Major UART communication improvement

- the UART communication is improved based on UART Idle line detection interrupt
- an Rx ring buffer is used to manage the UART incoming data
- both Tx and Rx are efficiently handled using DMA
- fixed #1

Other:
- minor visual improvements
This commit is contained in:
EmanuelFeru
2020-06-21 23:09:27 +02:00
parent 9edd22b6b7
commit ee6ab3a886
9 changed files with 273 additions and 185 deletions

View File

@@ -49,24 +49,7 @@
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
extern UART_HandleTypeDef huart2;
uint8_t rxBuffer, userCommand = 0; // holds the user command input
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
{
}
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
__HAL_UART_FLUSH_DRREGISTER(&huart2); // Clear the buffer to prevent overrun
#ifdef SERIAL_DEBUG
if (rxBuffer != '\n' && rxBuffer != '\r') { // Do not accept 'new line' (ascii 10) and 'carriage return' (ascii 13) commands
userCommand = rxBuffer;
}
#endif
}
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
@@ -83,44 +66,25 @@ void SystemClock_Config(void);
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
extern UART_HandleTypeDef huart2;
#ifdef SERIAL_CONTROL
typedef struct{
uint16_t start;
int16_t roll;
int16_t pitch;
int16_t yaw;
uint16_t sensors;
uint16_t checksum;
} SerialSideboard;
SerialSideboard Sideboard;
extern SerialSideboard Sideboard;
#endif
#ifdef SERIAL_FEEDBACK
typedef struct{
uint16_t start;
int16_t cmd1;
int16_t cmd2;
int16_t speedR_meas;
int16_t speedL_meas;
int16_t batVoltage;
int16_t boardTemp;
uint16_t cmdLed;
uint16_t checksum;
} SerialFeedback;
SerialFeedback Feedback;
SerialFeedback NewFeedback;
static int16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
static uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
extern SerialFeedback Feedback;
extern uint16_t timeoutCntSerial; // Timeout counter for Rx Serial command
extern uint8_t timeoutFlagSerial; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
extern MPU_Data mpu; // holds the MPU-6050 data
ErrorStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
extern MPU_Data mpu; // holds the MPU-6050 data
extern ErrorStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
GPIO_PinState sensor1, sensor2; // holds the sensor1 and sensor 2 values
GPIO_PinState sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
GPIO_PinState sensor1, sensor2; // holds the sensor1 and sensor 2 values
GPIO_PinState sensor1_read, sensor2_read; // holds the instantaneous Read for sensor1 and sensor 2
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
static uint32_t main_loop_counter; // main loop counter to perform task squeduling inside main()
/* USER CODE END 0 */
/**
@@ -155,36 +119,7 @@ int main(void)
MX_USART2_UART_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
#ifdef SERIAL_DEBUG
__HAL_UART_FLUSH_DRREGISTER(&huart2);
HAL_UART_Receive_DMA (&huart2, (uint8_t *)&rxBuffer, sizeof(rxBuffer));
#endif
#ifdef SERIAL_CONTROL
__HAL_UART_FLUSH_DRREGISTER(&huart2);
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
#endif
#ifdef SERIAL_FEEDBACK
__HAL_UART_FLUSH_DRREGISTER(&huart2);
HAL_UART_Receive_DMA (&huart2, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
#endif
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
#ifdef MPU_SENSOR_ENABLE
if(mpu_config()) { // IMU MPU-6050 config
mpuStatus = ERROR;
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on RED LED
}
else {
mpuStatus = SUCCESS;
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
}
mpu_handle_input('h'); // Print the User Help commands to serial
#else
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
#endif
input_init(); // Input initialization
/* USER CODE END 2 */
/* Infinite loop */
@@ -203,19 +138,9 @@ int main(void)
if (Feedback.cmdLed & LED4_SET) { HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET); }
if (Feedback.cmdLed & LED5_SET) { HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET); } else { HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET); }
}
#endif
// ==================================== USER Handling ====================================
#if defined(MPU_SENSOR_ENABLE) && defined(SERIAL_DEBUG)
// Get the user Input as one character from Serial
if (userCommand != 0) { // Check the availability of a user command set by the UART DMA
log_i("Command = %c\n", userCommand);
mpu_handle_input(userCommand);
userCommand = 0;
}
#endif
#endif
// ==================================== MPU-6050 Handling ====================================
#if defined(MPU_SENSOR_ENABLE) && defined(SERIAL_DEBUG)
// Get MPU data. Because the MPU-6050 interrupt pin is not wired we have to check DMP data by pooling periodically
@@ -242,6 +167,7 @@ int main(void)
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_SET);
consoleLog("-- SENSOR 1 Active --\n");
} else if(sensor1 == GPIO_PIN_SET && sensor1_read == GPIO_PIN_RESET) {
// Sensor DEACTIVE: Do something here (one time task on deactivation)
sensor1 = GPIO_PIN_RESET;
HAL_GPIO_WritePin(LED4_GPIO_Port, LED4_Pin, GPIO_PIN_RESET);
consoleLog("-- SENSOR 1 Deactive --\n");
@@ -254,6 +180,7 @@ int main(void)
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_SET);
consoleLog("-- SENSOR 2 Active --\n");
} else if (sensor2 == GPIO_PIN_SET && sensor2_read == GPIO_PIN_RESET) {
// Sensor DEACTIVE: Do something here (one time task on deactivation)
sensor2 = GPIO_PIN_RESET;
HAL_GPIO_WritePin(LED5_GPIO_Port, LED5_Pin, GPIO_PIN_RESET);
consoleLog("-- SENSOR 2 Deactive --\n");
@@ -269,7 +196,7 @@ int main(void)
// ==================================== SERIAL Tx/Rx Handling ====================================
#ifdef SERIAL_CONTROL
if (main_loop_counter % 5 == 0) { // Transmit Tx data periodically using DMA
if (main_loop_counter % 5 == 0 && __HAL_DMA_GET_COUNTER(huart2.hdmatx) == 0) { // Check if DMA channel counter is 0 (meaning all data has been transferred)
Sideboard.start = (uint16_t)SERIAL_START_FRAME;
Sideboard.roll = (int16_t)mpu.euler.roll;
Sideboard.pitch = (int16_t)mpu.euler.pitch;
@@ -282,32 +209,12 @@ int main(void)
#endif
#ifdef SERIAL_FEEDBACK
uint16_t checksum;
checksum = (uint16_t)(NewFeedback.start ^ NewFeedback.cmd1 ^ NewFeedback.cmd2 ^ NewFeedback.speedR_meas ^ NewFeedback.speedL_meas
^ NewFeedback.batVoltage ^ NewFeedback.boardTemp ^ NewFeedback.cmdLed);
if (NewFeedback.start == SERIAL_START_FRAME && NewFeedback.checksum == checksum) {
if (timeoutFlagSerial) { // Check for previous timeout flag
if (timeoutCntSerial-- <= 0) // Timeout de-qualification
timeoutFlagSerial = 0; // Timeout flag cleared
} else {
memcpy(&Feedback, &NewFeedback, sizeof(Feedback)); // Copy the new data
NewFeedback.start = 0xFFFF; // Change the Start Frame for timeout detection in the next cycle
timeoutCntSerial = 0; // Reset the timeout counter
}
} else {
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
// Most probably we are out-of-sync. Try to re-sync by reseting the DMA
if (NewFeedback.start != SERIAL_START_FRAME && NewFeedback.start != 0xFFFF && main_loop_counter % 5 == 0) {
HAL_UART_DMAStop(&huart2);
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&NewFeedback, sizeof(NewFeedback));
}
}
if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired
HAL_GPIO_TogglePin(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms
if (timeoutCntSerial++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial = SERIAL_TIMEOUT; // Limit timout counter value
}
if (timeoutFlagSerial && main_loop_counter % 100 == 0) { // In case of timeout bring the system to a Safe State and indicate error if desired
HAL_GPIO_TogglePin(LED3_GPIO_Port, LED3_Pin); // Toggle the Yellow LED every 100 ms
}
#endif

View File

@@ -3714,10 +3714,11 @@ void mpu_android_orient_func(unsigned char orientation)
/* =========================== User Input Handling =========================== */
void mpu_handle_input(char c)
{
#ifdef SERIAL_DEBUG
switch (c) {
/* This command prints the Help text. */
case 'h':
consoleLog("=================== HELP COMMANDS ===================\n");
consoleLog("====== HELP COMMANDS ======\n");
consoleLog("h: Print Help commands\n");
consoleLog("8: Set Accelerometer sensor on/off\n");
consoleLog("9: Set Gyroscope sensor on/off\n");
@@ -3730,17 +3731,15 @@ void mpu_handle_input(char c)
consoleLog("p: Print Pedometer data\n");
consoleLog("0: Reset Pedometer\n");
consoleLog("1: Set DMP/MPU frequency 10 Hz\n");
consoleLog("2: Set DMP/MPU frequency 20 Hz\n");
consoleLog("3: Set DMP/MPU frequency 40 Hz\n");
consoleLog("4: Set DMP/MPU frequency 50 Hz\n");
consoleLog("5: Set DMP/MPU frequency 100 Hz\n");
consoleLog("2: Set DMP/MPU frequency 50 Hz\n");
consoleLog("3: Set DMP/MPU frequency 100 Hz\n");
consoleLog(",: Set DMP interrupt to gesture event only\n");
consoleLog(".: Set DMP interrupt to continuous\n");
consoleLog("f: Set DMP on/off\n");
consoleLog("v: Set Quaternion on/off\n");
consoleLog("w: Test out low-power accel mode\n");
consoleLog("w: Test low-power accel mode\n");
consoleLog("s: Run self-test (device must be facing up or down)\n");
consoleLog("=====================================================\n");
consoleLog("===========================\n");
break;
/* These commands turn off individual sensors. */
@@ -3793,33 +3792,21 @@ void mpu_handle_input(char c)
*/
case '1':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(10)) {consoleLog("DMP set to 10 Hz.\n");}
if (0 == dmp_set_fifo_rate(10)) {consoleLog("DMP: 10 Hz\n");}
} else
if (0 == mpu_set_sample_rate(10)) {consoleLog("MPU set to 10 Hz.\n");}
if (0 == mpu_set_sample_rate(10)) {consoleLog("MPU: 10 Hz\n");}
break;
case '2':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(20)) {consoleLog("DMP set to 20 Hz.\n");}
if (0 == dmp_set_fifo_rate(50)) {consoleLog("DMP: 50 Hz\n");}
} else
if (0 == mpu_set_sample_rate(20)) {consoleLog("MPU set to 20 Hz.\n");}
if (0 == mpu_set_sample_rate(50)) {consoleLog("MPU: 50 Hz\n");}
break;
case '3':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(40)) {consoleLog("DMP set to 40 Hz.\n");}
if (0 == dmp_set_fifo_rate(100)) {consoleLog("DMP: 100 Hz\n");}
} else
if (0 == mpu_set_sample_rate(40)) {consoleLog("MPU set to 40 Hz.\n");}
break;
case '4':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(50)) {consoleLog("DMP set to 50 Hz.\n");}
} else
if (0 == mpu_set_sample_rate(50)) {consoleLog("MPU set to 50 Hz.\n");}
break;
case '5':
if (hal.dmp_on) {
if (0 == dmp_set_fifo_rate(100)) {consoleLog("DMP set to 100 Hz.\n");}
} else
if (0 == mpu_set_sample_rate(100)) {consoleLog("MPU set to 100 Hz.\n");}
if (0 == mpu_set_sample_rate(100)) {consoleLog("MPU: 100 Hz\n");}
break;
/* Set hardware to interrupt on gesture event only. This feature is
@@ -3918,7 +3905,7 @@ void mpu_handle_input(char c)
default:
break;
}
#endif // SERIAL_DEBUG
}

View File

@@ -23,7 +23,7 @@
#include "stm32f1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "util.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
@@ -267,7 +267,10 @@ void USART2_IRQHandler(void)
/* USER CODE END USART2_IRQn 0 */
HAL_UART_IRQHandler(&huart2);
/* USER CODE BEGIN USART2_IRQn 1 */
if(RESET != __HAL_UART_GET_IT_SOURCE(&huart2, UART_IT_IDLE)) { // Check for IDLE line interrupt
__HAL_UART_CLEAR_IDLEFLAG(&huart2); // Clear IDLE line flag (otherwise it will continue to enter interrupt)
usart_rx_check(); // Check for data to process
}
/* USER CODE END USART2_IRQn 1 */
}

View File

@@ -112,9 +112,7 @@ void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspInit 1 */
// DMA1_Channel7->CPAR = (uint32_t) & (USART2->DR);
// DMA1_Channel7->CNDTR = 0;
// DMA1->IFCR = DMA_IFCR_CTCIF7 | DMA_IFCR_CHTIF7 | DMA_IFCR_CGIF7;
__HAL_UART_ENABLE_IT (uartHandle, UART_IT_IDLE); // Enable the USART IDLE line detection interrupt
/* USER CODE END USART2_MspInit 1 */
}
}

View File

@@ -26,10 +26,32 @@
#include "defines.h"
#include "config.h"
#include "util.h"
#include "mpu6050.h"
extern UART_HandleTypeDef huart2;
extern I2C_HandleTypeDef hi2c1;
// USART variables
#ifdef SERIAL_CONTROL
SerialSideboard Sideboard;
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
static uint8_t rx_buffer[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_len = ARRAY_LEN(rx_buffer);
#endif
#ifdef SERIAL_FEEDBACK
SerialFeedback Feedback;
SerialFeedback FeedbackRaw;
uint16_t timeoutCntSerial = 0; // Timeout counter for Rx Serial command
uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
static uint32_t Feedback_len = sizeof(Feedback);
#endif
// MPU variables
ErrorStatus mpuStatus; // holds the MPU-6050 status: SUCCESS or ERROR
/* =========================== General Functions =========================== */
void consoleLog(char *message)
@@ -97,6 +119,139 @@ void intro_demo_led(uint32_t tDelay)
}
/* =========================== Input Initialization Function =========================== */
void input_init(void) {
#ifdef SERIAL_CONTROL
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)&Sideboard, sizeof(Sideboard));
#endif
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
HAL_UART_Receive_DMA (&huart2, (uint8_t *)rx_buffer, sizeof(rx_buffer));
#endif
intro_demo_led(100); // Short LEDs intro demo with 100 ms delay. This also gives some time for the MPU-6050 to power-up.
#ifdef MPU_SENSOR_ENABLE
if(mpu_config()) { // IMU MPU-6050 config
mpuStatus = ERROR;
HAL_GPIO_WritePin(LED1_GPIO_Port, LED1_Pin, GPIO_PIN_SET); // Turn on RED LED
}
else {
mpuStatus = SUCCESS;
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
}
mpu_handle_input('h'); // Print the User Help commands to serial
#else
HAL_GPIO_WritePin(LED2_GPIO_Port, LED2_Pin, GPIO_PIN_SET); // Turn on GREEN LED
#endif
}
/* =========================== USART READ Functions =========================== */
/*
* Check for new data received on USART with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart_rx_check(void)
{
#ifdef SERIAL_DEBUG
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer, Rx: DMA1_Channel6->CNDTR, Tx: DMA1_Channel7
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer[old_pos], rx_buffer_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer[0], pos); // Process remaining data
}
}
}
old_pos = pos; // Updated old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_DEBUG
#ifdef SERIAL_FEEDBACK
static uint32_t old_pos;
uint32_t pos;
uint8_t *ptr;
pos = rx_buffer_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer, Rx: DMA1_Channel6->CNDTR, Tx: DMA1_Channel7
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&FeedbackRaw; // Initialize the pointer with FeedbackRaw address
if (pos > old_pos && (pos - old_pos) == Feedback_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], Feedback_len); // Copy data. This is possible only if FeedbackRaw is contiguous! (meaning all the structure members have the same size)
usart_process_data(&FeedbackRaw, &Feedback); // Process data
} else if ((rx_buffer_len - old_pos + pos) == Feedback_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer[old_pos], rx_buffer_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_len - old_pos; // Move to correct position in FeedbackRaw
memcpy(ptr, &rx_buffer[0], pos); // Copy remaining data
}
usart_process_data(&FeedbackRaw, &Feedback); // Process data
}
}
old_pos = pos; // Update old position
if (old_pos == rx_buffer_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif // SERIAL_FEEDBACK
}
/*
* Process Rx debug user command input
*/
#ifdef SERIAL_DEBUG
void usart_process_debug(uint8_t *userCommand, uint32_t len)
{
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
log_i("Command = %c\n", *userCommand);
mpu_handle_input(*userCommand);
}
}
}
#endif // SERIAL_DEBUG
/*
* Process Rx data
* - if the Feedback_in data is valid (correct START_FRAME and checksum) copy the Feedback_in to Feedback_out
*/
#ifdef SERIAL_FEEDBACK
void usart_process_data(SerialFeedback *Feedback_in, SerialFeedback *Feedback_out)
{
uint16_t checksum;
if (Feedback_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(Feedback_in->start ^ Feedback_in->cmd1 ^ Feedback_in->cmd2 ^ Feedback_in->speedR_meas ^ Feedback_in->speedL_meas
^ Feedback_in->batVoltage ^ Feedback_in->boardTemp ^ Feedback_in->cmdLed);
if (Feedback_in->checksum == checksum) {
*Feedback_out = *Feedback_in;
timeoutCntSerial = 0; // Reset timeout counter
timeoutFlagSerial = 0; // Clear timeout flag
}
}
}
#endif // SERIAL_FEEDBACK
/*
* UART User Error Callback
* - According to the STM documentation, when a DMA transfer error occurs during a DMA read or a write access,
* the faulty channel is automatically disabled through a hardware clear of its EN bit
* - For hoverboard applications, the UART communication can be unrealiable, disablind the DMA transfer
* - therefore the DMA needs to be re-started
*/
void HAL_UART_ErrorCallback(UART_HandleTypeDef *uartHandle) {
#if defined(SERIAL_DEBUG) || defined(SERIAL_FEEDBACK)
if(uartHandle->Instance == USART2) {
HAL_UART_Receive_DMA (uartHandle, (uint8_t *)rx_buffer, sizeof(rx_buffer));
}
#endif
}
/* =========================== I2C WRITE Functions =========================== */
/*