1 Commits

Author SHA1 Message Date
Oleg Kalachev
073c860b90 Calibrate gyro continuously when landed and stationary 2024-12-24 22:19:54 +03:00
135 changed files with 1460 additions and 8032 deletions

View File

@@ -5,7 +5,6 @@ on:
branches: [ '*' ]
pull_request:
branches: [ master ]
workflow_dispatch:
jobs:
build_linux:
@@ -15,16 +14,7 @@ jobs:
- name: Install Arduino CLI
run: curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=/usr/local/bin sh
- name: Build firmware
env:
ARDUINO_SKETCH_ALWAYS_EXPORT_BINARIES: 1
run: make
- name: Upload binaries
uses: actions/upload-artifact@v4
with:
name: firmware-binary
path: flix/build
- name: Build firmware without Wi-Fi
run: sed -i 's/^#define WIFI_ENABLED 1$/#define WIFI_ENABLED 0/' flix/flix.ino && make
- name: Check c_cpp_properties.json
run: tools/check_c_cpp_properties.py
@@ -53,7 +43,7 @@ jobs:
run: python3 tools/check_c_cpp_properties.py
build_simulator:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- name: Install Arduino CLI
uses: arduino/setup-arduino-cli@v1.1.1
@@ -64,29 +54,28 @@ jobs:
run: sudo apt-get install libsdl2-dev
- name: Build simulator
run: make build_simulator
- uses: actions/upload-artifact@v4
- uses: actions/upload-artifact@v3
with:
name: gazebo-plugin-binary
path: gazebo/build/*.so
retention-days: 1
build_simulator_macos:
runs-on: macos-latest
if: github.event_name == 'workflow_dispatch'
steps:
- name: Install Arduino CLI
run: brew install arduino-cli
- uses: actions/checkout@v4
- name: Clean up python binaries # Workaround for https://github.com/actions/setup-python/issues/577
run: |
rm -f /usr/local/bin/2to3*
rm -f /usr/local/bin/idle3*
rm -f /usr/local/bin/pydoc3*
rm -f /usr/local/bin/python3*
rm -f /usr/local/bin/python3*-config
- name: Install Gazebo
run: brew update && brew tap osrf/simulation && brew install gazebo11
- name: Install SDL2
run: brew install sdl2
- name: Build simulator
run: make build_simulator
# build_simulator_macos:
# runs-on: macos-latest
# steps:
# - name: Install Arduino CLI
# run: brew install arduino-cli
# - uses: actions/checkout@v4
# - name: Clean up python binaries # Workaround for https://github.com/actions/setup-python/issues/577
# run: |
# rm -f /usr/local/bin/2to3*
# rm -f /usr/local/bin/idle3*
# rm -f /usr/local/bin/pydoc3*
# rm -f /usr/local/bin/python3*
# rm -f /usr/local/bin/python3*-config
# - name: Install Gazebo
# run: brew update && brew tap osrf/simulation && brew install gazebo11
# - name: Install SDL2
# run: brew install sdl2
# - name: Build simulator
# run: make build_simulator

View File

@@ -19,21 +19,6 @@ jobs:
echo -e "t,x,y,z\n0,1,2,3\n1,4,5,6" > log.csv
./csv_to_ulog log.csv
test $(stat -c %s log.ulg) -eq 196
pyflix:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install Python build tools
run: pip install build
- name: Build pyflix
run: python3 -m build tools
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: pyflix
path: |
tools/dist/pyflix-*.tar.gz
tools/dist/pyflix-*.whl
python_tools:
runs-on: ubuntu-latest
steps:

2
.gitignore vendored
View File

@@ -2,8 +2,6 @@
*.elf
build/
tools/log/
tools/dist/
*.egg-info/
.dependencies
.vscode/*
!.vscode/settings.json

View File

@@ -34,7 +34,6 @@
"MPU-6050",
"MPU-9250",
"GY-91",
"GY-521",
"ICM-20948",
"Linux",
"Windows",

View File

@@ -5,18 +5,18 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/.arduino15/packages/esp32/hardware/esp32/3.0.7/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.0.7/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.0.7/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.1-632e0c2a/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.1-632e0c2a/esp32/dio_qspi/include",
"~/Arduino/libraries/**",
"/usr/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.0.7/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.0.7/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@@ -28,10 +28,11 @@
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/util.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2302/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@@ -51,19 +52,19 @@
"name": "Mac",
"includePath": [
"${workspaceFolder}/flix",
// "${workspaceFolder}/gazebo",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"${workspaceFolder}/gazebo",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.0.7/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.0.7/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.0.7/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.1-632e0c2a/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.1-632e0c2a/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**",
"/opt/homebrew/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.0.7/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.0.7/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/flix.ino",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
@@ -75,10 +76,11 @@
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/util.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2302/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@@ -100,17 +102,17 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.0.7/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.0.7/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.0.7/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.1-632e0c2a/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.1-632e0c2a/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.0.7/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.0.7/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@@ -122,10 +124,11 @@
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/util.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++.exe",
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2302/bin/xtensa-esp32-elf-g++.exe",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [

View File

@@ -2,6 +2,7 @@
// See https://go.microsoft.com/fwlink/?LinkId=827846 to learn about workspace recommendations.
"recommendations": [
"ms-vscode.cpptools",
"twxs.cmake",
"ms-vscode.cmake-tools",
"ms-python.python"
],

View File

@@ -13,10 +13,10 @@ monitor:
dependencies .dependencies:
arduino-cli core update-index --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.2.0 --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.0.7 --config-file arduino-cli.yaml
arduino-cli lib update-index
arduino-cli lib install "FlixPeriph"
arduino-cli lib install "MAVLink"@2.0.16
arduino-cli lib install "MAVLink"@2.0.12
touch .dependencies
gazebo/build cmake: gazebo/CMakeLists.txt

103
README.md
View File

@@ -4,93 +4,76 @@
<table>
<tr>
<td align=center><strong>Version 1.1</strong> (3D-printed frame)</td>
<td align=center><strong>Version 1</strong> (3D-printed frame)</td>
<td align=center><strong>Version 0</strong></td>
</tr>
<tr>
<td><img src="docs/img/flix1.1.jpg" width=500 alt="Flix quadcopter"></td>
<td><img src="docs/img/flix1.jpg" width=500 alt="Flix quadcopter"></td>
<td><img src="docs/img/flix.jpg" width=500 alt="Flix quadcopter"></td>
</tr>
</table>
## Features
* Dedicated for education and research.
* Made from general-purpose components.
* Simple and clean source code in Arduino (<2k lines firmware).
* Control using USB gamepad, remote control or smartphone.
* Wi-Fi and MAVLink support.
* Wireless command line interface and analyzing.
* Precise simulation with Gazebo.
* Python library.
* Textbook on flight control theory and practice ([in development](https://quadcopter.dev)).
* *Position control (using external camera) and autonomous flights¹*.
* Simple and clean Arduino based source code.
* Acro and Stabilized flight using remote control.
* Precise simulation using Gazebo.
* [In-RAM logging](docs/log.md).
* Command line interface through USB port.
* Wi-Fi support.
* MAVLink support.
* Control using mobile phone (with QGroundControl app).
* Completely 3D-printed frame.
* Textbook for students on writing a flight controller ([in development](https://quadcopter.dev)).
* *Position control and autonomous flights using external camera¹*.
* [Building and running instructions](docs/build.md).
*¹ — planned.*
## It actually flies
See detailed demo video: https://youtu.be/hT46CZ1CgC4.
<a href="https://youtu.be/hT46CZ1CgC4"><img width=500 src="https://i3.ytimg.com/vi/hT46CZ1CgC4/maxresdefault.jpg"></a>
Version 0 demo video: https://youtu.be/8GzzIQ3C6DQ.
See detailed demo video (for version 0): https://youtu.be/8GzzIQ3C6DQ.
<a href="https://youtu.be/8GzzIQ3C6DQ"><img width=500 src="https://i3.ytimg.com/vi/8GzzIQ3C6DQ/maxresdefault.jpg"></a>
Usage in education (RoboCamp): https://youtu.be/Wd3yaorjTx0.
Version 1 test flight: https://t.me/opensourcequadcopter/42.
<a href="https://youtu.be/Wd3yaorjTx0"><img width=500 src="https://i3.ytimg.com/vi/Wd3yaorjTx0/sddefault.jpg"></a>
See the [user builds gallery](docs/user.md):
<a href="docs/user.md"><img src="docs/img/user/user.jpg" width=500></a>
<a href="https://t.me/opensourcequadcopter/42"><img width=500 src="docs/img/flight-video.jpg"></a>
## Simulation
The simulator is implemented using Gazebo and runs the original Arduino code:
<img src="docs/img/simulator1.png" width=500 alt="Flix simulator">
<img src="docs/img/simulator.png" width=500 alt="Flix simulator">
## Articles
See [instructions on running the simulation](docs/build.md).
* [Assembly instructions](docs/assembly.md).
* [Usage: build, setup and flight](docs/usage.md).
* [Troubleshooting](docs/troubleshooting.md).
* [Firmware architecture overview](docs/firmware.md).
* [Python library tutorial](tools/pyflix/README.md).
* [Log analysis](docs/log.md).
* [User builds gallery](docs/user.md).
## Components
## Components (version 1)
|Type|Part|Image|Quantity|
|-|-|:-:|:-:|
|Microcontroller board|ESP32 Mini|<img src="docs/img/esp32.jpg" width=100>|1|
|IMU (and barometer²) board|GY91, MPU-9265 (or other MPU9250/MPU6500 board)<br>ICM20948V2 (ICM20948)³<br>GY-521 (MPU-6050)³⁻¹|<img src="docs/img/gy-91.jpg" width=90 align=center><br><img src="docs/img/icm-20948.jpg" width=100><br><img src="docs/img/gy-521.jpg" width=100>|1|
|<span style="background:yellow">Buck-boost converter</span> (recommended)|To be determined, output 5V or 3.3V, see [user-contributed schematics](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612179508274&cot=14)|<img src="docs/img/buck-boost.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (shaft 0.8mm).<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).|<img src="docs/img/motor.jpeg" width=100>|4|
|IMU (and barometer²) board|GY91 (or other MPU9250/MPU6500 board), ICM20948³|<img src="docs/img/gy-91.jpg" width=90 align=center><img src="docs/img/icm-20948.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (**shaft 0.8mm!**)|<img src="docs/img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="docs/img/prop.jpg" width=100>|4|
|MOSFET (transistor)|100N03A or [analog](https://t.me/opensourcequadcopter/33)|<img src="docs/img/100n03a.jpg" width=100>|4|
|Pull-down resistor|10 kΩ|<img src="docs/img/resistor10k.jpg" width=100>|4|
|3.7V Li-Po battery|LW 952540 (or any compatible by the size)|<img src="docs/img/battery.jpg" width=100>|1|
|Battery connector cable|MX2.0 2P female|<img src="docs/img/mx.png" width=100>|1|
|Li-Po Battery charger|Any|<img src="docs/img/charger.jpg" width=100>|1|
|Screws for IMU board mounting|M3x5|<img src="docs/img/screw-m3.jpg" width=100>|2|
|Screws for frame assembly|M1.4x5|<img src="docs/img/screw-m1.4.jpg" height=30 align=center>|4|
|Frame main part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)<br>Recommended settings: layer 0.2 mm, line 0.4 mm, infill 100%.|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame bottom part|3D printed⁴:<br>[`flix-frame.stl`](docs/assets/flix-frame.stl) [`flix-frame.step`](docs/assets/flix-frame.step)|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame top part|3D printed:<br>[`esp32-holder.stl`](docs/assets/esp32-holder.stl) [`esp32-holder.step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|Washer for IMU board mounting|3D printed:<br>[`washer-m3.stl`](docs/assets/washer-m3.stl) [`washer-m3.step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|Controller (recommended)|CC2500 transmitter, like BetaFPV LiteRadio CC2500 (RC receiver/Wi-Fi).<br>Two-sticks gamepad (Wi-Fi only) — see [recommended gamepads](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/setup_view/joystick.html#supported-joysticks).<br>Other⁵|<img src="docs/img/betafpv.jpg" width=100><img src="docs/img/logitech.jpg" width=80>|1|
|Washer for IMU board mounting|3D printed:<br>[`washer-m3.stl`](docs/assets/washer-m3.stl) [`washer-m3.step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|1|
|*RC transmitter (optional)*|*KINGKONG TINY X8 or other⁵*|<img src="docs/img/tx.jpg" width=100>|1|
|*RC receiver (optional)*|*DF500 or other⁵*|<img src="docs/img/rx.jpg" width=100>|1|
|Wires|28 AWG recommended|<img src="docs/img/wire-28awg.jpg" width=100>||
|Tape, double-sided tape||||
*² — barometer is not used for now.*<br>
*³ — change `MPU9250` to `ICM20948` in `imu.ino` file if using ICM-20948 board.*<br>
*³⁻¹ — MPU-6050 supports I²C interface only (not recommended). To use it change IMU declaration to `MPU6050 IMU(Wire)`.*<br>
*⁴ — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
*⁵ — you also may use any transmitter-receiver pair with SBUS interface.*
*⁵ — you may use any transmitter-receiver pair with SBUS interface.*
Tools required for assembly:
@@ -102,21 +85,17 @@ Tools required for assembly:
Feel free to modify the design and or code, and create your own improved versions of Flix! Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
## Schematics
## Schematics (version 1)
### Simplified connection diagram
<img src="docs/img/schematics1.svg" width=700 alt="Flix version 1 schematics">
*(Dashed is optional).*
<img src="docs/img/schematics1.svg" width=800 alt="Flix version 1 schematics">
Motor connection scheme:
<img src="docs/img/mosfet-connection.png" height=400 alt="MOSFET connection scheme">
You can see a user-contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14) of the drone.
See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
Complete diagram is Work-in-Progress.
### Notes
@@ -137,10 +116,10 @@ See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
|Motor|Position|Direction|Wires|GPIO|
|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|Blue & Red|GPIO15 (*TD0*)|
|Motor 0|Rear left|Counter-clockwise|Black & White|GPIO12|
|Motor 1|Rear right|Clockwise|Blue & Red|GPIO13|
|Motor 2|Front right|Counter-clockwise|Black & White|GPIO14|
|Motor 3|Front left|Clockwise|Blue & Red|GPIO15|
Counter-clockwise motors have black and white wires and clockwise motors have blue and red wires.
@@ -149,8 +128,8 @@ See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
|Receiver pin|ESP32 pin|
|-|-|
|GND|GND|
|VIN|VCC (or 3.3V depending on the receiver)|
|Signal (TX)|GPIO4⁶|
|VIN|VC (or 3.3V depending on the receiver)|
|Signal|GPIO4⁶|
*⁶ — UART2 RX pin was [changed](https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html#id14) to GPIO4 in Arduino ESP32 core 3.0.*
@@ -164,6 +143,10 @@ In case of using other IMU orientation, modify the `rotateIMU` function in the `
See [FlixPeriph documentation](https://github.com/okalachev/flixperiph?tab=readme-ov-file#imu-axes-orientation) to learn axis orientation of other IMU boards.
## Version 0
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
## Materials
Subscribe to the Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
@@ -171,11 +154,3 @@ Subscribe to the Telegram channel on developing the drone and the flight control
Join the official Telegram chat: https://t.me/opensourcequadcopterchat.
Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
## Disclaimer
This is a fun DIY project, and I hope you find it interesting and useful. However, it's not easy to assemble and set up, and it's provided "as is" without any warranties. Theres no guarantee that it will work perfectly — or even work at all.
⚠️ The author is not responsible for any damage, injury, or loss resulting from the use of this project. Use at your own risk!

View File

@@ -1,5 +1,3 @@
board_manager:
additional_urls:
- https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
network:
connection_timeout: 1h

View File

@@ -1,29 +0,0 @@
# Brief assembly guide
Soldered components ([schematics variant](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14)):
<img src="img/assembly/1.jpg" width=600>
<br>Use double-sided tape to attach ESP32 to the top frame part (ESP32 holder):
<img src="img/assembly/2.jpg" width=600>
<br>Use two washers to screw the IMU board to the frame:
<img src="img/assembly/3.jpg" width=600>
<br>Screw the IMU with M3x5 screws as shown:
<img src="img/assembly/4.jpg" width=600>
<br>Install the motors, attach MOSFETs to the frame using tape:
<img src="img/assembly/5.jpg" width=600>
<br>Screw the ESP32 holder with M1.4x5 screws to the frame:
<img src="img/assembly/6.jpg" width=600>
<br>Assembled drone:
<img src="img/assembly/7.jpg" width=600>

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -53,12 +53,6 @@ footer a.telegram, footer a.github {
border: 1px solid #c9c9c9;
}
@media (max-width: 600px) {
.MathJax_Display {
overflow-x: auto;
}
}
.firmware {
position: relative;
margin: 20px 0;

View File

@@ -10,7 +10,7 @@ description = "Учебник по разработке полетного ко
build-dir = "build"
[output.html]
additional-css = ["book.css", "zoom.css", "rotation.css"]
additional-css = ["book.css", "zoom.css"]
additional-js = ["zoom.js", "js.js"]
edit-url-template = "https://github.com/okalachev/flix/blob/master/docs/{path}?plain=1"
mathjax-support = true

View File

@@ -3,7 +3,7 @@
> [!IMPORTANT]
> Flix — это проект по созданию открытого квадрокоптера на базе ESP32 с нуля и учебника по разработке полетных контроллеров.
<img src="img/flix1.1.jpg" class="border" width=500 alt="Flix quadcopter">
<img src="img/flix1.jpg" class="border" width=500 alt="Flix quadcopter">
<p class="github">GitHub:&nbsp;<a href="https://github.com/okalachev/flix">github.com/okalachev/flix</a>.</p>

View File

@@ -11,9 +11,8 @@
* [Светодиод]()
* [Моторы]()
* [Радиоуправление]()
* [Вектор, кватернион](geometry.md)
* [Гироскоп](gyro.md)
* [Акселерометр]()
* [Акселерометр]()s
* [Оценка состояния]()
* [PID-регулятор]()
* [Режим ACRO]()

View File

@@ -1,10 +1,8 @@
# Архитектура прошивки
Прошивка Flix это обычный скетч Arduino, реализованный в однопоточном стиле. Код инициализации находится в функции `setup()`, а главный цикл — в функции `loop()`. Скетч состоит из нескольких файлов, каждый из которых отвечает за определенную подсистему.
<img src="img/dataflow.svg" width=800 alt="Firmware dataflow diagram">
<img src="img/dataflow.svg" width=600 alt="Firmware dataflow diagram">
Главный цикл `loop()` работает на частоте 1000 Гц. Передача данных между подсистемами происходит через глобальные переменные:
Главный цикл работает на частоте 1000 Гц. Передача данных между подсистемами происходит через глобальные переменные:
* `t` *(float)* — текущее время шага, *с*.
* `dt` *(float)* — дельта времени между текущим и предыдущим шагами, *с*.
@@ -12,39 +10,23 @@
* `acc` *(Vector)* — данные с акселерометра, *м/с<sup>2</sup>*.
* `rates` *(Vector)* — отфильтрованные угловые скорости, *рад/с*.
* `attitude` *(Quaternion)* — оценка ориентации (положения) дрона.
* `controlRoll`, `controlPitch`, ... *(float[])* — команды управления от пилота, в диапазоне [-1, 1].
* `motors` *(float[])* — выходные сигналы на моторы, в диапазоне [0, 1].
* `controls` *(float[])* — пользовательские управляющие сигналы с пульта, нормализованные в диапазоне [-1, 1].
* `motors` *(float[])* — выходные сигналы на моторы, нормализованные в диапазоне [-1, 1] (возможно вращение в обратную сторону).
## Исходные файлы
Исходные файлы прошивки находятся в директории `flix`. Основные файлы:
Исходные файлы прошивки находятся в директории `flix`. Ключевые файлы:
* [`flix.ino`](https://github.com/okalachev/flix/blob/master/flix/flix.ino) — основной файл Arduino-скетча. Определяет некоторые глобальные переменные и главный цикл.
* [`imu.ino`](https://github.com/okalachev/flix/blob/master/flix/imu.ino) — чтение данных с датчика IMU (гироскоп и акселерометр), калибровка IMU.
* [`rc.ino`](https://github.com/okalachev/flix/blob/master/flix/rc.ino) — чтение данных с RC-приемника, калибровка RC.
* [`estimate.ino`](https://github.com/okalachev/flix/blob/master/flix/estimate.ino) — оценка ориентации дрона, комплементарный фильтр.
* [`control.ino`](https://github.com/okalachev/flix/blob/master/flix/control.ino) — подсистема управления, трехмерный двухуровневый каскадный ПИД-регулятор.
* [`motors.ino`](https://github.com/okalachev/flix/blob/master/flix/motors.ino) — выход PWM на моторы.
* [`mavlink.ino`](https://github.com/okalachev/flix/blob/master/flix/mavlink.ino) — взаимодействие с QGroundControl или [pyflix](https://github.com/okalachev/flix/tree/master/tools/pyflix) через протокол MAVLink.
* [`flix.ino`](https://github.com/okalachev/flix/blob/canonical/flix/flix.ino) — основной входной файл, скетч Arduino. Включает определение глобальных переменных и главный цикл.
* [`imu.ino`](https://github.com/okalachev/flix/blob/canonical/flix/imu.ino) — чтение данных с датчика IMU (гироскоп и акселерометр), калибровка IMU.
* [`rc.ino`](https://github.com/okalachev/flix/blob/canonical/flix/rc.ino) — чтение данных с RC-приемника, калибровка RC.
* [`mavlink.ino`](https://github.com/okalachev/flix/blob/canonical/flix/mavlink.ino) — взаимодействие с QGroundControl через MAVLink.
* [`estimate.ino`](https://github.com/okalachev/flix/blob/canonical/flix/estimate.ino) — оценка ориентации дрона, комплементарный фильтр.
* [`control.ino`](https://github.com/okalachev/flix/blob/canonical/flix/control.ino) — управление ориентацией и угловыми скоростями дрона, трехмерный двухуровневый каскадный PID-регулятор.
* [`motors.ino`](https://github.com/okalachev/flix/blob/canonical/flix/motors.ino) — управление выходными сигналами на моторы через ШИМ.
Вспомогательные файлы:
Вспомогательные файлы включают:
* [`vector.h`](https://github.com/okalachev/flix/blob/master/flix/vector.h), [`quaternion.h`](https://github.com/okalachev/flix/blob/master/flix/quaternion.h) — библиотеки векторов и кватернионов.
* [`pid.h`](https://github.com/okalachev/flix/blob/master/flix/pid.h) — ПИД-регулятор.
* [`lpf.h`](https://github.com/okalachev/flix/blob/master/flix/lpf.h) — фильтр нижних частот.
### Подсистема управления
Состояние органов управления обрабатывается в функции `interpretControls()` и преобразуется в *команду управления*, которая включает следующее:
* `attitudeTarget` *(Quaternion)* — целевая ориентация дрона.
* `ratesTarget` *(Vector)* — целевые угловые скорости, *рад/с*.
* `ratesExtra` *(Vector)* — дополнительные (feed-forward) угловые скорости, для управления рысканием в режиме STAB, *рад/с*.
* `torqueTarget` *(Vector)* — целевой крутящий момент, диапазон [-1, 1].
* `thrustTarget` *(float)* — целевая общая тяга, диапазон [0, 1].
Команда управления обрабатывается в функциях `controlAttitude()`, `controlRates()`, `controlTorque()`. Если значение одной из переменных установлено в `NAN`, то соответствующая функция пропускается.
<img src="img/control.svg" width=300 alt="Control subsystem diagram">
Состояние *armed* хранится в переменной `armed`, а текущий режим — в переменной `mode`.
* [`vector.h`](https://github.com/okalachev/flix/blob/canonical/flix/vector.h), [`quaternion.h`](https://github.com/okalachev/flix/blob/canonical/flix/quaternion.h) — реализация библиотек векторов и кватернионов проекта.
* [`pid.h`](https://github.com/okalachev/flix/blob/canonical/flix/pid.h) — реализация общего ПИД-регулятора.
* [`lpf.h`](https://github.com/okalachev/flix/blob/canonical/flix/lpf.h) — реализация общего фильтра нижних частот.

View File

@@ -1,309 +0,0 @@
# Вектор, кватернион
В алгоритме управления квадрокоптером широко применяются геометрические (и алгебраические) объекты, такие как **векторы** и **кватернионы**. Они позволяют упростить математические вычисления и улучшить читаемость кода. В этой главе мы рассмотрим именно те геометрические объекты, которые используются в алгоритме управления квадрокоптером Flix, причем акцент будет сделан на практических аспектах их использования.
## Система координат
### Оси координат
Для работы с объектами в трехмерном пространстве необходимо определить *систему координат*. Как известно, система координат задается тремя взаимно перпендикулярными осями, которые обозначаются как *X*, *Y* и *Z*. Порядок обозначения этих осей зависит от того, какую систему координат мы выбрали — *левую* или *правую*:
|Левая система координат|Правая система координат|
|-----------------------|------------------------|
|<img src="img/left-axes.svg" alt="Левая система координат" width="200">|<img src="img/right-axes.svg" alt="Правая система координат" width="200">|
В Flix для всех математических расчетов используется **правая система координат**, что является стандартом в робототехнике и авиации.
Также необходимо выбрать направление осей — в Flix они выбраны в соответствии со стандартом [REP-103](https://www.ros.org/reps/rep-0103.html). Для величин, заданных в подвижной системе координат, связанной с корпусом дрона, применяется порядок <abbr title="Forward Left Up">FLU</abbr>:
* ось X — направлена **вперед**;
* ось Y — направлена **влево**;
* ось Z — направлена **вверх**.
Для величин, заданных в *мировой* системе координат (относительно фиксированной точки в пространстве) — <abbr title="East North Up">ENU</abbr>:
* ось X — направлена на **восток** (условный);
* ось Y — направлена на **север** (условный);
* ось Z — направлена **вверх**.
> [!NOTE]
> Для системы ENU важно только взаимное направление осей. Если доступен магнитометр, то используются реальные восток и север, но если нет — то произвольно выбранные.
Углы и угловые скорости определяются в соответствии с правилами математики: значения увеличиваются против часовой стрелки, если смотреть в сторону начала координат. Общий вид системы координат:
<img src="img/axes-rotation.svg" alt="Система координат" width="200">
> [!TIP]
> Оси координат <i>X</i>, <i>Y</i> и <i>Z</i> часто обозначаются красными, зелеными и синими цветами соответственно. Запомнить это можно с помощью сокращения <abbr title="Red Green Blue">RGB</abbr>.
## Вектор
<div class="firmware">
<strong>Файл прошивки:</strong>
<a href="https://github.com/okalachev/flix/blob/master/flix/vector.h"><code>vector.h</code></a>.<br>
</div>
**Вектор** — простой геометрический объект, который содержит три значения, соответствующие координатам *X*, *Y* и *Z*. Эти значения называются *компонентами вектора*. Вектор может описывать точку в пространстве, направление или ось вращения, скорость, ускорение, угловые скорости и другие физические величины. В Flix векторы задаются объектами `Vector` из библиотеки `vector.h`:
```cpp
Vector v(1, 2, 3);
v.x = 5;
v.y = 10;
v.z = 15;
```
> [!TIP]
> Не следует путать геометрический вектор — <code>vector</code> и динамический массив в стандартной библиотеке C++ — <code>std::vector</code>.
В прошивке в виде векторов представлены, например:
* `acc` собственное ускорение с акселерометра.
* `gyro` — угловые скорости с гироскопа.
* `rates` — рассчитанная угловая скорость дрона.
* `accBias`, `accScale`, `gyroBias` — параметры калибровки IMU.
### Операции с векторами
**Длина вектора** рассчитывается при помощи теоремы Пифагора; в прошивке используется метод `norm()`:
```cpp
Vector v(3, 4, 5);
float length = v.norm(); // 7.071
```
Любой вектор можно привести к **единичному вектору** (сохранить направление, но сделать длину равной 1) при помощи метода `normalize()`:
```cpp
Vector v(3, 4, 5);
v.normalize(); // 0.424, 0.566, 0.707
```
**Сложение и вычитание** векторов реализуется через простое покомпонентное сложение и вычитание. Геометрически сумма векторов представляет собой вектор, который соединяет начало первого вектора с концом второго. Разность векторов представляет собой вектор, который соединяет конец первого вектора с концом второго. Это удобно для расчета относительных позиций, суммарных скоростей и решения других задач. В коде эти операции интуитивно понятны:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
Vector sum = a + b; // 5, 7, 9
Vector diff = a - b; // -3, -3, -3
```
Операция **умножения на число** `n` увеличивает (или уменьшает) длину вектора в `n` раз (сохраняя направление):
```cpp
Vector a(1, 2, 3);
Vector b = a * 2; // 2, 4, 6
```
В некоторых случаях полезна операция **покомпонентного умножения** (или деления) векторов. Например, для применения коэффициентов калибровки к данным с IMU. В разных библиотеках эта операция обозначается по разному, но в библиотеке `vector.h` используется простые знаки `*` и `/`:
```cpp
acc = acc / accScale;
```
**Угол между векторами** можно найти при помощи статического метода `Vector::angleBetween()`:
```cpp
Vector a(1, 0, 0);
Vector b(0, 1, 0);
float angle = Vector::angleBetween(a, b); // 1.57 (90 градусов)
```
#### Скалярное произведение
Скалярное произведение векторов (*dot product*) — это произведение длин двух векторов на косинус угла между ними. В математике оно обозначается знаком `·` или слитным написанием векторов. Интуитивно, результат скалярного произведения показывает, насколько два вектора *сонаправлены*.
В Flix используется статический метод `Vector::dot()`:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
float dotProduct = Vector::dot(a, b); // 32
```
Операция скалярного произведения может помочь, например, при расчете проекции одного вектора на другой.
#### Векторное произведение
Векторное произведение (*cross product*) позволяет найти вектор, перпендикулярный двум другим векторам. В математике оно обозначается знаком `×`, а в прошивке используется статический метод `Vector::cross()`:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
Vector crossProduct = Vector::cross(a, b); // -3, 6, -3
```
## Кватернион
### Ориентация в трехмерном пространстве
В отличие от позиции и скорости, у ориентации в трехмерном пространстве нет универсального для всех случаев способа представления. В зависимости от задачи ориентация может быть представлена в виде *углов Эйлера*, *матрицы поворота*, *вектора вращения* или *кватерниона*. Рассмотрим используемые в полетной прошивке способы представления ориентации.
### Углы Эйлера
**Углы Эйлера***крен*, *тангаж* и *рыскание* — это наиболее «естественный» для человека способ представления ориентации. Они описывают последовательные вращения объекта вокруг трех осей координат.
В прошивке углы Эйлера сохраняются в обычный объект `Vector` (хоть и, строго говоря, не являются вектором):
* Угол по крену (*roll*) — `vector.x`.
* Угол по тангажу (*pitch*) — `vector.y`.
* Угол по рысканию (*yaw*) — `vector.z`.
Особенности углов Эйлера:
1. Углы Эйлера зависят от порядка применения вращений, то есть существует 6 типов углов Эйлера. Порядок вращений, принятый в Flix (и в роботехнике в целом) — рыскание, тангаж, крен (ZYX).
2. Для некоторых ориентаций углы Эйлера «вырождаются». Так, если объект «смотрит» строго вниз, то угол по рысканию и угол по крену становятся неразличимыми. Эта ситуация называется *gimbal lock* — потеря одной степени свободы.
Ввиду этих особенности для углов Эйлера не существует общих формул для самых базовых задач с ориентациями, таких как применение одного вращения (ориентации) к другому, расчет разницы между ориентациями и подобных. Поэтому в основном углы Эйлера применяются в пользовательском интерфейсе, но редко используются в математических расчетах.
> [!IMPORTANT]
> Для углов Эйлера не существует общих формул для самых базовых операций с ориентациями.
### Axis-angle
Помимо углов Эйлера, любую ориентацию в трехмерном пространстве можно представить в виде вращения вокруг некоторой оси на некоторый угол. В геометрии это доказывается, как **теорема вращения Эйлера**. В таком представлении ориентация задается двумя величинами:
* **Ось вращения** (*axis*) — единичный вектор, определяющий ось вращения.
* **Угол поворота** (*angle* или *θ*) — угол, на который нужно повернуть объект вокруг этой оси.
В Flix ось вращения задается объектом `Vector`, а угол поворота — числом типа `float` в радианах:
```cpp
// Вращение на 45 градусов вокруг оси (1, 2, 3)
Vector axis(1, 2, 3);
float angle = radians(45);
```
Этот способ более удобен для расчетов, чем углы Эйлера, но все еще не является оптимальным.
### Вектор вращения
Если умножить вектор *axis* на угол поворота *θ*, то получится **вектор вращения** (*rotation vector*). Этот вектор играет важную роль в алгоритмах управления ориентацией летательного аппарата.
Вектор вращения обладает замечательным свойством: если угловые скорости объекта (в собственной системе координат) в каждый момент времени совпадают с компонентами этого вектора, то за единичное время объект придет к заданной этим вектором ориентации. Это свойство позволяет использовать вектор вращения для управления ориентацией объекта посредством управления угловыми скоростями.
> [!IMPORTANT]
> Чтобы за единичное время прийти к заданной ориентации, собственные угловые скорости объекта должны быть равны компонентам вектора вращения.
Вектора вращения в Flix представляются в виде объектов `Vector`:
```cpp
// Вращение на 45 градусов вокруг оси (1, 2, 3)
Vector rotation = radians(45) * Vector(1, 2, 3);
```
### Кватернион
<div class="firmware">
<strong>Файл прошивки:</strong>
<a href="https://github.com/okalachev/flix/blob/master/flix/quaternion.h"><code>quaternion.h</code></a>.<br>
</div>
Вектор вращения удобен, но еще удобнее использовать **кватернион**. В Flix кватернионы задаются объектами `Quaternion` из библиотеки `quaternion.h`. Кватернион состоит из четырех значений: *w*, *x*, *y*, *z* и рассчитывается из вектора оси вращения (*axis*) и угла поворота (*θ*) по формуле:
\\[ q = \left( \begin{array}{c} w \\\\ x \\\\ y \\\\ z \end{array} \right) = \left( \begin{array}{c} \cos\left(\frac{\theta}{2}\right) \\\\ axis\_x \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_y \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_z \cdot \sin\left(\frac{\theta}{2}\right) \end{array} \right) \\]
На практике оказывается, что **именно такое представление наиболее удобно для математических расчетов**.
Проиллюстрируем кватернион и описанные выше способы представления ориентации на интерактивной визуализации. Изменяйте угол поворота *θ* с помощью ползунка (ось вращения константна) и изучите, как меняется ориентация объекта, вектор вращения и кватернион:
<div id="rotation-diagram" class="diagram">
<p>
<label class="angle" for="angle-range"></label>
<input type="range" name="angle" id="angle-range" min="0" max="360" value="0" step="1">
</p>
<p class="axis"></p>
<p class="rotation-vector"></p>
<p class="quaternion"></p>
<p class="euler"></p>
</div>
<script type="importmap">
{
"imports": {
"three": "https://cdn.jsdelivr.net/npm/three@0.176.0/build/three.module.js",
"three/addons/": "https://cdn.jsdelivr.net/npm/three@0.176.0/examples/jsm/"
}
}
</script>
<script type="module" src="js/rotation.js"></script>
> [!IMPORTANT]
> В контексте управляющих алгоритмов кватернион — это оптимизированный для расчетов аналог вектора вращения.
Кватернион это наиболее часто используемый способ представления ориентации в алгоритмах. Кроме этого, у кватерниона есть большое значение в теории чисел и алгебре, как у расширения понятия комплексного числа, но рассмотрение этого аспекта выходит за рамки описания работы с вращениями с практической точки зрения.
В прошивке в виде кватернионов представлены, например:
* `attitude` — текущая ориентация квадрокоптера.
* `attitudeTarget` — целевая ориентация квадрокоптера.
### Операции с кватернионами
Кватернион создается напрямую из четырех его компонент:
```cpp
// Кватернион, представляющий нулевую (исходную) ориентацию
Quaternion q(1, 0, 0, 0);
```
Кватернион можно создать из оси вращения и угла поворота, вектора вращения или углов Эйлера:
```cpp
Quaternion q1 = Quaternion::fromAxisAngle(axis, angle);
Quaternion q2 = Quaternion::fromRotationVector(rotation);
Quaternion q3 = Quaternion::fromEuler(Vector(roll, pitch, yaw));
```
И наоборот:
```cpp
q1.toAxisAngle(axis, angle);
Vector rotation = q2.toRotationVector();
Vector euler = q3.toEuler();
```
Возможно рассчитать вращение между двумя обычными векторами:
```cpp
Quaternion q = Quaternion::fromBetweenVectors(v1, v2); // в виде кватерниона
Vector rotation = Vector::rotationVectorBetween(v1, v2); // в виде вектора вращения
```
Шорткаты для работы с углом Эйлера по рысканью (удобно для алгоритмов управления полетом):
```cpp
float yaw = q.getYaw();
q.setYaw(yaw);
```
#### Применения вращений
Чтобы применить вращение, выраженное в кватернионе, к другому кватерниону, в математике используется операция **умножения кватернионов**. При использовании этой операции, необходимо учитывать, что она не является коммутативной, то есть порядок операндов имеет значение. Формула умножения кватернионов выглядит так:
\\[ q_1 \times q_2 = \left( \begin{array}{c} w_1 \\\\ x_1 \\\\ y_1 \\\\ z_1 \end{array} \right) \times \left( \begin{array}{c} w_2 \\\\ x_2 \\\\ y_2 \\\\ z_2 \end{array} \right) = \left( \begin{array}{c} w_1 w_2 - x_1 x_2 - y_1 y_2 - z_1 z_2 \\\\ w_1 x_2 + x_1 w_2 + y_1 z_2 - z_1 y_2 \\\\ w_1 y_2 - x_1 z_2 + y_1 w_2 + z_1 x_2 \\\\ w_1 z_2 + x_1 y_2 - y_1 x_2 + z_1 w_2 \end{array} \right) \\]
В библиотеке `quaternion.h` для этой операции используется статический метод `Quaternion::rotate()`:
```cpp
// Композиция вращений q1 и q2
Quaternion result = Quaternion::rotate(q1, q2);
```
Также полезной является операция применения вращения к вектору, которая делается похожим образом:
```cpp
// Вращение вектора v кватернионом q
Vector result = Quaternion::rotateVector(v, q);
```
Для расчета разницы между двумя ориентациями используется метод `Quaternion::between()`:
```cpp
// Расчет вращения от q1 к q2
Quaternion q = Quaternion::between(q1, q2);
```
## Дополнительные материалы
* [Интерактивный учебник по кватернионам](https://eater.net/quaternions).
* [Визуализация вращения вектора с помощью кватернионов](https://quaternions.online).

View File

@@ -1,7 +1,7 @@
# Гироскоп
<div class="firmware">
<strong>Файл прошивки:</strong>
<strong>Файл прошивки Flix:</strong>
<a href="https://github.com/okalachev/flix/blob/canonical/flix/imu.ino"><code>imu.ino</code></a> <small>(каноничная версия)</small>.<br>
Текущая версия: <a href="https://github.com/okalachev/flix/blob/master/flix/imu.ino"><code>imu.ino</code></a>.
</div>
@@ -100,7 +100,7 @@ void setup() {
Для однократного считывания данных используется метод `read()`. Затем данные с гироскопа получаются при помощи метода `getGyro(x, y, z)`. Этот метод записывает в переменные `x`, `y` и `z` угловые скорости вокруг соответствующих осей в радианах в секунду.
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
Программа для чтения данных с гироскопа и вывода их в консоль для построения графиков в Serial Plotter выглядит так:
@@ -139,7 +139,7 @@ void loop() {
### Частота сэмплов
Большинство IMU могут обновлять данные с разной частотой. В полетных контроллерах обычно используется частота обновления от 500 Гц до 8 кГц. Чем выше частота сэмплов, тем выше точность управления полетом, но и больше нагрузка на микроконтроллер.
Большинство IMU могут обновлять данные с разной частотой. В полетных контроллерах обычно используется частота обновления от 500 Гц до 8 кГц. Чем выше частота сэмплов, тем выше точность управления полетом, но и больше нагрузка на микроконтроллер. В Flix используется частота сэмплов 1 кГц.
Частота сэмплов устанавливается методом `setSampleRate()`. В Flix используется частота 1 кГц:
@@ -153,7 +153,7 @@ IMU.setRate(IMU.RATE_1KHZ_APPROX);
* `RATE_MIN` — минимальная частота сэмплов для конкретного IMU.
* `RATE_50HZ_APPROX` — значение, близкое к 50 Гц.
* `RATE_1KHZ_APPROX` — значение, близкое к 1 кГц.
* `RATE_1KHZ_APPROX`  — значение, близкое к 1 кГц.
* `RATE_8KHZ_APPROX` — значение, близкое к 8 кГц.
* `RATE_MAX` — максимальная частота сэмплов для конкретного IMU.

View File

@@ -1,262 +0,0 @@
import * as THREE from 'three';
import { SVGRenderer, SVGObject } from 'three/addons/renderers/SVGRenderer.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
const diagramEl = document.getElementById('rotation-diagram');
const scene = new THREE.Scene();
scene.background = new THREE.Color(0xffffff);
const camera = new THREE.OrthographicCamera();
camera.position.set(9, 26, 20);
camera.up.set(0, 0, 1);
camera.lookAt(0, 0, 0);
const renderer = new SVGRenderer();
diagramEl.prepend(renderer.domElement);
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableZoom = false;
const LINE_WIDTH = 4;
function createLabel(text, x, y, z, min = false) {
const label = document.createElementNS('http://www.w3.org/2000/svg', 'text');
label.setAttribute('class', 'label' + (min ? ' min' : ''));
label.textContent = text;
label.setAttribute('y', -15);
const object = new SVGObject(label);
object.position.x = x;
object.position.y = y;
object.position.z = z;
return object;
}
function createLine(x1, y1, z1, x2, y2, z2, color) {
const geometry = new THREE.BufferGeometry().setFromPoints([
new THREE.Vector3(x1, y1, z1),
new THREE.Vector3(x2, y2, z2)
]);
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
const line = new THREE.Line(geometry, material);
scene.add(line);
return line;
}
function changeLine(line, x1, y1, z1, x2, y2, z2) {
line.geometry.setFromPoints([new THREE.Vector3(x1, y1, z1), new THREE.Vector3(x2, y2, z2)]);
return line;
}
function createVector(x1, y1, z1, x2, y2, z2, color, label = '') {
const HEAD_LENGTH = 1;
const HEAD_WIDTH = 0.2;
const group = new THREE.Group();
const direction = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).normalize();
const norm = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).length();
let end = new THREE.Vector3(x2, y2, z2);
if (norm > HEAD_LENGTH) {
end = new THREE.Vector3(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
}
// create line
const geometry = new THREE.BufferGeometry().setFromPoints([new THREE.Vector3(x1, y1, z1), end]);
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
const line = new THREE.Line(geometry, material);
group.add(line);
if (norm > HEAD_LENGTH) {
// Create arrow
const arrowGeometry = new THREE.ConeGeometry(HEAD_WIDTH, HEAD_LENGTH, 16);
const arrowMaterial = new THREE.MeshBasicMaterial({ color: color });
const arrow = new THREE.Mesh(arrowGeometry, arrowMaterial);
arrow.position.set(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
arrow.lookAt(new THREE.Vector3(x1, y1, z1));
arrow.rotateX(-Math.PI / 2);
group.add(arrow);
}
// create label
if (label) group.add(createLabel(label, x2, y2, z2));
scene.add(group);
return group;
}
function changeVector(vector, x1, y1, z1, x2, y2, z2, color, label = '') {
vector.removeFromParent();
return createVector(x1, y1, z1, x2, y2, z2, color, label);
}
function createDrone(x, y, z) {
const group = new THREE.Group();
// Fuselage and wing triangle (main body)
const fuselageGeometry = new THREE.BufferGeometry();
const fuselageVertices = new Float32Array([
1, 0, 0,
-1, 0.6, 0,
-1, -0.6, 0
]);
fuselageGeometry.setAttribute('position', new THREE.BufferAttribute(fuselageVertices, 3));
const fuselageMaterial = new THREE.MeshBasicMaterial({ color: 0xb3b3b3, side: THREE.DoubleSide, transparent: true, opacity: 0.8 });
const fuselage = new THREE.Mesh(fuselageGeometry, fuselageMaterial);
group.add(fuselage);
// Tail triangle
const tailGeometry = new THREE.BufferGeometry();
const tailVertices = new Float32Array([
-0.2, 0, 0,
-1, 0, 0,
-1, 0, 0.5,
]);
tailGeometry.setAttribute('position', new THREE.BufferAttribute(tailVertices, 3));
const tailMaterial = new THREE.MeshBasicMaterial({ color: 0xd80100, side: THREE.DoubleSide, transparent: true, opacity: 0.9 });
const tail = new THREE.Mesh(tailGeometry, tailMaterial);
group.add(tail);
group.position.set(x, y, z);
group.scale.set(2, 2, 2);
scene.add(group);
return group;
}
// Create axes
const AXES_LENGTH = 10;
createVector(0, 0, 0, AXES_LENGTH, 0, 0, 0xd80100, 'x');
createVector(0, 0, 0, 0, AXES_LENGTH, 0, 0x0076ba, 'y');
createVector(0, 0, 0, 0, 0, AXES_LENGTH, 0x57ed00, 'z');
// Rotation values
const rotationAxisSrc = new THREE.Vector3(2, 1, 3);
let rotationAngle = 0;
let rotationAxis = rotationAxisSrc.clone().normalize();
let rotationVector = new THREE.Vector3(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
let rotationVectorObj = createVector(0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
let axisObj = createLine(0, 0, 0, rotationAxis.x * AXES_LENGTH, rotationAxis.y * AXES_LENGTH, rotationAxis.z * AXES_LENGTH, 0xe8e8e8);
const drone = createDrone(0, 0, 0);
// UI
const angleInput = diagramEl.querySelector('input[name=angle]');
const rotationVectorEl = diagramEl.querySelector('.rotation-vector');
const angleEl = diagramEl.querySelector('.angle');
const quaternionEl = diagramEl.querySelector('.quaternion');
const eulerEl = diagramEl.querySelector('.euler');
diagramEl.querySelector('.axis').innerHTML = `<b style='color:#b6b6b6'>Ось вращения:</b> (${rotationAxisSrc.x}, ${rotationAxisSrc.y}, ${rotationAxisSrc.z}) ∥ (${rotationAxis.x.toFixed(1)}, ${rotationAxis.y.toFixed(1)}, ${rotationAxis.z.toFixed(1)})`;
function updateScene() {
rotationAngle = parseFloat(angleInput.value) * Math.PI / 180;
rotationVector.set(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
rotationVectorObj = changeVector(rotationVectorObj, 0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
// rotate drone
drone.rotation.set(0, 0, 0);
drone.rotateOnAxis(rotationAxis, rotationAngle);
// update labels
angleEl.innerHTML = `<b>Угол вращения:</b> ${parseFloat(angleInput.value).toFixed(0)}° = ${(rotationAngle).toFixed(2)} рад`;
rotationVectorEl.innerHTML = `<b style='color:#e49a44'>Вектор вращения:</b> (${rotationVector.x.toFixed(1)}, ${rotationVector.y.toFixed(1)}, ${rotationVector.z.toFixed(1)}) рад`;
let quaternion = new THREE.Quaternion();
quaternion.setFromAxisAngle(rotationAxis, rotationAngle);
quaternionEl.innerHTML = `<b>Кватернион:</b>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mo>(</mo>
<mrow>
<mi>cos</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>, </mo>
<mrow>
<mi>${rotationAxis.x.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>, </mo>
<mrow>
<mi>${rotationAxis.y.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mi>${rotationAxis.z.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math>
= (${quaternion.w.toFixed(1)}, ${(quaternion.x).toFixed(1)}, ${(quaternion.y).toFixed(1)}, ${(quaternion.z).toFixed(1)})`;
eulerEl.innerHTML = `<b>Углы Эйлера:</b> крен ${(drone.rotation.x * 180 / Math.PI).toFixed(0)}°,
тангаж ${(drone.rotation.y * 180 / Math.PI).toFixed(0)}°, рыскание ${(drone.rotation.z * 180 / Math.PI).toFixed(0)}°`;
}
function updateCamera() {
const RANGE = 8;
const VERT_SHIFT = 2;
const HOR_SHIFT = -2;
const width = renderer.domElement.clientWidth;
const height = renderer.domElement.clientHeight;
const ratio = width / height;
if (ratio > 1) {
camera.left = -RANGE * ratio;
camera.right = RANGE * ratio;
camera.top = RANGE + VERT_SHIFT;
camera.bottom = -RANGE + VERT_SHIFT;
} else {
camera.left = -RANGE + HOR_SHIFT;
camera.right = RANGE + HOR_SHIFT;
camera.top = RANGE / ratio + VERT_SHIFT;
camera.bottom = -RANGE / ratio + VERT_SHIFT;
}
camera.updateProjectionMatrix();
renderer.setSize(width, height);
}
function update() {
// requestAnimationFrame(update);
updateCamera();
updateScene();
controls.update();
renderer.render(scene, camera);
}
update();
window.addEventListener('resize', update);
angleInput.addEventListener('input', update);
angleInput.addEventListener('change', update);
diagramEl.addEventListener('mousemove', update);
diagramEl.addEventListener('touchmove', update);
diagramEl.addEventListener('scroll', update);
diagramEl.addEventListener('wheel', update);

View File

@@ -1 +0,0 @@
usage.md

170
docs/build.md Normal file
View File

@@ -0,0 +1,170 @@
# Building and running
To build the firmware or the simulator, you need to clone the repository using git:
```bash
git clone https://github.com/okalachev/flix.git
cd flix
```
## Simulation
### Ubuntu 20.04
The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you have a newer version, consider using a virtual machine.
1. Install Arduino CLI:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Install Gazebo 11:
```bash
curl -sSL http://get.gazebosim.org | sh
```
Set up your Gazebo environment variables:
```bash
echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc
source ~/.bashrc
```
3. Install SDL2 and other dependencies:
```bash
sudo apt-get update && sudo apt-get install build-essential libsdl2-dev
```
4. Add your user to the `input` group to enable joystick support (you need to re-login after this command):
```bash
sudo usermod -a -G input $USER
```
5. Run the simulation:
```bash
make simulator
```
### macOS
1. Install Homebrew package manager, if you don't have it installed:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
2. Install Arduino CLI, Gazebo 11 and SDL2:
```bash
brew tap osrf/simulation
brew install arduino-cli
brew install gazebo11
brew install sdl2
```
Set up your Gazebo environment variables:
```bash
echo "source /opt/homebrew/share/gazebo/setup.sh" >> ~/.zshrc
source ~/.zshrc
```
3. Run the simulation:
```bash
make simulator
```
### Setup and flight
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Connect your smartphone to the same Wi-Fi network as the machine running the simulator.
3. If you're using a virtual machine, make sure that its network is set to the **bridged** mode with Wi-Fi adapter selected.
4. Run the simulation.
5. Open QGroundControl app. It should connect and begin showing the virtual drone's telemetry automatically.
6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
7. Use the virtual joystick to fly the drone!
#### Control with USB remote control
1. Connect your USB remote control to the machine running the simulator.
2. Run the simulation.
3. Calibrate the RC using `cr` command in the command line interface.
4. Run the simulation again.
5. Use the USB remote control to fly the drone!
## Firmware
### Arduino IDE (Windows, Linux, macOS)
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. Install ESP32 core, version 3.0.7 (version 2.x is not supported). See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
3. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.12.
4. Clone the project using git or [download the source code as a ZIP archive](https://codeload.github.com/okalachev/flix/zip/refs/heads/master).
5. Open the downloaded Arduino sketch `flix/flix.ino` in Arduino IDE.
6. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
### Command line (Windows, Linux, macOS)
1. [Install Arduino CLI](https://arduino.github.io/arduino-cli/installation/).
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Compile the firmware using `make`. Arduino dependencies will be installed automatically:
```bash
make
```
You can flash the firmware to the board using command:
```bash
make upload
```
You can also compile the firmware, upload it and start serial port monitoring using command:
```bash
make upload monitor
```
See other available Make commands in the [Makefile](../Makefile).
### Setup and flight
Before flight you need to calibrate the accelerometer:
1. Open Serial Monitor in Arduino IDE (use use `make monitor` command in the command line).
2. Type `ca` command there and follow the instructions.
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
3. Connect your smartphone to the appeared `flix` Wi-Fi network.
4. Open QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
5. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
6. Use the virtual joystick to fly the drone!
#### Control with remote control
Before flight using remote control, you need to calibrate it:
1. Open Serial Monitor in Arduino IDE (use use `make monitor` command in the command line).
2. Type `cr` command there and follow the instructions.
Then you can use your remote control to fly the drone!
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
### Firmware code structure
See [firmware overview](firmware.md) for more details.

View File

@@ -1,56 +1,37 @@
# Firmware overview
The firmware is a regular Arduino sketch, and it follows the classic Arduino one-threaded design. The initialization code is in the `setup()` function, and the main loop is in the `loop()` function. The sketch includes several files, each responsible for a specific subsystem.
## Dataflow
<img src="img/dataflow.svg" width=600 alt="Firmware dataflow diagram">
<img src="img/dataflow.svg" width=800 alt="Firmware dataflow diagram">
The main loop is running at 1000 Hz. All the dataflow goes through global variables (for simplicity):
The main loop is running at 1000 Hz. All the dataflow is happening through global variables (for simplicity):
* `t` *(double)* current step time, *s*.
* `t` *(float)* current step time, *s*.
* `dt` *(float)* — time delta between the current and previous steps, *s*.
* `gyro` *(Vector)* — data from the gyroscope, *rad/s*.
* `acc` *(Vector)* — acceleration data from the accelerometer, *m/s<sup>2</sup>*.
* `rates` *(Vector)* — filtered angular rates, *rad/s*.
* `attitude` *(Quaternion)* — estimated attitude (orientation) of drone.
* `controlRoll`, `controlPitch`, ... *(float[])* pilot control inputs, range [-1, 1].
* `motors` *(float[])* motor outputs, range [0, 1].
* `controls` *(float[])* user control inputs from the RC, normalized to [-1, 1] range.
* `motors` *(float[])* motor outputs, normalized to [-1, 1] range; reverse rotation is possible.
## Source files
Firmware source files are located in `flix` directory. The core files are:
Firmware source files are located in `flix` directory. The key files are:
* [`flix.ino`](../flix/flix.ino) — Arduino sketch main file, entry point.Includes some global variable definitions and the main loop.
* [`flix.ino`](../flix/flix.ino) — main entry point, Arduino sketch. Includes global variables definition and the main loop.
* [`imu.ino`](../flix/imu.ino) — reading data from the IMU sensor (gyroscope and accelerometer), IMU calibration.
* [`rc.ino`](../flix/rc.ino) — reading data from the RC receiver, RC calibration.
* [`estimate.ino`](../flix/estimate.ino) — attitude estimation, complementary filter.
* [`control.ino`](../flix/control.ino) — control subsystem, three-dimensional two-level cascade PID controller.
* [`motors.ino`](../flix/motors.ino) — PWM motor output control.
* [`mavlink.ino`](../flix/mavlink.ino) — interaction with QGroundControl or [pyflix](../tools/pyflix) via MAVLink protocol.
* [`estimate.ino`](../flix/estimate.ino) — drone's attitude estimation, complementary filter.
* [`control.ino`](../flix/control.ino) — drone's attitude and rates control, three-dimensional two-level cascade PID controller.
* [`motors.ino`](../flix/motors.ino) — PWM motor outputs control.
Utility files:
Utility files include:
* [`vector.h`](../flix/vector.h), [`quaternion.h`](../flix/quaternion.h) — vector and quaternion libraries.
* [`pid.h`](../flix/pid.h) — generic PID controller.
* [`lpf.h`](../flix/lpf.h) — generic low-pass filter.
### Control subsystem
Pilot inputs are interpreted in `interpretControls()`, and then converted to the *control command*, which consists of the following:
* `attitudeTarget` *(Quaternion)* — target attitude of the drone.
* `ratesTarget` *(Vector)* — target angular rates, *rad/s*.
* `ratesExtra` *(Vector)* — additional (feed-forward) angular rates , used for yaw rate control in STAB mode, *rad/s*.
* `torqueTarget` *(Vector)* — target torque, range [-1, 1].
* `thrustTarget` *(float)* — collective thrust target, range [0, 1].
Control command is processed in `controlAttitude()`, `controlRates()`, `controlTorque()` functions. Each function may be skipped if the corresponding target is set to `NAN`.
<img src="img/control.svg" width=300 alt="Control subsystem diagram">
Armed state is stored in `armed` variable, and current mode is stored in `mode` variable.
* [`vector.h`](../flix/vector.h), [`quaternion.h`](../flix/quaternion.h) — project's vector and quaternion libraries implementation.
* [`pid.h`](../flix/pid.h) — generic PID controller implementation.
* [`lpf.h`](../flix/lpf.h) — generic low-pass filter implementation.
## Building
See build instructions in [usage.md](usage.md).
See build instructions in [build.md](build.md).

View File

@@ -1,22 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 340.21 211.28">
<defs>
<style>
.a {
fill: #d5d5d5;
}
.b {
fill: #fff;
}
.c {
fill: #636363;
}
</style>
</defs>
<path class="a" d="M340,159.31c-4.74-86-35.9-128.7-35.9-128.7C288.3,9.53,269.17,2.91,251.87.39s-22.31,7.87-22.31,7.87C201.7,4,170.11,4.19,170.11,4.19S138.51,4,110.65,8.26c0,0-5-10.38-22.3-7.87S51.91,9.53,36.14,30.61c0,0-31.16,42.67-35.9,128.7-2.82,51.08,19.68,55.36,38.43,50.4a60.08,60.08,0,0,0,30.55-19.66c7.51-9,19.64-25.32,34-28,17.28-3.26,33.14-4.77,45.09-4.78l21.82,0,21.81,0c12,0,27.82,1.52,45.09,4.78,14.34,2.71,26.47,19,34,28a60.06,60.06,0,0,0,30.56,19.66C320.29,214.67,342.79,210.39,340,159.31Z"/>
<circle class="b" cx="88.54" cy="85.75" r="45.22"/>
<circle class="b" cx="251.67" cy="85.75" r="45.22"/>
<circle class="c" cx="251.67" cy="85.75" r="13.8"/>
<circle class="c" cx="103.8" cy="112.12" r="13.8"/>
</svg>

Before

Width:  |  Height:  |  Size: 971 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 152 KiB

View File

@@ -1,94 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
<defs>
<style>
.a {
font-size: 50px;
font-family: Tahoma;
}
.b {
opacity: 0.8;
}
.c, .e, .g, .i {
fill: none;
}
.c {
stroke: #0076ba;
}
.c, .e, .g {
stroke-linejoin: bevel;
stroke-width: 13px;
}
.d {
fill: #0076ba;
}
.e {
stroke: #d80100;
}
.f {
fill: #d80100;
}
.g {
stroke: #57ed00;
}
.h {
fill: #57ed00;
}
.i {
stroke: #000;
stroke-miterlimit: 10;
stroke-width: 10px;
}
</style>
</defs>
<g>
<text class="a" transform="translate(58.62 636.12)">x</text>
<text class="a" transform="translate(505.06 562.18)">y</text>
<text class="a" transform="translate(370.06 43.18)">z</text>
<g class="b">
<g>
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<g class="b">
<g>
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="b">
<g>
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M103.19,617.68a52.66,52.66,0,1,0-55.51-89.19"/>
<polygon points="41.63 516.97 34.76 541.97 59.85 535.42 41.63 516.97"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M295.58,87.51a52.66,52.66,0,1,0,103.78,16.31"/>
<polygon points="412.03 106.78 397.6 85.24 386.16 108.51 412.03 106.78"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M505,452.58a52.66,52.66,0,1,0-76,72.53"/>
<polygon points="418.96 533.38 444.84 535 433.31 511.78 418.96 533.38"/>
</g>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 2.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 140 KiB

View File

@@ -1,123 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 464.2 249.05">
<defs>
<style>
.a {
fill: #d5d5d5;
}
.b {
fill: #fff;
}
.c {
fill: #636363;
}
.d {
opacity: 0.7;
}
.e {
fill: none;
stroke: #0076ba;
stroke-linecap: round;
stroke-miterlimit: 10;
stroke-width: 13px;
}
.f {
fill: #0076ba;
}
.g {
font-size: 30px;
font-family: Tahoma;
}
.h {
letter-spacing: 0em;
}
.i {
letter-spacing: -0.01em;
}
.j {
letter-spacing: -0.06em;
}
.k {
letter-spacing: 0em;
}
.l {
letter-spacing: -0.02em;
}
.m {
letter-spacing: 0em;
}
.n {
opacity: 0.6;
}
</style>
</defs>
<path class="a" d="M408.84,197.08c-4.74-86-35.9-128.7-35.9-128.7C357.17,47.3,338,40.68,320.73,38.17S298.43,46,298.43,46C270.57,41.81,239,42,239,42s-31.59-.15-59.45,4.07c0,0-5-10.38-22.31-7.86S120.78,47.3,105,68.38c0,0-31.16,42.68-35.9,128.7-2.82,51.08,19.68,55.36,38.42,50.4a60.06,60.06,0,0,0,30.56-19.66c7.51-9,19.64-25.32,34-28,17.27-3.26,33.14-4.77,45.09-4.78L239,195l21.82,0c11.95,0,27.81,1.52,45.09,4.78,14.34,2.71,26.47,19,34,28a60.08,60.08,0,0,0,30.55,19.66C389.16,252.44,411.66,248.16,408.84,197.08Z"/>
<circle class="b" cx="157.41" cy="123.52" r="45.22"/>
<circle class="b" cx="320.54" cy="123.52" r="45.22"/>
<circle class="c" cx="320.54" cy="123.52" r="13.8"/>
<circle class="c" cx="157.41" cy="149.89" r="13.8"/>
<g class="d">
<g>
<line class="e" x1="157.41" y1="149.89" x2="157.41" y2="49.87"/>
<polygon class="f" points="180.74 56.7 157.41 16.29 134.07 56.7 180.74 56.7"/>
</g>
</g>
<text class="g" transform="translate(38.38 25.91)">Th<tspan class="h" x="34.25" y="0">r</tspan><tspan x="44.91" y="0">o</tspan><tspan class="i" x="61.2" y="0">t</tspan><tspan x="71" y="0">tle</tspan></text>
<g class="d">
<g>
<line class="e" x1="157.41" y1="149.89" x2="82.41" y2="149.89"/>
<polygon class="f" points="89.24 126.56 48.82 149.89 89.24 173.23 89.24 126.56"/>
</g>
</g>
<text class="g" transform="translate(0.18 176.36)"><tspan class="j">Y</tspan><tspan class="h" x="15.37" y="0">a</tspan><tspan x="30.97" y="0">w</tspan></text>
<g class="d">
<g>
<line class="e" x1="320.54" y1="123.52" x2="320.54" y2="50.32"/>
<polygon class="f" points="343.88 57.15 320.54 16.74 297.2 57.15 343.88 57.15"/>
</g>
</g>
<text class="g" transform="translate(336.56 26.36)">P<tspan class="k" x="16.54" y="0">i</tspan><tspan x="23.45" y="0">tch</tspan></text>
<g class="d">
<g>
<line class="e" x1="320.54" y1="123.52" x2="395.54" y2="123.52"/>
<polygon class="f" points="388.71 146.86 429.12 123.52 388.71 100.19 388.71 146.86"/>
</g>
</g>
<text class="g" transform="translate(416.03 160.01)"><tspan class="l">R</tspan><tspan x="18.08" y="0">o</tspan><tspan class="m" x="34.37" y="0">l</tspan><tspan x="41.31" y="0">l</tspan></text>
<g class="d">
<g>
<line class="e" x1="157.41" y1="149.89" x2="213.73" y2="149.89"/>
<polygon class="f" points="206.9 173.23 247.32 149.89 206.9 126.56 206.9 173.23"/>
</g>
</g>
<g class="d">
<g>
<line class="e" x1="320.54" y1="124.52" x2="320.54" y2="197.73"/>
<polygon class="f" points="297.2 190.9 320.54 231.31 343.88 190.9 297.2 190.9"/>
</g>
</g>
<g class="n">
<g>
<line class="e" x1="318.03" y1="123.52" x2="262.32" y2="123.52"/>
<polygon class="f" points="269.14 100.19 228.73 123.52 269.14 146.86 269.14 100.19"/>
</g>
</g>
<g class="d">
<g>
<line class="e" x1="157.41" y1="151.66" x2="157.41" y2="197.73"/>
<polygon class="f" points="134.07 190.9 157.41 231.31 180.74 190.9 134.07 190.9"/>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 3.9 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 101 KiB

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -1,22 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 340.21 211.28">
<defs>
<style>
.a {
fill: #d5d5d5;
}
.b {
fill: #fff;
}
.c {
fill: #636363;
}
</style>
</defs>
<path class="a" d="M340,159.31c-4.74-86-35.9-128.7-35.9-128.7C288.3,9.53,269.17,2.91,251.87.39s-22.31,7.87-22.31,7.87C201.7,4,170.11,4.19,170.11,4.19S138.51,4,110.65,8.26c0,0-5-10.38-22.3-7.87S51.91,9.53,36.14,30.61c0,0-31.16,42.67-35.9,128.7-2.82,51.08,19.68,55.36,38.43,50.4a60.08,60.08,0,0,0,30.55-19.66c7.51-9,19.64-25.32,34-28,17.28-3.26,33.14-4.77,45.09-4.78l21.82,0,21.81,0c12,0,27.82,1.52,45.09,4.78,14.34,2.71,26.47,19,34,28a60.06,60.06,0,0,0,30.56,19.66C320.29,214.67,342.79,210.39,340,159.31Z"/>
<circle class="b" cx="88.54" cy="85.75" r="45.22"/>
<circle class="b" cx="251.67" cy="85.75" r="45.22"/>
<circle class="c" cx="251.67" cy="85.75" r="13.8"/>
<circle class="c" cx="73.28" cy="112.12" r="13.8"/>
</svg>

Before

Width:  |  Height:  |  Size: 971 B

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

View File

@@ -1,67 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.68">
<defs>
<style>
.a {
font-size: 50px;
font-family: Tahoma;
}
.b {
opacity: 0.8;
}
.c, .e, .g {
fill: none;
stroke-linejoin: bevel;
stroke-width: 13px;
}
.c {
stroke: #0076ba;
}
.d {
fill: #0076ba;
}
.e {
stroke: #57ed00;
}
.f {
fill: #57ed00;
}
.g {
stroke: #d80100;
}
.h {
fill: #d80100;
}
</style>
</defs>
<g>
<text class="a" transform="translate(500.62 556.12)">x</text>
<text class="a" transform="translate(370.06 43.18)">z</text>
<g class="b">
<g>
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<g class="b">
<g>
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="b">
<g>
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<text class="a" transform="translate(58.06 635.89)">y</text>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 1.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

View File

@@ -1,67 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
<defs>
<style>
.a {
opacity: 0.8;
}
.b, .d, .f {
fill: none;
stroke-linejoin: bevel;
stroke-width: 13px;
}
.b {
stroke: #57ed00;
}
.c {
fill: #57ed00;
}
.d {
stroke: #d80100;
}
.e {
fill: #d80100;
}
.f {
stroke: #0076ba;
}
.g {
fill: #0076ba;
}
.h {
font-size: 50px;
font-family: Tahoma;
}
</style>
</defs>
<g>
<g class="a">
<g>
<line class="b" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="c" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<g class="a">
<g>
<line class="d" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="e" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="a">
<g>
<line class="f" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="g" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<text class="h" transform="translate(58.62 636.12)">x</text>
<text class="h" transform="translate(505.06 562.18)">y</text>
<text class="h" transform="translate(370.06 43.18)">z</text>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 1.4 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 326 KiB

View File

Before

Width:  |  Height:  |  Size: 36 KiB

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 148 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

View File

@@ -1,29 +0,0 @@
.diagram svg {
display: block;
width: 100%;
height: 400px;
}
.diagram .label {
font-family: Arial, sans-serif;
font-size: 20px;
pointer-events: none;
color: black;
opacity: 0.8;
user-select: none;
}
.diagram label {
display: block;
}
@media (min-width: 800px) {
.diagram b {
width: 200px;
display: inline-block;
}
}
.diagram p.quaternion {
overflow-x: auto;
}
.diagram input {
text-align: center;
width: 100%;
}

View File

@@ -118,7 +118,7 @@
<a href="https://t.me/opensourcequadcopter" class="telegram">Telegram-канал</a>
💰 Поддержать проект:
<iframe style="margin-top: 0.4em;" src="https://yoomoney.ru/quickpay/fundraise/button?billNumber=16U9OH2S4IT.241205&" width="330" height="50" frameborder="0" allowtransparency="true" scrolling="no"></iframe>
&copy; 2025 Олег Калачев
&copy; 2024 Олег Калачев
</footer>
</mdbook-sidebar-scrollbox>
<noscript>

View File

@@ -4,9 +4,8 @@
Do the following:
* **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](usage.md#firmware).
* **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](build.md#firmware).
* **Check libraries**. Install all the required libraries from the tutorial. Make sure there are no MPU9250 or other peripherals libraries that may conflict with the ones used in the tutorial.
* **Check the chosen board**. The correct board to choose in Arduino IDE for ESP32 Mini is *WEMOS D1 MINI ESP32*.
## The drone doesn't fly
@@ -14,19 +13,15 @@ Do the following:
* **Check the battery voltage**. Use a multimeter to measure the battery voltage. It should be in range of 3.7-4.2 V.
* **Check if there are some startup errors**. Connect the ESP32 to the computer and check the Serial Monitor output. Use the Reset button to make sure you see the whole ESP32 output.
* **Check the baudrate is correct**. If you see garbage characters in the Serial Monitor, make sure the baudrate is set to 115200.
* **Make sure correct IMU model is chosen**. If using ICM-20948 board, change `MPU9250` to `ICM20948` everywhere in the `imu.ino` file.
* **Check if the CLI is working**. Perform `help` command in Serial Monitor. You should see the list of available commands. You can also access the CLI using QGroundControl (*Vehicle Setup* ⇒ *Analyze Tools**MAVLink Console*).
* **Check if the CLI is working**. Perform `help` command in Serial Monitor. You should see the list of available commands.
* **Configure QGroundControl correctly before connecting to the drone** if you use it to control the drone. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
* **If QGroundControl doesn't connect**, you might need to disable the firewall and/or VPN on your computer.
* **Check the IMU is working**. Perform `imu` command and check its output:
* The `status` field should be `OK`.
* The `rate` field should be about 1000 (Hz).
* The `accel` and `gyro` fields should change as you move the drone.
* **Make sure you're not moving the drone several seconds after the power on**. The drone calibrates its gyroscope on the start so it should stay still for a while.
* **Check the IMU sample rate**. Perform `imu` command. The `rate` field should be about 1000 (Hz).
* **Check the IMU data**. Perform `imu` command, check raw accelerometer and gyro output. The output should change as you move the drone.
* **Calibrate the accelerometer.** if is wasn't done before. Type `ca` command in Serial Monitor and follow the instructions.
* **Check the attitude estimation**. Connect to the drone using QGroundControl. Rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct.
* **Check the IMU orientation is set correctly**. If the attitude estimation is rotated, make sure `rotateIMU` function is defined correctly in `imu.ino` file.
* **Check the motors type**. Motors with exact 3.7V voltage are needed, not ranged working voltage (3.7V — 6V).
* **Check the motors**. Perform the following commands using Serial Monitor:
* `mfr` — should rotate front right motor (counter-clockwise).
* `mfl` — should rotate front left motor (clockwise).
@@ -35,3 +30,4 @@ Do the following:
* **Calibrate the RC** if you use it. Type `cr` command in Serial Monitor and follow the instructions.
* **Check the RC data** if you use it. Use `rc` command, `Control` should show correct values between -1 and 1, and between 0 and 1 for the throttle.
* **Check the IMU output using QGroundControl**. Connect to the drone using QGroundControl on your computer. Go to the *Analyze* tab, *MAVLINK Inspector*. Plot the data from the `SCALED_IMU` message. The gyroscope and accelerometer data should change according to the drone movement.
* **Check the gyroscope only attitude estimation**. Comment out `applyAcc();` line in `estimate.ino` and check if the attitude estimation in QGroundControl. It should be stable, but only drift very slowly.

View File

@@ -1,249 +0,0 @@
# Usage: build, setup and flight
To use Flix, you need to build the firmware and upload it to the ESP32 board. For simulation, you need to build and run the simulator.
For the start, clone the repository using git:
```bash
git clone https://github.com/okalachev/flix.git
cd flix
```
## Simulation
### Ubuntu
The latest version of Ubuntu supported by Gazebo 11 simulator is 22.04. If you have a newer version, consider using a virtual machine.
1. Install Arduino CLI:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Install Gazebo 11:
```bash
curl -sSL http://get.gazebosim.org | sh
```
Set up your Gazebo environment variables:
```bash
echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc
source ~/.bashrc
```
3. Install SDL2 and other dependencies:
```bash
sudo apt-get update && sudo apt-get install build-essential libsdl2-dev
```
4. Add your user to the `input` group to enable joystick support (you need to re-login after this command):
```bash
sudo usermod -a -G input $USER
```
5. Run the simulation:
```bash
make simulator
```
### macOS
1. Install Homebrew package manager, if you don't have it installed:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
2. Install Arduino CLI, Gazebo 11 and SDL2:
```bash
brew tap osrf/simulation
brew install arduino-cli
brew install gazebo11
brew install sdl2
```
Set up your Gazebo environment variables:
```bash
echo "source /opt/homebrew/share/gazebo/setup.sh" >> ~/.zshrc
source ~/.zshrc
```
3. Run the simulation:
```bash
make simulator
```
### Setup
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone. For **iOS**, use [QGroundControl build from TAJISOFT](https://apps.apple.com/ru/app/qgc-from-tajisoft/id1618653051).
2. Connect your smartphone to the same Wi-Fi network as the machine running the simulator.
3. If you're using a virtual machine, make sure that its network is set to the **bridged** mode with Wi-Fi adapter selected.
4. Run the simulation.
5. Open QGroundControl app. It should connect and begin showing the virtual drone's telemetry automatically.
6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
7. Use the virtual joystick to fly the drone!
#### Control with USB remote control
1. Connect your USB remote control to the machine running the simulator.
2. Run the simulation.
3. Calibrate the RC using `cr` command in the command line interface.
4. Run the simulation again.
5. Use the USB remote control to fly the drone!
## Firmware
### Arduino IDE (Windows, Linux, macOS)
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Install ESP32 core, version 3.2.0. See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.16.
5. Clone the project using git or [download the source code as a ZIP archive](https://codeload.github.com/okalachev/flix/zip/refs/heads/master).
6. Open the downloaded Arduino sketch `flix/flix.ino` in Arduino IDE.
7. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
8. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
### Command line (Windows, Linux, macOS)
1. [Install Arduino CLI](https://arduino.github.io/arduino-cli/installation/).
On Linux, use:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Compile the firmware using `make`. Arduino dependencies will be installed automatically:
```bash
make
```
You can flash the firmware to the board using command:
```bash
make upload
```
You can also compile the firmware, upload it and start serial port monitoring using command:
```bash
make upload monitor
```
See other available Make commands in the [Makefile](../Makefile).
> [!TIP]
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including CLI and QGroundControl connection should work.
### Setup
Before flight you need to calibrate the accelerometer:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
2. Type `ca` command there and follow the instructions.
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
3. Connect your smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Open QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
5. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
6. Use the virtual joystick to fly the drone!
> [!TIP]
> Decrease `TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
#### Control with remote control
Before flight using remote control, you need to calibrate it:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
2. Type `cr` command there and follow the instructions.
3. Use the remote control to fly the drone!
#### Control with USB remote control (Wi-Fi)
If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it.
1. Install [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html) app on your computer.
2. Connect your USB remote control to the computer.
3. Power up the drone.
4. Connect your computer to the appeared `flix` Wi-Fi network (password: `flixwifi`).
5. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
6. Go the the QGroundControl menu ⇒ *Vehicle Setup**Joystick*. Calibrate you USB remote control there.
7. Use the USB remote control to fly the drone!
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
## Flight
For both virtual sticks and a physical joystick, the default control scheme is left stick for throttle and yaw and right stick for pitch and roll:
<img src="img/controls.svg" width="300">
### Arming and disarming
To start the motors, you should **arm** the drone. To do that, move the left stick to the bottom right corner:
<img src="img/arming.svg" width="150">
After that, the motors **will start spinning** at low speed, indicating that the drone is armed and ready to fly.
When finished flying, **disarm** the drone, moving the left stick to the bottom left corner:
<img src="img/disarming.svg" width="150">
### Flight modes
Flight mode is changed using mode switch on the remote control or using the command line.
#### STAB
The default mode is *STAB*. In this mode, the drone stabilizes its attitude (orientation). The left stick controls throttle and yaw rate, the right stick controls pitch and roll angles.
> [!IMPORTANT]
> The drone doesn't stabilize its position, so slight drift is possible. The pilot should compensate it manually.
#### ACRO
In this mode, the pilot controls the angular rates. This control method is difficult to fly and mostly used in FPV racing.
#### MANUAL
Manual mode disables all the stabilization, and the pilot inputs are passed directly to the motors. This mode is intended for testing and demonstration purposes only, and basically the drone **cannot fly in this mode**.
#### AUTO
In this mode, the pilot inputs are ignored (except the mode switch, if configured). The drone can be controlled using [pyflix](../tools/pyflix/) Python library, or by modifying the firmware to implement the needed autonomous behavior.
If the pilot moves the control sticks, the drone will switch back to *STAB* mode.
## Adjusting parameters
You can adjust some of the drone's parameters (include PID coefficients) in QGroundControl app. In order to do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Parameters*.
<img src="img/parameters.png" width="400">
## CLI access
In addition to accessing the drone's command line interface (CLI) using the serial port, you can also access it with QGroundControl using Wi-Fi connection. To do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Analyze Tools**MAVLink Console*.
<img src="img/cli.png" width="400">

View File

@@ -1,142 +0,0 @@
# Hall of fame
This page contains user-built drones based on the Flix project. Publish your projects into the official Telegram-chat: [@opensourcequadcopterchat](https://t.me/opensourcequadcopterchat) or send materials as a pull request.
---
## RoboCamp
Author: RoboCamp participants.<br>
Description: 3D-printed and wooden frames, ESP32 Mini, DC-DC buck-boost converters. BetaFPV LiteRadio 3 to control the drones via Wi-Fi connection.<br>
Features: altitude hold, obstacle avoidance, autonomous flight elements.<br>
Some of the designed model files: https://drive.google.com/drive/folders/18YHWGquKeIevzrMH4-OUT-zKXMETTEUu?usp=share_link.
RoboCamp took place in July 2025, Saint Petersburg, where 9 participants designed and built their own drones using the Flix project, and then modified the firmware to complete specific flight tasks.
See the detailed video about the event:
<a href="https://youtu.be/Wd3yaorjTx0"><img width=500 src="https://img.youtube.com/vi/Wd3yaorjTx0/sddefault.jpg"></a>
Built drones:
<img src="img/user/robocamp/1.jpg" width=500>
---
Author: chkroko.<br>
Description: the first Flix drone built with **brushless motors** (DShot interface).<br>
Features: SpeedyBee BLS 35A Mini V2 ESC, ESP32-S3 board, EMAX ECO 2 2207 1700kv motors, ICM20948V2 IMU, INA226 power monitor and Bluetooth gamepad for control.<br>
Patch for DShot ESC: https://github.com/Krokodilushka/flix/commit/568345a45ca7ed5b458a11a9d0a9f4c8a91e70ac.
**Flight video:**
<a href="https://drive.google.com/file/d/1GFRanASxKmXINi70fxS5RuzV3LJp7f3m/view?usp=share_link"><img height=300 src="img/user/chkroko-bldc/video.jpg"></a>
<img src="img/user/chkroko-bldc/1.jpg" height=150> <img src="img/user/chkroko-bldc/2.jpg" height=150> <img src="img/user/chkroko-bldc/3.jpg" height=150>
---
Author: chkroko.<br>
Modification: Control using Bluetooth with **Flydigi Vader 3** gamepad. Source code: https://github.com/Krokodilushka/flix/tree/dev.<br>
Features: ESP32-C3 SuperMini, BMP580 barometer, INA226 power monitor, IRLZ44N MOSFETs.<br>
Full description: https://telegra.ph/Flix-dron-06-13.
**Flight video:**
<a href="https://drive.google.com/file/d/1orVKA_-gsezDTns2Xt8xW1BCWPcyPitR/view?usp=sharing"><img height=300 src="img/user/chkroko/video.jpg"></a>
<img src="img/user/chkroko/1.jpg" height=150> <img src="img/user/chkroko/2.jpg" height=150>
---
Author: chkroko.<br>
Features: ESP32-C3 SuperMini board, INA226 power monitor, IRLZ44N MOSFETs, MPU-6500 IMU.
**Flight video:**
<a href="https://drive.google.com/file/d/1-4ciDsj8slTEaxxRl1-QAkx0cUDkb8iy/view?usp=sharing"><img height=300 src="img/user/cryptokobans/video.jpg"></a>
<img src="img/user/cryptokobans/1.jpg" height=150> <img src="img/user/cryptokobans/2.jpg" height=150>
---
Author: [@jeka_chex](https://t.me/jeka_chex).<br>
Features: custom frame, FPV camera, 3-blade 31 mm propellers.<br>
Motor drivers: AON7410 MOSFET + capacitors.<br>
Custom frame files: https://drive.google.com/drive/folders/1QCIc-_YYFxJN4cMhVLjL5SflqegvCowm?usp=share_link.<br>
**Flight video:**
<a href="https://drive.google.com/file/d/1VnWI5YVPojfqsfpyLX4v2V9zHi9adwcd/view?usp=sharing"><img height=300 src="img/user/jeka_chex/video.jpg"></a>
**FPV flight video:**
<a href="https://drive.google.com/file/d/1RSU6VWs9omsge4hGloH5NQqnxvLyhMKB/view?usp=sharing"><img height=300 src="img/user/jeka_chex/video-fpv.jpg"></a>
<img src="img/user/jeka_chex/1.jpg" height=150> <img src="img/user/jeka_chex/2.jpg" height=150> <img src="img/user/jeka_chex/3.jpg" height=150> <img src="img/user/jeka_chex/4.jpg" height=150> <img src="img/user/jeka_chex/5.jpg" height=150>
---
Author: [@fisheyeu](https://t.me/fisheyeu).<br>
[Video](https://drive.google.com/file/d/1IT4eMmWPZpmaZR_qsIRmNJ52hYkFB_0q/view?usp=share_link).
<img src="img/user/fisheyeu/1.jpg" height=300> <img src="img/user/fisheyeu/2.jpg" height=300>
---
Author: [@p_kabakov](https://t.me/p_kabakov).<br>
Custom propellers guard 3D-model: https://drive.google.com/file/d/1TKnzwvrZYzYuRTLLERNmnKH71H9n4Xj_/view?usp=share_link.<br>
Features: ESP32-C3 microcontroller is used.<br>
[Video](https://drive.google.com/file/d/1B0NMcsk0fgwUgNr9XuLOdR2yYCuaj008/view?usp=share_link).
<img src="img/user/p_kabakov/1.jpg" width=150> <img src="img/user/p_kabakov/2.jpg" width=150> <img src="img/user/p_kabakov/3.jpg" width=150>
**Custom Wi-Fi RC control:**
<a href="https://github.com/pavelkabakov/flix/blob/master/rc_control_v1/IMG_20250221_195756.jpg"><img height=300 src="img/user/p_kabakov/wifirc.jpg"></a>
See source and description (in Russian): https://github.com/pavelkabakov/flix/tree/master/rc_control_v1.
---
Author: [@yi_lun](https://t.me/yi_lun).<br>
[Video](https://drive.google.com/file/d/1TkSuvHQ_0qQPFUpY5XjJzmhnpX_07cTg/view?usp=share_link).
<img src="img/user/yi_lun/1.jpg" width=300> <img src="img/user/yi_lun/2.jpg" width=300>
---
Author: [@peter_ukhov](https://t.me/peter_ukhov).<br>
Features: customized ESP32 holder, GY-ICM20948V2 IMU board, boost-converter for powering the ESP32.<br>
Files for 3D-printing: https://drive.google.com/file/d/1Sma-FEzFBj2HA5ixJtUyH0uWixvr6vdK/view?usp=share_link.<br>
Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612179508274&cot=14.<br>
<a href="https://www.youtube.com/watch?v=wi4w_hOmKcQ"><img width=500 src="img/user/peter_ukhov-2/video.jpg"></a>
<img src="img/user/peter_ukhov-2/1.jpg" width=300> <img src="img/user/peter_ukhov-2/2.jpg" width=300>
---
Author: [@Alexey_Karakash](https://t.me/Alexey_Karakash).<br>
Files for 3D printing of the custom frame: https://drive.google.com/file/d/1tkNmujrHrKpTMVtsRH3mor2zdAM0JHum/view?usp=share_link.<br>
<a href="https://t.me/opensourcequadcopter/61"><img width=500 src="img/user/alexey_karakash/video.jpg"></a>
<img src="img/user/alexey_karakash/1.jpg" height=150> <img src="img/user/alexey_karakash/2.jpg" height=150> <img src="img/user/alexey_karakash/3.jpg" height=150> <img src="img/user/alexey_karakash/4.jpg" height=150> <img src="img/user/alexey_karakash/5.jpg" height=150>
---
Author: [@rudpa](https://t.me/rudpa).<br>
<a href="https://t.me/opensourcequadcopter/46"><img width=500 src="img/user/rudpa/video.jpg"></a>
<img src="img/user/rudpa/1.jpg" height=150> <img src="img/user/rudpa/2.jpg" height=150> <img src="img/user/rudpa/3.jpg" height=150>
---
Author: [@peter_ukhov](https://t.me/peter_ukhov).<br>
Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14.<br>
<a href="https://t.me/opensourcequadcopter/24"><img width=500 src="img/user/peter_ukhov/video.jpg"></a>
<img src="img/user/peter_ukhov/1.jpg" height=150> <img src="img/user/peter_ukhov/2.jpg" height=150> <img src="img/user/peter_ukhov/3.jpg" height=150>

View File

@@ -27,4 +27,4 @@ Flix version 0 (obsolete):
<img src="img/schematics.svg" width=800 alt="Flix schematics">
You can also check a user contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764574482511443&cot=14) of the drone.
You can also check a user contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/) of the drone.

Some files were not shown because too many files have changed in this diff Show More