Major UART communication improvement

- the UART communication is improved based on UART Idle line detection interrupt
- both Tx and Rx are efficiently handled using DMA

Other:
- minor visual improvements
This commit is contained in:
EmanuelFeru
2020-06-21 23:07:01 +02:00
parent e9d74bea29
commit 1e7bf7cd90
11 changed files with 312 additions and 183 deletions

View File

@@ -16,6 +16,7 @@
#include "systick.h"
#include "i2c_it.h"
#include "config.h"
#include "util.h"
/*!
\brief this function handles NMI exception
@@ -121,6 +122,20 @@ void SysTick_Handler(void)
delay_decrement();
}
/*!
\brief this function handles the USART1 interrupt request
\param[in] none
\param[out] none
\retval none
*/
void USART1_IRQHandler(void)
{
if(RESET != usart_interrupt_flag_get(USART1, USART_INT_FLAG_IDLE)) { // Check for IDLE line interrupt
usart_flag_clear(USART1, USART_FLAG_IDLE); // Clear IDLE line flag (otherwise it will continue to enter interrupt)
usart_rx_check(); // Check for data to process
}
}
/*!
\brief this function handles I2C0 event interrupt request exception
\param[in] none

View File

@@ -30,76 +30,33 @@
#include "mpu6050_dmp.h"
#ifdef SERIAL_CONTROL
typedef struct{
uint16_t start;
int16_t roll;
int16_t pitch;
int16_t yaw;
uint16_t sensors;
uint16_t checksum;
} SerialSideboard;
SerialSideboard Sideboard;
extern SerialSideboard Sideboard;
#endif
#ifdef SERIAL_FEEDBACK
typedef struct{
uint16_t start;
int16_t cmd1;
int16_t cmd2;
int16_t speedR_meas;
int16_t speedL_meas;
int16_t batVoltage;
int16_t boardTemp;
uint16_t cmdLed;
uint16_t checksum;
} SerialFeedback;
SerialFeedback Feedback;
SerialFeedback NewFeedback;
static int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
extern SerialFeedback Feedback;
extern uint16_t timeoutCntSerial; // Timeout counter for Rx Serial command
extern uint8_t timeoutFlagSerial; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
extern MPU_Data mpu; // holds the MPU-6050 data
ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
extern MPU_Data mpu; // holds the MPU-6050 data
extern ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
uint8_t userCommand; // holds the user command input
FlagStatus sensor1, sensor2; // holds the sensor1 and sensor 2 values
FlagStatus sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
FlagStatus sensor1, sensor2; // holds the sensor1 and sensor 2 values
FlagStatus sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
int main(void)
{
systick_config(); // SysTick config
gpio_config(); // GPIO config
usart_config(USART_MAIN, USART_MAIN_BAUD); // USART config
gpio_config(); // GPIO config
usart_nvic_config(); // USART interrupt configuration
usart_config(USART_MAIN, USART_MAIN_BAUD); // USART config
i2c_config(); // I2C config
i2c_nvic_config(); // NVIC peripheral config
#ifdef SERIAL_CONTROL
usart_Tx_DMA_config(USART_MAIN, (uint8_t *)&Sideboard, sizeof(Sideboard));
#endif
#ifdef SERIAL_FEEDBACK
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
#endif
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
#ifdef MPU_SENSOR_ENABLE
if(mpu_config()) { // IMU MPU-6050 config
mpuStatus = ERROR;
gpio_bit_set(LED1_GPIO_Port, LED1_Pin); // Turn on RED LED
}
else {
mpuStatus = SUCCESS;
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
}
mpu_handle_input('h'); // Print the User Help commands to serial
#else
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
#endif
i2c_nvic_config(); // I2C interrupt configuration
input_init(); // Input initialization
while(1) {
@@ -116,22 +73,9 @@ int main(void)
if (Feedback.cmdLed & LED5_SET) { gpio_bit_set(LED5_GPIO_Port, LED5_Pin); } else { gpio_bit_reset(LED5_GPIO_Port, LED5_Pin); }
if (Feedback.cmdLed & LED4_SET) { gpio_bit_set(AUX3_GPIO_Port, AUX3_Pin); } else { gpio_bit_reset(AUX3_GPIO_Port, AUX3_Pin); }
}
#endif
// ==================================== USER Handling ====================================
#if defined(MPU_SENSOR_ENABLE) && defined(SERIAL_DEBUG)
// Get the user Input as one character from Serial
if(SET == usart_flag_get(USART_MAIN, USART_FLAG_RBNE)) { // Check if Read Buffer Not Empty meanind Serial data is available
userCommand = usart_data_receive(USART_MAIN);
if (userCommand != 10 && userCommand != 13) { // Do not accept 'new line' (ascii 10) and 'carriage return' (ascii 13) commands
log_i("Command = %c\n", userCommand);
mpu_handle_input(userCommand);
}
}
#endif
#endif
// ==================================== MPU-6050 Handling ====================================
#ifdef MPU_SENSOR_ENABLE
// Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically
@@ -152,26 +96,28 @@ int main(void)
// SENSOR1
if (sensor1 == RESET && sensor1_read == SET) {
sensor1 = SET;
// Sensor ACTIVE: Do something here (one time task on activation)
sensor1 = SET;
gpio_bit_set(LED4_GPIO_Port, LED4_Pin);
consoleLog("-- SENSOR 1 Active --\n");
consoleLog("-- SENSOR 1 Active --\n");
} else if(sensor1 == SET && sensor1_read == RESET) {
// Sensor DEACTIVE: Do something here (one time task on deactivation)
sensor1 = RESET;
gpio_bit_reset(LED4_GPIO_Port, LED4_Pin);
consoleLog("-- SENSOR 1 Deactive --\n");
consoleLog("-- SENSOR 1 Deactive --\n");
}
// SENSOR2
if (sensor2 == RESET && sensor2_read == SET) {
sensor2 = SET;
// Sensor ACTIVE: Do something here (one time task on activation)
sensor2 = SET;
gpio_bit_set(LED5_GPIO_Port, LED5_Pin);
consoleLog("-- SENSOR 2 Active --\n");
consoleLog("-- SENSOR 2 Active --\n");
} else if (sensor2 == SET && sensor2_read == RESET) {
// Sensor DEACTIVE: Do something here (one time task on deactivation)
sensor2 = RESET;
gpio_bit_reset(LED5_GPIO_Port, LED5_Pin);
consoleLog("-- SENSOR 2 Deactive --\n");
consoleLog("-- SENSOR 2 Deactive --\n");
}
if (sensor1 == SET) {
@@ -181,10 +127,11 @@ int main(void)
// Sensor ACTIVE: Do something here (continuous task)
}
// ==================================== SERIAL Tx/Rx Handling ====================================
#ifdef SERIAL_CONTROL
// To transmit on USART
if (main_loop_counter % 5 == 0 && SET == dma_flag_get(DMA_CH3, DMA_FLAG_FTF)) { // check if DMA channel transfer complete (Full Transfer Finish flag == 1)
if (main_loop_counter % 5 == 0 && dma_transfer_number_get(DMA_CH3) == 0) { // Check if DMA channel counter is 0 (meaning all data has been transferred)
Sideboard.start = (uint16_t)SERIAL_START_FRAME;
Sideboard.roll = (int16_t)mpu.euler.roll;
Sideboard.pitch = (int16_t)mpu.euler.pitch;
@@ -200,33 +147,13 @@ int main(void)
#endif
#ifdef SERIAL_FEEDBACK
uint16_t checksum;
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas
^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
if (timeoutFlagSerial) { // Check for previous timeout flag
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
timeoutFlagSerial = 0; // Timeout flag cleared
} else {
memcpy(&Feedback, &NewFeedback, sizeof(Feedback)); // Copy the new data
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
}
} else {
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
// Most probably we are out-of-sync. Try to re-sync by reseting the DMA
if (NewFeedback.start != SERIAL_START_FRAME && NewFeedback.start != 0xFFFF && main_loop_counter % 5 == 0) {
dma_channel_disable(DMA_CH4);
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
}
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired
toggle_led(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms
}
}
#endif
main_loop_counter++;

View File

@@ -3714,10 +3714,11 @@ void mpu_android_orient_func(unsigned char orientation)
/* =========================== User Input Handling =========================== */
void mpu_handle_input(char c)
{
#ifdef SERIAL_DEBUG
switch (c) {
/* This command prints the Help text. */
case 'h':
consoleLog("=================== HELP COMMANDS ===================\n");
consoleLog("====== HELP COMMANDS ======\n");
consoleLog("h: Print Help commands\n");
consoleLog("8: Set Accelerometer sensor on/off\n");
consoleLog("9: Set Gyroscope sensor on/off\n");
@@ -3730,17 +3731,15 @@ void mpu_handle_input(char c)
consoleLog("p: Print Pedometer data\n");
consoleLog("0: Reset Pedometer\n");
consoleLog("1: Set DMP/MPU frequency 10 Hz\n");
consoleLog("2: Set DMP/MPU frequency 20 Hz\n");
consoleLog("3: Set DMP/MPU frequency 40 Hz\n");
consoleLog("4: Set DMP/MPU frequency 50 Hz\n");
consoleLog("5: Set DMP/MPU frequency 100 Hz\n");
consoleLog("2: Set DMP/MPU frequency 50 Hz\n");
consoleLog("3: Set DMP/MPU frequency 100 Hz\n");
consoleLog(",: Set DMP interrupt to gesture event only\n");
consoleLog(".: Set DMP interrupt to continuous\n");
consoleLog("f: Set DMP on/off\n");
consoleLog("v: Set Quaternion on/off\n");
consoleLog("w: Test out low-power accel mode\n");
consoleLog("w: Test low-power accel mode\n");
consoleLog("s: Run self-test (device must be facing up or down)\n");
consoleLog("=====================================================\n");
consoleLog("===========================\n");
break;
/* These commands turn off individual sensors. */
@@ -3793,33 +3792,21 @@ void mpu_handle_input(char c)
*/
case '1':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(10)) {consoleLog("DMP set to 10 Hz.\n");}
if (0 == dmp_set_fifo_rate(10)) {consoleLog("DMP: 10 Hz\n");}
} else
if (0 == mpu_set_sample_rate(10)) {consoleLog("MPU set to 10 Hz.\n");}
if (0 == mpu_set_sample_rate(10)) {consoleLog("MPU: 10 Hz\n");}
break;
case '2':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(20)) {consoleLog("DMP set to 20 Hz.\n");}
if (0 == dmp_set_fifo_rate(50)) {consoleLog("DMP: 50 Hz\n");}
} else
if (0 == mpu_set_sample_rate(20)) {consoleLog("MPU set to 20 Hz.\n");}
if (0 == mpu_set_sample_rate(50)) {consoleLog("MPU: 50 Hz\n");}
break;
case '3':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(40)) {consoleLog("DMP set to 40 Hz.\n");}
if (0 == dmp_set_fifo_rate(100)) {consoleLog("DMP: 100 Hz\n");}
} else
if (0 == mpu_set_sample_rate(40)) {consoleLog("MPU set to 40 Hz.\n");}
break;
case '4':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(50)) {consoleLog("DMP set to 50 Hz.\n");}
} else
if (0 == mpu_set_sample_rate(50)) {consoleLog("MPU set to 50 Hz.\n");}
break;
case '5':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(100)) {consoleLog("DMP set to 100 Hz.\n");}
} else
if (0 == mpu_set_sample_rate(100)) {consoleLog("MPU set to 100 Hz.\n");}
if (0 == mpu_set_sample_rate(100)) {consoleLog("MPU: 100 Hz\n");}
break;
/* Set hardware to interrupt on gesture event only. This feature is
@@ -3918,7 +3905,7 @@ void mpu_handle_input(char c)
default:
break;
}
#endif // SERIAL_DEBUG
}

View File

@@ -26,7 +26,7 @@
#include "util.h"
// Global variables
extern volatile ErrStatus status;
extern volatile ErrStatus status;
// Private variables
static rcu_periph_enum USART_CLK[USARTn] = { USART_AUX_CLK,
@@ -179,7 +179,12 @@ void usart_config(uint32_t selUSART, uint32_t selBaudRate) {
usart_baudrate_set(selUSART, selBaudRate);
usart_transmit_config(selUSART, USART_TRANSMIT_ENABLE);
usart_receive_config(selUSART, USART_RECEIVE_ENABLE);
usart_oversample_config(selUSART, USART_OVSMOD_16); // oversampling: {USART_OVSMOD_8, USART_OVSMOD_16}
usart_sample_bit_config(selUSART, USART_OSB_3BIT); // sample bit: {USART_OSB_1BIT, USART_OSB_3BIT }
usart_enable(selUSART);
/* enable the USART IDLE line detection interrupt */
usart_interrupt_enable(selUSART, USART_INT_IDLE);
}
@@ -188,7 +193,7 @@ void usart_config(uint32_t selUSART, uint32_t selBaudRate) {
// DMA_CH3 = USART1_TX
// DMA_CH4 = USART1_RX
void usart_Tx_DMA_config(uint32_t selUSART, uint8_t *pData, uint32_t Size) {
void usart_Tx_DMA_config(uint32_t selUSART, uint8_t *pData, uint32_t dSize) {
dma_parameter_struct dma_init_struct;
@@ -203,7 +208,7 @@ void usart_Tx_DMA_config(uint32_t selUSART, uint8_t *pData, uint32_t Size) {
dma_init_struct.memory_addr = (uint32_t)pData;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = Size;
dma_init_struct.number = dSize;
dma_init_struct.periph_addr = USART1_TDATA_ADDRESS;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
@@ -214,30 +219,33 @@ void usart_Tx_DMA_config(uint32_t selUSART, uint8_t *pData, uint32_t Size) {
dma_circulation_disable(DMA_CH3);
dma_memory_to_memory_disable(DMA_CH3);
/* USART DMA enable for transmission */
usart_dma_transmit_config(selUSART, USART_DENT_ENABLE);
/* enable DMA channel1 */
dma_channel_enable(DMA_CH3);
/* USART DMA enable for transmission and reception */
usart_dma_transmit_config(selUSART, USART_DENT_ENABLE);
/* wait DMA channel transfer complete */
// while (RESET == dma_flag_get(DMA_CH3, DMA_FLAG_FTF));
}
void usart_Rx_DMA_config(uint32_t selUSART, uint8_t *pData, uint32_t Size) {
void usart_Rx_DMA_config(uint32_t selUSART, uint8_t *pData, uint32_t dSize) {
dma_parameter_struct dma_init_struct;
// --------------------------- RX Channel ---------------------------
/* enable DMA clock */
rcu_periph_clock_enable(RCU_DMA);
/* deinitialize DMA channel4 */
dma_deinit(DMA_CH4);
dma_init_struct.direction = DMA_PERIPHERAL_TO_MEMORY;
dma_init_struct.memory_addr = (uint32_t)pData;
dma_init_struct.memory_inc = DMA_MEMORY_INCREASE_ENABLE;
dma_init_struct.memory_width = DMA_MEMORY_WIDTH_8BIT;
dma_init_struct.number = Size;
dma_init_struct.number = dSize;
dma_init_struct.periph_addr = USART1_RDATA_ADDRESS;
dma_init_struct.periph_inc = DMA_PERIPH_INCREASE_DISABLE;
dma_init_struct.periph_width = DMA_PERIPHERAL_WIDTH_8BIT;
@@ -248,9 +256,12 @@ void usart_Rx_DMA_config(uint32_t selUSART, uint8_t *pData, uint32_t Size) {
dma_circulation_enable(DMA_CH4); // dma_circulation_disable(DMA_CH4);
dma_memory_to_memory_disable(DMA_CH4);
dma_channel_enable(DMA_CH4);
/* USART DMA enable for reception */
usart_dma_receive_config(selUSART, USART_DENR_ENABLE);
/* enable DMA channel */
dma_channel_enable(DMA_CH4);
/* wait DMA channel transfer complete */
// while (RESET == dma_flag_get(DMA_CH4, DMA_FLAG_FTF));
@@ -284,6 +295,12 @@ void i2c_config(void) {
}
void usart_nvic_config(void)
{
nvic_irq_enable(USART1_IRQn, 0, 1);
}
void i2c_nvic_config(void)
{
/* configure the NVIC peripheral */

View File

@@ -19,12 +19,35 @@
// Includes
#include <stdio.h>
#include <string.h>
#include "systick.h"
#include "gd32f1x0.h"
#include "defines.h"
#include "config.h"
#include "setup.h"
#include "util.h"
#include "mpu6050.h"
// USART variables
#ifdef SERIAL_CONTROL
SerialSideboard Sideboard;
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
static uint8_t rx_buffer[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_len = ARRAY_LEN(rx_buffer);
#endif
#ifdef SERIAL_FEEDBACK
SerialFeedback Feedback;
SerialFeedback FeedbackRaw;
uint16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
static uint32_t Feedback_len = sizeof(Feedback);
#endif
// MPU variables
ErrStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
// MAIN I2C variables
volatile int8_t i2c_status;
@@ -120,6 +143,123 @@ void intro_demo_led(uint32_t tDelay)
}
/* =========================== Input Initialization Function =========================== */
void input_init(void) {
#ifdef SERIAL_CONTROL
usart_Tx_DMA_config(USART_MAIN, (uint8_t *)&Sideboard, sizeof(Sideboard));
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
usart_Rx_DMA_config(USART_MAIN, (uint8_t *)rx_buffer, sizeof(rx_buffer));
#endif
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
#ifdef MPU_SENSOR_ENABLE
if(mpu_config()) { // IMU MPU-6050 config
mpuStatus = ERROR;
gpio_bit_set(LED1_GPIO_Port, LED1_Pin); // Turn on RED LED
}
else {
mpuStatus = SUCCESS;
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
}
mpu_handle_input('h'); // Print the User Help commands to serial
#else
gpio_bit_set(LED2_GPIO_Port, LED2_Pin); // Turn on GREEN LED
#endif
}
/* =========================== USART READ Functions =========================== */
/*
* Check for new data received on USART with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart_rx_check(void)
{
#ifdef SERIAL_DEBUG
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_len - dma_transfer_number_get(DMA_CH4); // Calculate current position in buffer
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer[old_pos], rx_buffer_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer[0], pos); // Process remaining data
}
}
}
old_pos = pos; // Update old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_DEBUG
#ifdef SERIAL_FEEDBACK
static uint32_t old_pos;
uint32_t pos;
uint8_t *ptr;
pos = rx_buffer_len - dma_transfer_number_get(DMA_CH4); // Calculate current position in buffer
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&FeedbackRaw; // Initialize the pointer with FeedbackRaw address
if (pos > old_pos && (pos - old_pos) == Feedback_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], Feedback_len); // Copy data. This is possible only if FeedbackRaw is contiguous! (meaning all the structure members have the same size)
usart_process_data(&FeedbackRaw, &Feedback); // Process data
} else if ((rx_buffer_len - old_pos + pos) == Feedback_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], rx_buffer_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_len - old_pos; // Move to correct position in FeedbackRaw
memcpy(ptr, &rx_buffer[0], pos); // Copy remaining data
}
usart_process_data(&FeedbackRaw, &Feedback); // Process data
}
}
old_pos = pos; // Updated old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_FEEDBACK
}
/*
* Process Rx debug user command input
*/
#ifdef SERIAL_DEBUG
void usart_process_debug(uint8_t *userCommand, uint32_t len)
{
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
log_i("Command = %c\n", *userCommand);
mpu_handle_input(*userCommand);
}
}
}
#endif // SERIAL_DEBUG
/*
* Process Rx data
* - if the Feedback_in data is valid (correct START_FRAME and checksum) copy the Feedback_in to Feedback_out
*/
#ifdef SERIAL_FEEDBACK
void usart_process_data(SerialFeedback *Feedback_in, SerialFeedback *Feedback_out)
{
uint16_t checksum;
if (Feedback_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(Feedback_in->start ^ Feedback_in->cmd1 ^ Feedback_in->cmd2 ^ Feedback_in->speedR_meas ^ Feedback_in->speedL_meas
^ Feedback_in->batVoltage ^ Feedback_in->boardTemp ^ Feedback_in->cmdLed);
if (Feedback_in->checksum == checksum) {
*Feedback_out = *Feedback_in;
timeoutCntSerial = 0; // Reset timeout counter
timeoutFlagSerial = 0; // Clear timeout flag
}
}
}
#endif // SERIAL_FEEDBACK
/* =========================== I2C WRITE Functions =========================== */
/*