float mapf(float x, float in_min, float in_max, float out_min, float out_max) {
float mapf(long x, long in_min, long in_max, float out_min, float out_max) {
return (float)(x - in_min) * (out_max - out_min) / (float)(in_max - in_min) + out_min;
}
float mapff(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
bool invalid(float x) {
return !isfinite(x);
}
bool valid(float x) {
return isfinite(x);
}
// Wrap angle to [-PI, PI)
float wrapAngle(float angle) {
angle = fmodf(angle, 2 * PI);
@@ -49,37 +44,3 @@ void splitString(String& str, String& token0, String& token1, String& token2) {
token1 = strtok(NULL, " "); // String(NULL) creates empty string
token2 = strtok(NULL, "");
}
// Rate limiter
class Rate {
public:
float rate;
float last = 0;
Rate(float rate) : rate(rate) {}
operator bool() {
if (t - last >= 1 / rate) {
last = t;
return true;
}
return false;
}
};
// Delay filter for boolean signals - ensures the signal is on for at least 'delay' seconds
class Delay {
public:
float delay;
float start = NAN;
Delay(float delay) : delay(delay) {}
bool update(bool on) {
if (!on) {
start = NAN;
return false;
} else if (isnan(start)) {
start = t;
}
return t - start >= delay;
}
};

View File

@@ -13,32 +13,14 @@ public:
Vector(float x, float y, float z): x(x), y(y), z(z) {};
bool zero() const {
return x == 0 && y == 0 && z == 0;
}
bool finite() const {
return isfinite(x) && isfinite(y) && isfinite(z);
}
bool valid() const {
return finite();
}
bool invalid() const {
return !valid();
}
void invalidate() {
x = NAN;
y = NAN;
z = NAN;
}
float norm() const {
return sqrt(x * x + y * y + z * z);
}
bool zero() const {
return x == 0 && y == 0 && z == 0;
}
void normalize() {
float n = norm();
x /= n;
@@ -46,10 +28,6 @@ public:
z /= n;
}
Vector operator + (const float b) const {
return Vector(x + b, y + b, z + b);
}
Vector operator * (const float b) const {
return Vector(x * b, y * b, z * b);
}
@@ -66,14 +44,6 @@ public:
return Vector(x - b.x, y - b.y, z - b.z);
}
Vector& operator += (const Vector& b) {
return *this = *this + b;
}
Vector& operator -= (const Vector& b) {
return *this = *this - b;
}
// Element-wise multiplication
Vector operator * (const Vector& b) const {
return Vector(x * b.x, y * b.y, z * b.z);
@@ -92,6 +62,10 @@ public:
return !(*this == b);
}
bool finite() const {
return isfinite(x) && isfinite(y) && isfinite(z);
}
static float dot(const Vector& a, const Vector& b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
@@ -100,18 +74,18 @@ public:
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
static float angleBetween(const Vector& a, const Vector& b) {
static float angleBetweenVectors(const Vector& a, const Vector& b) {
return acos(constrain(dot(a, b) / (a.norm() * b.norm()), -1, 1));
}
static Vector rotationVectorBetween(const Vector& a, const Vector& b) {
static Vector angularRatesBetweenVectors(const Vector& a, const Vector& b) {
Vector direction = cross(a, b);
if (direction.zero()) {
// vectors are opposite, return any perpendicular vector
return cross(a, Vector(1, 0, 0));
}
direction.normalize();
float angle = angleBetween(a, b);
float angle = angleBetweenVectors(a, b);
return direction * angle;
}
@@ -122,6 +96,3 @@ public:
p.print(z, 15);
}
};
Vector operator * (const float a, const Vector& b) { return b * a; }
Vector operator + (const float a, const Vector& b) { return b + a; }

View File

@@ -11,9 +11,8 @@
#define WIFI_SSID "flix"
#define WIFI_PASSWORD "flixwifi"
#define WIFI_UDP_IP "255.255.255.255"
#define WIFI_UDP_PORT 14550
#define WIFI_UDP_REMOTE_PORT 14550
#define WIFI_UDP_REMOTE_ADDR "255.255.255.255"
WiFiUDP udp;
@@ -25,7 +24,7 @@ void setupWiFi() {
void sendWiFi(const uint8_t *buf, int len) {
if (WiFi.softAPIP() == IPAddress(0, 0, 0, 0) && WiFi.status() != WL_CONNECTED) return;
udp.beginPacket(udp.remoteIP() ? udp.remoteIP() : WIFI_UDP_REMOTE_ADDR, WIFI_UDP_REMOTE_PORT);
udp.beginPacket(WIFI_UDP_IP, WIFI_UDP_PORT);
udp.write(buf, len);
udp.endPacket();
}
@@ -35,15 +34,4 @@ int receiveWiFi(uint8_t *buf, int len) {
return udp.read(buf, len);
}
void printWiFiInfo() {
print("MAC: %s\n", WiFi.softAPmacAddress().c_str());
print("SSID: %s\n", WiFi.softAPSSID().c_str());
print("Password: %s\n", WIFI_PASSWORD);
print("Clients: %d\n", WiFi.softAPgetStationNum());
print("Status: %d\n", WiFi.status());
print("IP: %s\n", WiFi.softAPIP().toString().c_str());
print("Remote IP: %s\n", udp.remoteIP().toString().c_str());
print("MAVLink connected: %d\n", mavlinkConnected);
}
#endif

View File

@@ -11,8 +11,6 @@
#include <stdio.h>
#include <unistd.h>
#include <sys/poll.h>
#include <chrono>
#include <thread>
#define PI 3.1415926535897932384626433832795
#define DEG_TO_RAD 0.017453292519943295769236907684886
@@ -54,10 +52,6 @@ public:
this->erase(0, this->find_first_not_of(" \t\n\r"));
this->erase(this->find_last_not_of(" \t\n\r") + 1);
}
void toLowerCase() {
std::transform(this->begin(), this->end(), this->begin(),
[](unsigned char c) { return std::tolower(c); });
}
};
class Print;
@@ -156,11 +150,8 @@ public:
void restart() { Serial.println("Ignore reboot in simulation"); }
} ESP;
unsigned long __delayTime = 0;
void delay(uint32_t ms) {
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
__delayTime += ms * 1000;
}
bool ledcAttach(uint8_t pin, uint32_t freq, uint8_t resolution) { return true; }
@@ -170,5 +161,5 @@ unsigned long __micros;
unsigned long __resetTime = 0;
unsigned long micros() {
return __micros + __resetTime + __delayTime; // keep the time monotonic
return __micros + __resetTime; // keep the time monotonic
}

Some files were not shown because too many files have changed in this diff Show More