34 Commits

Author SHA1 Message Date
Oleg Kalachev
3104410bb9 Group control parameters
Also add IMU group to accelerometer calibration parameters.
2025-11-19 01:30:02 +03:00
Oleg Kalachev
1551d096fc Merge changes from master 2025-11-14 20:27:02 +03:00
Oleg Kalachev
80f23ab016 Update log analysis documentation 2025-11-14 20:17:34 +03:00
Oleg Kalachev
e6fb264499 Remove unneeded SERIAL_BAUDRATE define 2025-11-14 13:46:02 +03:00
Oleg Kalachev
4d0871b00b Updates in documentation
Fixes, updates, new illustrations.
2025-11-10 20:13:39 +03:00
Oleg Kalachev
f1b993d719 Many updates to documentation
Updates to main readme.
Add much more info to usage article.
Move simulator building to simulation's readme.
Improve assembly article.
Many fixes.
Updates in diagrams.
2025-11-06 13:46:25 +03:00
Oleg Kalachev
2e7330d2f5 Refactor Wi-Fi log download
Use MAVLink LOG_REQUEST_DATA and LOG_DATA for download log instead of console.
Make Wi-Fi download default way of downloading the log.
Make `log` command only print the header and `log dump` dump the log.
2025-11-02 00:24:38 +03:00
Oleg Kalachev
e22df3ab01 Simplify rate limiter code 2025-11-02 00:03:37 +03:00
Oleg Kalachev
8484854576 Keep only one floating point version of map function
Two variants are redundant
2025-11-01 23:55:55 +03:00
Oleg Kalachev
b9d5624f30 Add some excludes to sloc 2025-10-29 03:35:31 +03:00
Oleg Kalachev
205270b8ec Add Rate class for running the code at fixed rate 2025-10-29 03:25:05 +03:00
Oleg Kalachev
f1bedb2b10 Count sloc in Actions 2025-10-29 02:20:50 +03:00
Oleg Kalachev
46d1749a8c Minor code fixes 2025-10-21 19:33:57 +03:00
Oleg Kalachev
66fb7a13c3 Simplify command for command handling 2025-10-21 19:33:57 +03:00
Oleg Kalachev
cfef3b9c36 Fixes to troubleshooting 2025-10-21 19:33:57 +03:00
KiraFlux
1338a9ea79 Quaternion::fromBetweenVectors: pass u and v as const references (#21) 2025-10-19 10:17:38 +03:00
Oleg Kalachev
b60757ec1d Minor code style change 2025-10-18 12:36:20 +03:00
Oleg Kalachev
491e054534 Revert t variable type to float instead of double
For the sake of simplicity and consistency.
2025-10-18 12:28:01 +03:00
Oleg Kalachev
3eaf24f89d Minor change 2025-10-17 19:22:48 +03:00
Oleg Kalachev
dc09459613 Add generic Delay filter 2025-10-17 19:19:27 +03:00
Oleg Kalachev
59c9ea8cb3 Lowercase imu and rc variables
To make it more obvious these are variables, not classes.
2025-10-17 19:02:46 +03:00
Oleg Kalachev
5bdd46c6ad Increase thrust to ARMED_THRUST if it's less 2025-10-17 18:54:01 +03:00
Oleg Kalachev
5b37c87166 Refactor PID controllers
Use t variable instead of passing dt argument.
Reset PID automatically on large dts.
2025-10-17 18:53:15 +03:00
Oleg Kalachev
48ba55aa7e Rename failsafe.ino to safety.ino
To aggregate all the safety related functionality.
2025-10-17 01:09:23 +03:00
Oleg Kalachev
2708c1eafd Add ESP32-S3 build to Actions 2025-10-14 16:56:48 +03:00
Oleg Kalachev
b2c9dfe6ef Fix Gazebo installation
Installation script is deprecated, install using package on Ubuntu 20.04
2025-10-14 11:44:27 +03:00
Oleg Kalachev
0579118dd5 Update VSCode settings
Disable error squiggles as they often work incorrectly.
Decrease number of include libraries to index.
2025-10-14 11:31:47 +03:00
Oleg Kalachev
05818349d8 Improve rc failsafe logic
Don't trigger failsafe if there's no RC at all
Use AUTO mode for descending, instead of STAB
Increase RC loss timeout and descend time
2025-10-12 21:20:46 +03:00
Oleg Kalachev
6c1d651caa Disarm the drone on simulator plugin reset
In order to reset yaw target.
2025-10-07 15:45:30 +03:00
Oleg Kalachev
49a0aa7036 Reset yaw target when drone disarmed
Prevent unexpected behavior when the drone tries to restore its old yaw on takeoff.
2025-10-07 15:42:52 +03:00
Oleg Kalachev
bf9eeb90a4 Include FlixPeriph header instead of MPU9250
This simplifies choosing IMU model
2025-10-07 08:41:56 +03:00
Oleg Kalachev
96836b2e3e Ensure showing correct raw data in imu command
Some IMUs will reset acc and gyro buffer on whoAmI() call
2025-10-07 08:41:56 +03:00
Oleg Kalachev
82d9d3570d Send only mavlink heartbeats until connected 2025-10-03 07:08:17 +03:00
Oleg Kalachev
d7f8c8d934 Add Wi-Fi client mode
WIFI_AP_MODE define
2025-10-03 06:56:03 +03:00
59 changed files with 236 additions and 467 deletions

View File

@@ -46,3 +46,14 @@ jobs:
echo -e "t,x,y,z\n0,1,2,3\n1,4,5,6" > log.csv echo -e "t,x,y,z\n0,1,2,3\n1,4,5,6" > log.csv
./csv_to_mcap.py log.csv ./csv_to_mcap.py log.csv
test $(stat -c %s log.mcap) -eq 883 test $(stat -c %s log.mcap) -eq 883
sloc:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install cloc
run: sudo apt-get install -y cloc
- name: Firmware source lines count
run: cloc --by-file-by-lang flix
- name: Overall source lines count
run: cloc --by-file-by-lang --exclude-ext=svg,dae,css,hbs,md,json,yaml,yml,toml .

View File

@@ -7,7 +7,6 @@
"MD024": false, "MD024": false,
"MD033": false, "MD033": false,
"MD034": false, "MD034": false,
"MD059": false,
"MD044": { "MD044": {
"html_elements": false, "html_elements": false,
"code_blocks": false, "code_blocks": false,
@@ -65,6 +64,5 @@
"PX4" "PX4"
] ]
}, },
"MD045": false, "MD045": false
"MD060": false
} }

View File

@@ -18,7 +18,20 @@
"forcedInclude": [ "forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h", "${workspaceFolder}/.vscode/intellisense.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h", "~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h" "~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
"${workspaceFolder}/flix/flix.ino",
"${workspaceFolder}/flix/imu.ino",
"${workspaceFolder}/flix/led.ino",
"${workspaceFolder}/flix/log.ino",
"${workspaceFolder}/flix/mavlink.ino",
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
], ],
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++", "compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"cStandard": "c11", "cStandard": "c11",
@@ -52,7 +65,20 @@
"forcedInclude": [ "forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h", "${workspaceFolder}/.vscode/intellisense.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h", "~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h" "~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/flix.ino",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
"${workspaceFolder}/flix/imu.ino",
"${workspaceFolder}/flix/led.ino",
"${workspaceFolder}/flix/log.ino",
"${workspaceFolder}/flix/mavlink.ino",
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
], ],
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++", "compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"cStandard": "c11", "cStandard": "c11",
@@ -87,7 +113,20 @@
"forcedInclude": [ "forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h", "${workspaceFolder}/.vscode/intellisense.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h", "~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h" "~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
"${workspaceFolder}/flix/flix.ino",
"${workspaceFolder}/flix/imu.ino",
"${workspaceFolder}/flix/led.ino",
"${workspaceFolder}/flix/log.ino",
"${workspaceFolder}/flix/mavlink.ino",
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
], ],
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++.exe", "compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++.exe",
"cStandard": "c11", "cStandard": "c11",

View File

@@ -1,9 +1,6 @@
<!-- markdownlint-disable MD041 --> # Flix
<p align="center"> **Flix** (*flight + X*) — open source ESP32-based quadcopter made from scratch.
<img src="docs/img/flix.svg" width=180 alt="Flix logo"><br>
<b>Flix</b> (<i>flight + X</i>) — open source ESP32-based quadcopter made from scratch.
</p>
<table> <table>
<tr> <tr>

View File

@@ -35,7 +35,7 @@
### Подсистема управления ### Подсистема управления
Состояние органов управления обрабатывается в функции `interpretControls()` и преобразуется в **команду управления**, которая включает следующее: Состояние органов управления обрабатывается в функции `interpretControls()` и преобразуется в *команду управления*, которая включает следующее:
* `attitudeTarget` *(Quaternion)* — целевая ориентация дрона. * `attitudeTarget` *(Quaternion)* — целевая ориентация дрона.
* `ratesTarget` *(Vector)* — целевые угловые скорости, *рад/с*. * `ratesTarget` *(Vector)* — целевые угловые скорости, *рад/с*.

View File

@@ -38,13 +38,13 @@ Utility files:
### Control subsystem ### Control subsystem
Pilot inputs are interpreted in `interpretControls()`, and then converted to the **control command**, which consists of the following: Pilot inputs are interpreted in `interpretControls()`, and then converted to the *control command*, which consists of the following:
* `attitudeTarget` *(Quaternion)* — target attitude of the drone. * `attitudeTarget` *(Quaternion)* — target attitude of the drone.
* `ratesTarget` *(Vector)* — target angular rates, *rad/s*. * `ratesTarget` *(Vector)* — target angular rates, *rad/s*.
* `ratesExtra` *(Vector)* — additional (feed-forward) angular rates , used for yaw rate control in STAB mode, *rad/s*. * `ratesExtra` *(Vector)* — additional (feed-forward) angular rates , used for yaw rate control in STAB mode, *rad/s*.
* `torqueTarget` *(Vector)* — target torque, range [-1, 1]. * `torqueTarget` *(Vector)* — target torque, range [-1, 1].
* `thrustTarget` *(float)* — collective motor thrust target, range [0, 1]. * `thrustTarget` *(float)* — collective thrust target, range [0, 1].
Control command is handled in `controlAttitude()`, `controlRates()`, `controlTorque()` functions. Each function may be skipped if the corresponding control target is set to `NAN`. Control command is handled in `controlAttitude()`, `controlRates()`, `controlTorque()` functions. Each function may be skipped if the corresponding control target is set to `NAN`.
@@ -62,11 +62,6 @@ print("Test value: %.2f\n", testValue);
In order to add a console command, modify the `doCommand()` function in `cli.ino` file. In order to add a console command, modify the `doCommand()` function in `cli.ino` file.
> [!IMPORTANT]
> Avoid using delays in in-flight commands, it will **crash** the drone! (The design is one-threaded.)
>
> For on-the-ground commands, use `pause()` function, instead of `delay()`. This function allows to pause in a way that MAVLink connection will continue working.
## Building the firmware ## Building the firmware
See build instructions in [usage.md](usage.md). See build instructions in [usage.md](usage.md).

View File

@@ -1,38 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 734.86 378.46">
<defs>
<style>
.a {
fill: none;
stroke: #d5d5d5;
stroke-miterlimit: 10;
stroke-width: 31px;
}
.b {
fill: #c1c1c1;
}
.c {
fill: #ff9400;
}
.d {
fill: #d5d5d5;
}
</style>
</defs>
<g>
<g>
<line class="a" x1="448.78" y1="294.23" x2="648.77" y2="93.24"/>
<line class="a" x1="449.78" y1="94.24" x2="649.77" y2="295.23"/>
<circle class="b" cx="549.27" cy="193.73" r="41.5"/>
<circle class="c" cx="449.35" cy="93.74" r="77.95"/>
<circle class="c" cx="648.89" cy="93.53" r="77.95"/>
<circle class="c" cx="647.89" cy="294.51" r="77.95"/>
<circle class="c" cx="448.9" cy="294.51" r="77.95"/>
</g>
<path class="d" d="M8,161.93q0-17.85,22.36-17.85h4.81V100.57Q35.17,8.49,131.23,8h1q36.87,0,47.31,7.48L181,17.41l1,2.41V50q0,12.32-5.82,12.31-2.43,0-7.4-4.64t-14.19-9a48.63,48.63,0,0,0-21.22-4.41q-12,0-19.17,3.5a18.85,18.85,0,0,0-9.82,10.62,67.35,67.35,0,0,0-3.52,12.06,82.52,82.52,0,0,0-.85,13.39v60.32h27.28q10.86,0,16.05,5.43a17.52,17.52,0,0,1,5.19,12.42,22.5,22.5,0,0,1-1.21,7.36q-1.22,3.51-6.64,7.24t-14.36,3.74H101.64V344.82a56,56,0,0,1-.61,9.65,37.8,37.8,0,0,1-2.56,7.6,11.83,11.83,0,0,1-6.94,6.4q-5,1.93-13.51,1.93H57.08q-10.47,0-15.7-4.71t-5.73-8.44a77.31,77.31,0,0,1-.48-9.53V180.27H29.4Q8,180.27,8,161.93Z"/>
<path class="d" d="M201.21,348.2V37q0-23.16,20.86-23.4h22.81q22.8,0,22.8,22.44V346.27a68.92,68.92,0,0,1-.49,9.41,22.59,22.59,0,0,1-2.42,7.12,11.48,11.48,0,0,1-6.67,5.43,47.78,47.78,0,0,1-12.74,2.17H225q-11.4,0-17.58-4.47T201.21,348.2Z"/>
<path class="d" d="M284.9,61.08V36.47a40.39,40.39,0,0,1,1.7-12.91,11.36,11.36,0,0,1,6.18-7,25.27,25.27,0,0,1,6.68-2.3c1.45-.15,4-.4,7.76-.72h25.23q10.43,0,16.73,4.7t6.31,18.22V62.05a27.94,27.94,0,0,1-.85,7.11,23,23,0,0,1-2.06,5.43,20,20,0,0,1-2.91,4,10,10,0,0,1-3.52,2.54c-1.21.48-2.54,1-4,1.44a11.53,11.53,0,0,1-3.4.73,13.71,13.71,0,0,0-3.15.48H307.7q-10.43,0-16.61-4.7T284.9,61.08Zm1.94,284.71V166.28q0-22.2,21.83-22.2h20.38q10.92,0,16.62,4t6.67,8.45a60.47,60.47,0,0,1,1,12.18V348.2q0,22.2-21.83,22.2H308.67q-10.43,0-15.64-4.95t-5.7-8.81A90.93,90.93,0,0,1,286.84,345.79Z"/>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 2.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -4,7 +4,7 @@
Do the following: Do the following:
* **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](usage.md#building-the-firmware). * **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](usage.md#firmware).
* **Check libraries**. Install all the required libraries from the tutorial. Make sure there are no MPU9250 or other peripherals libraries that may conflict with the ones used in the tutorial. * **Check libraries**. Install all the required libraries from the tutorial. Make sure there are no MPU9250 or other peripherals libraries that may conflict with the ones used in the tutorial.
* **Check the chosen board**. The correct board to choose in Arduino IDE for ESP32 Mini is *WEMOS D1 MINI ESP32*. * **Check the chosen board**. The correct board to choose in Arduino IDE for ESP32 Mini is *WEMOS D1 MINI ESP32*.
@@ -25,7 +25,7 @@ Do the following:
* The `accel` and `gyro` fields should change as you move the drone. * The `accel` and `gyro` fields should change as you move the drone.
* **Calibrate the accelerometer.** if is wasn't done before. Type `ca` command in Serial Monitor and follow the instructions. * **Calibrate the accelerometer.** if is wasn't done before. Type `ca` command in Serial Monitor and follow the instructions.
* **Check the attitude estimation**. Connect to the drone using QGroundControl. Rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct. * **Check the attitude estimation**. Connect to the drone using QGroundControl. Rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct.
* **Check the IMU orientation is set correctly**. If the attitude estimation is rotated, set the correct IMU orientation as described in the [tutorial](usage.md#define-imu-orientation). * **Check the IMU orientation is set correctly**. If the attitude estimation is rotated, make sure `rotateIMU` function is defined correctly in `imu.ino` file.
* **Check the motors type**. Motors with exact 3.7V voltage are needed, not ranged working voltage (3.7V — 6V). * **Check the motors type**. Motors with exact 3.7V voltage are needed, not ranged working voltage (3.7V — 6V).
* **Check the motors**. Perform the following commands using Serial Monitor: * **Check the motors**. Perform the following commands using Serial Monitor:
* `mfr` — should rotate front right motor (counter-clockwise). * `mfr` — should rotate front right motor (counter-clockwise).

View File

@@ -12,7 +12,7 @@ Beginners can [download the source code as a ZIP archive](https://github.com/oka
## Building the firmware ## Building the firmware
You can build and upload the firmware using either **Arduino IDE** (easier for beginners) or **command line**. You can build and upload the firmware using either **Arduino IDE** (easier for beginners) or a **command line**.
### Arduino IDE (Windows, Linux, macOS) ### Arduino IDE (Windows, Linux, macOS)
@@ -73,6 +73,14 @@ ICM20948 imu(SPI); // For ICM-20948
MPU6050 imu(Wire); // For MPU-6050 MPU6050 imu(Wire); // For MPU-6050
``` ```
### Setup the IMU orientation
The IMU orientation is defined in `rotateIMU` function in the `imu.ino` file. Change it so it converts the IMU axes to the drone's axes correctly. **Drone axes are X forward, Y left, Z up**:
<img src="img/drone-axes.svg" width="200">
See various [IMU boards axes orientations table](https://github.com/okalachev/flixperiph/?tab=readme-ov-file#imu-axes-orientation) to help you set up the correct orientation.
### Connect using QGroundControl ### Connect using QGroundControl
QGroundControl is a ground control station software that can be used to monitor and control the drone. QGroundControl is a ground control station software that can be used to monitor and control the drone.
@@ -80,7 +88,7 @@ QGroundControl is a ground control station software that can be used to monitor
1. Install mobile or desktop version of [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html). 1. Install mobile or desktop version of [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html).
2. Power up the drone. 2. Power up the drone.
3. Connect your computer or smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`). 3. Connect your computer or smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically. 4. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically
### Access console ### Access console
@@ -96,37 +104,11 @@ To access the console using QGroundControl:
1. Connect to the drone using QGroundControl app. 1. Connect to the drone using QGroundControl app.
2. Go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Analyze Tools* ⇒ *MAVLink Console*. 2. Go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Analyze Tools* ⇒ *MAVLink Console*.
<img src="img/cli.png" width="400">
<img src="img/cli.png" width="400">
> [!TIP] > [!TIP]
> Use `help` command to see the list of available commands. > Use `help` command to see the list of available commands.
### Access parameters
The drone is configured using parameters. To access and modify them, go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Parameters*:
<img src="img/parameters.png" width="400">
You can also work with parameters using `p` command in the console.
### Define IMU orientation
Use parameters, to define the IMU board axes orientation relative to the drone's axes: `IMU_ROT_ROLL`, `IMU_ROT_PITCH`, and `IMU_ROT_YAW`.
The drone has *X* axis pointing forward, *Y* axis pointing left, and *Z* axis pointing up, and the supported IMU boards have *X* axis pointing to the pins side and *Z* axis pointing up from the component side:
<img src="img/imu-axes.png" width="200">
Use the following table to set the parameters for common IMU orientations:
|Orientation|Parameters|Orientation|Parameters|
|:-:|-|-|-|
|<img src="img/imu-rot-1.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 0 |<img src="img/imu-rot-5.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 0|
|<img src="img/imu-rot-2.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 1.571|<img src="img/imu-rot-6.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = -1.571|
|<img src="img/imu-rot-3.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 3.142|<img src="img/imu-rot-7.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 3.142|
|<img src="img/imu-rot-4.png" width="180"><br>☑️ **Default**|<br>`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = -1.571|<img src="img/imu-rot-8.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 1.571|
### Calibrate accelerometer ### Calibrate accelerometer
Before flight you need to calibrate the accelerometer: Before flight you need to calibrate the accelerometer:
@@ -154,10 +136,6 @@ Before flight you need to calibrate the accelerometer:
* `mrl` — should rotate rear left motor (counter-clockwise). * `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise). * `mrr` — should rotate rear right motor (clockwise).
Rotation diagram:
<img src="img/motors.svg" width=200>
> [!WARNING] > [!WARNING]
> Never run the motors when powering the drone from USB, always use the battery for that. > Never run the motors when powering the drone from USB, always use the battery for that.
@@ -165,7 +143,7 @@ Before flight you need to calibrate the accelerometer:
There are several ways to control the drone's flight: using **smartphone** (Wi-Fi), using **SBUS remote control**, or using **USB remote control** (Wi-Fi). There are several ways to control the drone's flight: using **smartphone** (Wi-Fi), using **SBUS remote control**, or using **USB remote control** (Wi-Fi).
### Control with a smartphone ### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone. 1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery. 2. Power the drone using the battery.
@@ -175,9 +153,9 @@ There are several ways to control the drone's flight: using **smartphone** (Wi-F
6. Use the virtual joystick to fly the drone! 6. Use the virtual joystick to fly the drone!
> [!TIP] > [!TIP]
> Decrease `CTL_TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive. > Decrease `CNT_TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
### Control with a remote control ### Control with remote control
Before using remote SBUS-connected remote control, you need to calibrate it: Before using remote SBUS-connected remote control, you need to calibrate it:
@@ -185,7 +163,7 @@ Before using remote SBUS-connected remote control, you need to calibrate it:
2. Type `cr` command and follow the instructions. 2. Type `cr` command and follow the instructions.
3. Use the remote control to fly the drone! 3. Use the remote control to fly the drone!
### Control with a USB remote control ### Control with USB remote control
If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it. If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it.
@@ -233,9 +211,9 @@ The default mode is *STAB*. In this mode, the drone stabilizes its attitude (ori
In this mode, the pilot controls the angular rates. This control method is difficult to fly and mostly used in FPV racing. In this mode, the pilot controls the angular rates. This control method is difficult to fly and mostly used in FPV racing.
#### RAW #### MANUAL
*RAW* mode disables all the stabilization, and the pilot inputs are mixed directly to the motors. The IMU sensor is not involved. This mode is intended for testing and demonstration purposes only, and basically the drone **cannot fly in this mode**. Manual mode disables all the stabilization, and the pilot inputs are passed directly to the motors. This mode is intended for testing and demonstration purposes only, and basically the drone **cannot fly in this mode**.
#### AUTO #### AUTO
@@ -243,6 +221,12 @@ In this mode, the pilot inputs are ignored (except the mode switch, if configure
If the pilot moves the control sticks, the drone will switch back to *STAB* mode. If the pilot moves the control sticks, the drone will switch back to *STAB* mode.
## Adjusting parameters
You can adjust some of the drone's parameters (include PID coefficients) in QGroundControl. In order to do that, go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Parameters*.
<img src="img/parameters.png" width="400">
## Flight log ## Flight log
After the flight, you can download the flight log for analysis wirelessly. Use the following for that: After the flight, you can download the flight log for analysis wirelessly. Use the following for that:

View File

@@ -4,67 +4,12 @@ This page contains user-built drones based on the Flix project. Publish your pro
--- ---
Author: [goldarte](https://t.me/goldarte).<br>
<img src="img/user/goldarte/1.jpg" height=150> <img src="img/user/goldarte/2.jpg" height=150>
**Flight video:**
<a href="https://drive.google.com/file/d/1nQtFjEcGGLx-l4xkL5ko9ZpOTVU-WDjL/view?usp=sharing"><img height=200 src="img/user/goldarte/video.jpg"></a>
---
## School 548 course
Special course on quadcopter design and engineering took place in october-november 2025 in School 548, Moscow. The course included UAV control theory, electronics, drone assembly and setup practice, using the Flix project.
<img height=200 src="img/user/school548/1.jpg"> <img height=200 src="img/user/school548/2.jpg"> <img height=200 src="img/user/school548/3.jpg">
STL files and other materials: see [here](https://drive.google.com/drive/folders/1wTUzj087LjKQQl3Lz5CjHCuobxoykhyp?usp=share_link).
### Selected works
Author: [KiraFlux](https://t.me/@kiraflux_0XC0000005).<br>
Description: **custom ESPNOW remote control** was implemented, modified firmware to support ESPNOW protocol.<br>
Telegram posts: [1](https://t.me/opensourcequadcopter/106), [2](https://t.me/opensourcequadcopter/114).<br>
Modified Flix firmware: https://github.com/KiraFlux/flix/tree/klyax.<br>
Remote control project: https://github.com/KiraFlux/ESP32-DJC.<br>
Drone design: https://github.com/KiraFlux/Klyax.<br>
<img src="img/user/school548/kiraflux1.jpg" height=150> <img src="img/user/school548/kiraflux2.jpg" height=150>
**ESPNOW remote control demonstration**:
<img height=200 src="img/user/school548/kiraflux-video.jpg"><a href="https://drive.google.com/file/d/1soHDAeHQWnm97Y4dg4nWevJuMiTdJJXW/view?usp=sharing"></a>
Author: [tolyan4krut](https://t.me/tolyan4krut).<br>
Description: the first drone based on ESP32-S3-CAM board **with a camera**, implementing Wi-Fi video streaming. Runs HTTP server and HTTP video stream.<br>
Modified Flix firmware: https://github.com/CatRey/Flix-Camera-Streaming.<br>
[Telegram post](https://t.me/opensourcequadcopter/117).
<img src="img/user/school548/tolyan4krut.jpg" height=150>
**Video streaming and flight demonstration**:
<a href="https://drive.google.com/file/d/1KuOBsujLsk7q8FoqKD8u7uoq4ptS5onp/view?usp=sharing"><img height=200 src="img/user/school548/tolyan4krut-video.jpg"></a>
Author: [Vlad Tolshinov](https://t.me/Vlad_Tolshinov).<br>
Description: custom frame with enlarged arm length, which provides very high flight stability, 65 mm props.
<img src="img/user/school548/vlad_tolshinov1.jpg" height=150> <img src="img/user/school548/vlad_tolshinov2.jpg" height=150>
**Flight video**:
<a href="https://drive.google.com/file/d/1zu00DZxhC7DJ9Z2mYjtxdNQqOOLAyYbp/view?usp=sharing"><img height=200 src="img/user/school548/vlad_tolshinov-video.jpg"></a>
---
## RoboCamp ## RoboCamp
Author: RoboCamp participants.<br> Author: RoboCamp participants.<br>
Description: 3D-printed and wooden frames, ESP32 Mini, DC-DC buck-boost converters. BetaFPV LiteRadio 3 to control the drones via Wi-Fi connection.<br> Description: 3D-printed and wooden frames, ESP32 Mini, DC-DC buck-boost converters. BetaFPV LiteRadio 3 to control the drones via Wi-Fi connection.<br>
Features: altitude hold, obstacle avoidance, autonomous flight elements.<br> Features: altitude hold, obstacle avoidance, autonomous flight elements.<br>
Some of the designed model files: see [here](https://drive.google.com/drive/folders/18YHWGquKeIevzrMH4-OUT-zKXMETTEUu?usp=share_link). Some of the designed model files: https://drive.google.com/drive/folders/18YHWGquKeIevzrMH4-OUT-zKXMETTEUu?usp=share_link.
RoboCamp took place in July 2025, Saint Petersburg, where 9 participants designed and built their own drones using the Flix project, and then modified the firmware to complete specific flight tasks. RoboCamp took place in July 2025, Saint Petersburg, where 9 participants designed and built their own drones using the Flix project, and then modified the firmware to complete specific flight tasks.

View File

@@ -3,17 +3,15 @@
// Implementation of command line interface // Implementation of command line interface
#include <Arduino.h>
#include "flix.h"
#include "pid.h" #include "pid.h"
#include "vector.h" #include "vector.h"
#include "util.h" #include "util.h"
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT; extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern const int RAW, ACRO, STAB, AUTO; extern const int ACRO, STAB, AUTO;
extern float t, dt, loopRate; extern float t, dt, loopRate;
extern uint16_t channels[16]; extern uint16_t channels[16];
extern float controlTime; extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlMode;
extern int mode; extern int mode;
extern bool armed; extern bool armed;
@@ -37,9 +35,8 @@ const char* motd =
"imu - show IMU data\n" "imu - show IMU data\n"
"arm - arm the drone\n" "arm - arm the drone\n"
"disarm - disarm the drone\n" "disarm - disarm the drone\n"
"raw/stab/acro/auto - set mode\n" "stab/acro/auto - set mode\n"
"rc - show RC data\n" "rc - show RC data\n"
"wifi - show Wi-Fi info\n"
"mot - show motor output\n" "mot - show motor output\n"
"log [dump] - print log header [and data]\n" "log [dump] - print log header [and data]\n"
"cr - calibrate RC\n" "cr - calibrate RC\n"
@@ -73,7 +70,7 @@ void pause(float duration) {
} }
} }
void doCommand(String str, bool echo) { void doCommand(String str, bool echo = false) {
// parse command // parse command
String command, arg0, arg1; String command, arg0, arg1;
splitString(str, command, arg0, arg1); splitString(str, command, arg0, arg1);
@@ -119,8 +116,6 @@ void doCommand(String str, bool echo) {
armed = true; armed = true;
} else if (command == "disarm") { } else if (command == "disarm") {
armed = false; armed = false;
} else if (command == "raw") {
mode = RAW;
} else if (command == "stab") { } else if (command == "stab") {
mode = STAB; mode = STAB;
} else if (command == "acro") { } else if (command == "acro") {
@@ -134,13 +129,8 @@ void doCommand(String str, bool echo) {
} }
print("\nroll: %g pitch: %g yaw: %g throttle: %g mode: %g\n", print("\nroll: %g pitch: %g yaw: %g throttle: %g mode: %g\n",
controlRoll, controlPitch, controlYaw, controlThrottle, controlMode); controlRoll, controlPitch, controlYaw, controlThrottle, controlMode);
print("time: %.1f\n", controlTime);
print("mode: %s\n", getModeName()); print("mode: %s\n", getModeName());
print("armed: %d\n", armed); print("armed: %d\n", armed);
} else if (command == "wifi") {
#if WIFI_ENABLED
printWiFiInfo();
#endif
} else if (command == "mot") { } else if (command == "mot") {
print("front-right %g front-left %g rear-right %g rear-left %g\n", print("front-right %g front-left %g rear-right %g rear-left %g\n",
motors[MOTOR_FRONT_RIGHT], motors[MOTOR_FRONT_LEFT], motors[MOTOR_REAR_RIGHT], motors[MOTOR_REAR_LEFT]); motors[MOTOR_FRONT_RIGHT], motors[MOTOR_FRONT_LEFT], motors[MOTOR_REAR_RIGHT], motors[MOTOR_REAR_LEFT]);

View File

@@ -1,55 +0,0 @@
// Wi-Fi
#define WIFI_ENABLED 1
#define WIFI_SSID "flix"
#define WIFI_PASSWORD "flixwifi"
#define WIFI_UDP_PORT 14550
#define WIFI_UDP_REMOTE_PORT 14550
#define WIFI_UDP_REMOTE_ADDR "255.255.255.255"
// Motors
#define MOTOR_0_PIN 12 // rear left
#define MOTOR_1_PIN 13 // rear right
#define MOTOR_2_PIN 14 // front right
#define MOTOR_3_PIN 15 // front left
#define PWM_FREQUENCY 78000
#define PWM_RESOLUTION 10
#define PWM_STOP 0
#define PWM_MIN 0
#define PWM_MAX 1000000 / PWM_FREQUENCY
// Control
#define PITCHRATE_P 0.05
#define PITCHRATE_I 0.2
#define PITCHRATE_D 0.001
#define PITCHRATE_I_LIM 0.3
#define ROLLRATE_P PITCHRATE_P
#define ROLLRATE_I PITCHRATE_I
#define ROLLRATE_D PITCHRATE_D
#define ROLLRATE_I_LIM PITCHRATE_I_LIM
#define YAWRATE_P 0.3
#define YAWRATE_I 0.0
#define YAWRATE_D 0.0
#define YAWRATE_I_LIM 0.3
#define ROLL_P 6
#define ROLL_I 0
#define ROLL_D 0
#define PITCH_P ROLL_P
#define PITCH_I ROLL_I
#define PITCH_D ROLL_D
#define YAW_P 3
#define PITCHRATE_MAX radians(360)
#define ROLLRATE_MAX radians(360)
#define YAWRATE_MAX radians(300)
#define TILT_MAX radians(30)
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
// Estimation
#define WEIGHT_ACC 0.003
#define RATES_LFP_ALPHA 0.2 // cutoff frequency ~ 40 Hz
// MAVLink
#define SYSTEM_ID 1
// Safety
#define RC_LOSS_TIMEOUT 1
#define DESCEND_TIME 10

View File

@@ -3,25 +3,41 @@
// Flight control // Flight control
#include "config.h"
#include "flix.h"
#include "vector.h" #include "vector.h"
#include "quaternion.h" #include "quaternion.h"
#include "pid.h" #include "pid.h"
#include "lpf.h" #include "lpf.h"
#include "util.h" #include "util.h"
extern const int RAW = 0, ACRO = 1, STAB = 2, AUTO = 3; // flight modes #define PITCHRATE_P 0.05
#define PITCHRATE_I 0.2
#define PITCHRATE_D 0.001
#define PITCHRATE_I_LIM 0.3
#define ROLLRATE_P PITCHRATE_P
#define ROLLRATE_I PITCHRATE_I
#define ROLLRATE_D PITCHRATE_D
#define ROLLRATE_I_LIM PITCHRATE_I_LIM
#define YAWRATE_P 0.3
#define YAWRATE_I 0.0
#define YAWRATE_D 0.0
#define YAWRATE_I_LIM 0.3
#define ROLL_P 6
#define ROLL_I 0
#define ROLL_D 0
#define PITCH_P ROLL_P
#define PITCH_I ROLL_I
#define PITCH_D ROLL_D
#define YAW_P 3
#define PITCHRATE_MAX radians(360)
#define ROLLRATE_MAX radians(360)
#define YAWRATE_MAX radians(300)
#define TILT_MAX radians(30)
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
const int MANUAL = 0, ACRO = 1, STAB = 2, AUTO = 3; // flight modes
int mode = STAB; int mode = STAB;
bool armed = false; bool armed = false;
Quaternion attitudeTarget;
Vector ratesTarget;
Vector ratesExtra; // feedforward rates
Vector torqueTarget;
float thrustTarget;
PID rollRatePID(ROLLRATE_P, ROLLRATE_I, ROLLRATE_D, ROLLRATE_I_LIM, RATES_D_LPF_ALPHA); PID rollRatePID(ROLLRATE_P, ROLLRATE_I, ROLLRATE_D, ROLLRATE_I_LIM, RATES_D_LPF_ALPHA);
PID pitchRatePID(PITCHRATE_P, PITCHRATE_I, PITCHRATE_D, PITCHRATE_I_LIM, RATES_D_LPF_ALPHA); PID pitchRatePID(PITCHRATE_P, PITCHRATE_I, PITCHRATE_D, PITCHRATE_I_LIM, RATES_D_LPF_ALPHA);
PID yawRatePID(YAWRATE_P, YAWRATE_I, YAWRATE_D); PID yawRatePID(YAWRATE_P, YAWRATE_I, YAWRATE_D);
@@ -31,6 +47,12 @@ PID yawPID(YAW_P, 0, 0);
Vector maxRate(ROLLRATE_MAX, PITCHRATE_MAX, YAWRATE_MAX); Vector maxRate(ROLLRATE_MAX, PITCHRATE_MAX, YAWRATE_MAX);
float tiltMax = TILT_MAX; float tiltMax = TILT_MAX;
Quaternion attitudeTarget;
Vector ratesTarget;
Vector ratesExtra; // feedforward rates
Vector torqueTarget;
float thrustTarget;
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT; extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlMode; extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlMode;
@@ -43,6 +65,7 @@ void control() {
} }
void interpretControls() { void interpretControls() {
// NOTE: put ACRO or MANUAL modes there if you want to use them
if (controlMode < 0.25) mode = STAB; if (controlMode < 0.25) mode = STAB;
if (controlMode < 0.75) mode = STAB; if (controlMode < 0.75) mode = STAB;
if (controlMode > 0.75) mode = STAB; if (controlMode > 0.75) mode = STAB;
@@ -52,8 +75,6 @@ void interpretControls() {
if (controlThrottle < 0.05 && controlYaw > 0.95) armed = true; // arm gesture if (controlThrottle < 0.05 && controlYaw > 0.95) armed = true; // arm gesture
if (controlThrottle < 0.05 && controlYaw < -0.95) armed = false; // disarm gesture if (controlThrottle < 0.05 && controlYaw < -0.95) armed = false; // disarm gesture
if (abs(controlYaw) < 0.1) controlYaw = 0; // yaw dead zone
thrustTarget = controlThrottle; thrustTarget = controlThrottle;
if (mode == STAB) { if (mode == STAB) {
@@ -70,10 +91,10 @@ void interpretControls() {
ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU
} }
if (mode == RAW) { // direct torque control if (mode == MANUAL) { // passthrough mode
attitudeTarget.invalidate(); // skip attitude control attitudeTarget.invalidate(); // skip attitude control
ratesTarget.invalidate(); // skip rate control ratesTarget.invalidate(); // skip rate control
torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.1; torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.01;
} }
} }
@@ -134,7 +155,7 @@ void controlTorque() {
const char* getModeName() { const char* getModeName() {
switch (mode) { switch (mode) {
case RAW: return "RAW"; case MANUAL: return "MANUAL";
case ACRO: return "ACRO"; case ACRO: return "ACRO";
case STAB: return "STAB"; case STAB: return "STAB";
case AUTO: return "AUTO"; case AUTO: return "AUTO";

View File

@@ -3,19 +3,13 @@
// Attitude estimation from gyro and accelerometer // Attitude estimation from gyro and accelerometer
#include "config.h"
#include "flix.h"
#include "quaternion.h" #include "quaternion.h"
#include "vector.h" #include "vector.h"
#include "lpf.h" #include "lpf.h"
#include "util.h" #include "util.h"
Vector rates; // estimated angular rates, rad/s #define WEIGHT_ACC 0.003
Quaternion attitude; // estimated attitude #define RATES_LFP_ALPHA 0.2 // cutoff frequency ~ 40 Hz
bool landed;
float accWeight = 0.003;
LowPassFilter<Vector> ratesFilter(0.2); // cutoff frequency ~ 40 Hz
void estimate() { void estimate() {
applyGyro(); applyGyro();
@@ -24,6 +18,7 @@ void estimate() {
void applyGyro() { void applyGyro() {
// filter gyro to get angular rates // filter gyro to get angular rates
static LowPassFilter<Vector> ratesFilter(RATES_LFP_ALPHA);
rates = ratesFilter.update(gyro); rates = ratesFilter.update(gyro);
// apply rates to attitude // apply rates to attitude
@@ -39,7 +34,7 @@ void applyAcc() {
// calculate accelerometer correction // calculate accelerometer correction
Vector up = Quaternion::rotateVector(Vector(0, 0, 1), attitude); Vector up = Quaternion::rotateVector(Vector(0, 0, 1), attitude);
Vector correction = Vector::rotationVectorBetween(acc, up) * accWeight; Vector correction = Vector::rotationVectorBetween(acc, up) * WEIGHT_ACC;
// apply correction // apply correction
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(correction)); attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(correction));

View File

@@ -1,90 +0,0 @@
// Copyright (c) 2023 Oleg Kalachev <okalachev@gmail.com>
// Repository: https://github.com/okalachev/flix
// All-in-one header file
#pragma once
#include <Arduino.h>
#include "vector.h"
#include "quaternion.h"
extern float t, dt;
extern float loopRate;
extern float controlRoll, controlPitch, controlYaw, controlThrottle, controlMode;
extern Vector gyro, acc;
extern Vector rates;
extern Quaternion attitude;
extern bool landed;
extern int mode;
extern bool armed;
extern Quaternion attitudeTarget;
extern Vector ratesTarget, ratesExtra, torqueTarget;
extern float thrustTarget;
extern float motors[4];
void print(const char* format, ...);
void pause(float duration);
void doCommand(String str, bool echo = false);
void handleInput();
void control();
void interpretControls();
void controlAttitude();
void controlRates();
void controlTorque();
const char *getModeName();
void estimate();
void applyGyro();
void applyAcc();
void setupIMU();
void configureIMU();
void readIMU();
void rotateIMU(Vector& data);
void calibrateGyroOnce();
void calibrateAccel();
void calibrateAccelOnce();
void printIMUCalibration();
void printIMUInfo();
void setupLED();
void setLED(bool on);
void blinkLED();
void prepareLogData();
void logData();
void printLogHeader();
void printLogData();
void processMavlink();
void sendMavlink();
void sendMessage(const void *msg);
void receiveMavlink();
void handleMavlink(const void *_msg);
void mavlinkPrint(const char* str);
void sendMavlinkPrint();
void setupMotors();
int getDutyCycle(float value);
void sendMotors();
bool motorsActive();
void testMotor(int n);
void setupParameters();
int parametersCount();
const char *getParameterName(int index);
float getParameter(int index);
float getParameter(const char *name);
bool setParameter(const char *name, const float value);
void syncParameters();
void printParameters();
void resetParameters();
void setupRC();
bool readRC();
void normalizeRC();
void calibrateRC();
void calibrateRCChannel(float *channel, uint16_t in[16], uint16_t out[16], const char *str);
void printRCCalibration();
void failsafe();
void rcLossFailsafe();
void descend();
void autoFailsafe();
void step();
void computeLoopRate();
void setupWiFi();
void sendWiFi(const uint8_t *buf, int len);
int receiveWiFi(uint8_t *buf, int len);

View File

@@ -3,11 +3,22 @@
// Main firmware file // Main firmware file
#include "config.h"
#include "vector.h" #include "vector.h"
#include "quaternion.h" #include "quaternion.h"
#include "util.h" #include "util.h"
#include "flix.h"
#define WIFI_ENABLED 1
float t = NAN; // current step time, s
float dt; // time delta from previous step, s
float controlRoll, controlPitch, controlYaw, controlThrottle; // pilot's inputs, range [-1, 1]
float controlMode = NAN;
Vector gyro; // gyroscope data
Vector acc; // accelerometer data, m/s/s
Vector rates; // filtered angular rates, rad/s
Quaternion attitude; // estimated attitude
bool landed; // are we landed and stationary
float motors[4]; // normalized motors thrust in range [0..1]
void setup() { void setup() {
Serial.begin(115200); Serial.begin(115200);

View File

@@ -10,14 +10,10 @@
#include "util.h" #include "util.h"
MPU9250 imu(SPI); MPU9250 imu(SPI);
Vector imuRotation(0, 0, -PI / 2); // imu orientation as Euler angles
Vector gyro; // gyroscope output, rad/s
Vector gyroBias;
Vector acc; // accelerometer output, m/s/s
Vector accBias; Vector accBias;
Vector accScale(1, 1, 1); Vector accScale(1, 1, 1);
Vector gyroBias;
void setupIMU() { void setupIMU() {
print("Setup IMU\n"); print("Setup IMU\n");
@@ -41,18 +37,24 @@ void readIMU() {
// apply scale and bias // apply scale and bias
acc = (acc - accBias) / accScale; acc = (acc - accBias) / accScale;
gyro = gyro - gyroBias; gyro = gyro - gyroBias;
// rotate to body frame // rotate
Quaternion rotation = Quaternion::fromEuler(imuRotation); rotateIMU(acc);
acc = Quaternion::rotateVector(acc, rotation.inversed()); rotateIMU(gyro);
gyro = Quaternion::rotateVector(gyro, rotation.inversed()); }
void rotateIMU(Vector& data) {
// Rotate from LFD to FLU
// NOTE: In case of using other IMU orientation, change this line:
data = Vector(data.y, data.x, -data.z);
// Axes orientation for various boards: https://github.com/okalachev/flixperiph#imu-axes-orientation
} }
void calibrateGyroOnce() { void calibrateGyroOnce() {
static Delay landedDelay(2); static Delay landedDelay(2);
if (!landedDelay.update(landed)) return; // calibrate only if definitely stationary if (!landedDelay.update(landed)) return; // calibrate only if definitely stationary
static LowPassFilter<Vector> gyroBiasFilter(0.001); static LowPassFilter<Vector> gyroCalibrationFilter(0.001);
gyroBias = gyroBiasFilter.update(gyro); gyroBias = gyroCalibrationFilter.update(gyro);
} }
void calibrateAccel() { void calibrateAccel() {

View File

@@ -3,8 +3,6 @@
// Board's LED control // Board's LED control
#include <Arduino.h>
#define BLINK_PERIOD 500000 #define BLINK_PERIOD 500000
#ifndef LED_BUILTIN #ifndef LED_BUILTIN

View File

@@ -3,7 +3,6 @@
// In-RAM logging // In-RAM logging
#include "flix.h"
#include "vector.h" #include "vector.h"
#include "util.h" #include "util.h"

View File

@@ -5,8 +5,6 @@
#pragma once #pragma once
#include <Arduino.h>
template <typename T> // Using template to make the filter usable for scalar and vector values template <typename T> // Using template to make the filter usable for scalar and vector values
class LowPassFilter { class LowPassFilter {
public: public:

View File

@@ -3,10 +3,6 @@
// MAVLink communication // MAVLink communication
#include <Arduino.h>
#include "config.h"
#include "flix.h"
#if WIFI_ENABLED #if WIFI_ENABLED
#include <MAVLink.h> #include <MAVLink.h>
@@ -15,14 +11,14 @@
#define SYSTEM_ID 1 #define SYSTEM_ID 1
#define MAVLINK_RATE_SLOW 1 #define MAVLINK_RATE_SLOW 1
#define MAVLINK_RATE_FAST 10 #define MAVLINK_RATE_FAST 10
#define MAVLINK_CONTROL_YAW_DEAD_ZONE 0.1f
extern const int AUTO, STAB;
extern uint16_t channels[16];
extern float controlTime;
bool mavlinkConnected = false; bool mavlinkConnected = false;
String mavlinkPrintBuffer; String mavlinkPrintBuffer;
extern float controlTime;
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlMode;
void processMavlink() { void processMavlink() {
sendMavlink(); sendMavlink();
receiveMavlink(); receiveMavlink();
@@ -109,6 +105,8 @@ void handleMavlink(const void *_msg) {
controlYaw = m.r / 1000.0f; controlYaw = m.r / 1000.0f;
controlMode = NAN; controlMode = NAN;
controlTime = t; controlTime = t;
if (abs(controlYaw) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controlYaw = 0;
} }
if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_LIST) { if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_LIST) {
@@ -212,7 +210,6 @@ void handleMavlink(const void *_msg) {
armed = motors[0] > 0 || motors[1] > 0 || motors[2] > 0 || motors[3] > 0; armed = motors[0] > 0 || motors[1] > 0 || motors[2] > 0 || motors[3] > 0;
} }
/* TODO:
if (msg.msgid == MAVLINK_MSG_ID_LOG_REQUEST_DATA) { if (msg.msgid == MAVLINK_MSG_ID_LOG_REQUEST_DATA) {
mavlink_log_request_data_t m; mavlink_log_request_data_t m;
mavlink_msg_log_request_data_decode(&msg, &m); mavlink_msg_log_request_data_decode(&msg, &m);
@@ -226,7 +223,6 @@ void handleMavlink(const void *_msg) {
sendMessage(&msg); sendMessage(&msg);
} }
} }
*/
// Handle commands // Handle commands
if (msg.msgid == MAVLINK_MSG_ID_COMMAND_LONG) { if (msg.msgid == MAVLINK_MSG_ID_COMMAND_LONG) {

View File

@@ -4,17 +4,24 @@
// Motors output control using MOSFETs // Motors output control using MOSFETs
// In case of using ESCs, change PWM_STOP, PWM_MIN and PWM_MAX to appropriate values in μs, decrease PWM_FREQUENCY (to 400) // In case of using ESCs, change PWM_STOP, PWM_MIN and PWM_MAX to appropriate values in μs, decrease PWM_FREQUENCY (to 400)
#include <Arduino.h>
#include "config.h"
#include "flix.h"
#include "util.h" #include "util.h"
float motors[4]; // normalized motor thrusts in range [0..1] #define MOTOR_0_PIN 12 // rear left
#define MOTOR_1_PIN 13 // rear right
#define MOTOR_2_PIN 14 // front right
#define MOTOR_3_PIN 15 // front left
extern const int MOTOR_REAR_LEFT = 0; #define PWM_FREQUENCY 78000
extern const int MOTOR_REAR_RIGHT = 1; #define PWM_RESOLUTION 10
extern const int MOTOR_FRONT_RIGHT = 2; #define PWM_STOP 0
extern const int MOTOR_FRONT_LEFT = 3; #define PWM_MIN 0
#define PWM_MAX 1000000 / PWM_FREQUENCY
// Motors array indexes:
const int MOTOR_REAR_LEFT = 0;
const int MOTOR_REAR_RIGHT = 1;
const int MOTOR_FRONT_RIGHT = 2;
const int MOTOR_FRONT_LEFT = 3;
void setupMotors() { void setupMotors() {
print("Setup Motors\n"); print("Setup Motors\n");

View File

@@ -4,22 +4,11 @@
// Parameters storage in flash memory // Parameters storage in flash memory
#include <Preferences.h> #include <Preferences.h>
#include "flix.h"
#include "pid.h"
#include "lpf.h"
#include "util.h" #include "util.h"
extern float channelZero[16]; extern float channelZero[16];
extern float channelMax[16]; extern float channelMax[16];
extern float rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel; extern float rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern float tiltMax;
extern PID rollPID, pitchPID, yawPID;
extern PID rollRatePID, pitchRatePID, yawRatePID;
extern Vector maxRate;
extern Vector imuRotation;
extern Vector accBias, accScale;
extern float accWeight;
extern LowPassFilter<Vector> ratesFilter;
Preferences storage; Preferences storage;
@@ -54,18 +43,12 @@ Parameter parameters[] = {
{"CTL_Y_RATE_MAX", &maxRate.z}, {"CTL_Y_RATE_MAX", &maxRate.z},
{"CTL_TILT_MAX", &tiltMax}, {"CTL_TILT_MAX", &tiltMax},
// imu // imu
{"IMU_ROT_ROLL", &imuRotation.x},
{"IMU_ROT_PITCH", &imuRotation.y},
{"IMU_ROT_YAW", &imuRotation.z},
{"IMU_ACC_BIAS_X", &accBias.x}, {"IMU_ACC_BIAS_X", &accBias.x},
{"IMU_ACC_BIAS_Y", &accBias.y}, {"IMU_ACC_BIAS_Y", &accBias.y},
{"IMU_ACC_BIAS_Z", &accBias.z}, {"IMU_ACC_BIAS_Z", &accBias.z},
{"IMU_ACC_SCALE_X", &accScale.x}, {"IMU_ACC_SCALE_X", &accScale.x},
{"IMU_ACC_SCALE_Y", &accScale.y}, {"IMU_ACC_SCALE_Y", &accScale.y},
{"IMU_ACC_SCALE_Z", &accScale.z}, {"IMU_ACC_SCALE_Z", &accScale.z},
// estimate
{"EST_ACC_WEIGHT", &accWeight},
{"EST_RATES_LPF_A", &ratesFilter.alpha},
// rc // rc
{"RC_ZERO_0", &channelZero[0]}, {"RC_ZERO_0", &channelZero[0]},
{"RC_ZERO_1", &channelZero[1]}, {"RC_ZERO_1", &channelZero[1]},

View File

@@ -5,8 +5,6 @@
#pragma once #pragma once
#include "Arduino.h"
#include "flix.h"
#include "lpf.h" #include "lpf.h"
class PID { class PID {

View File

@@ -5,7 +5,6 @@
#pragma once #pragma once
#include <Arduino.h>
#include "vector.h" #include "vector.h"
class Quaternion : public Printable { class Quaternion : public Printable {

View File

@@ -6,16 +6,13 @@
#include <SBUS.h> #include <SBUS.h>
#include "util.h" #include "util.h"
SBUS rc(Serial2); SBUS rc(Serial2); // NOTE: Use RC(Serial2, 16, 17) if you use the old UART2 pins
uint16_t channels[16]; // raw rc channels uint16_t channels[16]; // raw rc channels
float controlTime; // time of the last controls update
float channelZero[16]; // calibration zero values float channelZero[16]; // calibration zero values
float channelMax[16]; // calibration max values float channelMax[16]; // calibration max values
float controlRoll, controlPitch, controlYaw, controlThrottle; // pilot's inputs, range [-1, 1]
float controlMode = NAN; //
float controlTime; // time of the last controls update (0 when no RC)
// Channels mapping (using float to store in parameters): // Channels mapping (using float to store in parameters):
float rollChannel = NAN, pitchChannel = NAN, throttleChannel = NAN, yawChannel = NAN, modeChannel = NAN; float rollChannel = NAN, pitchChannel = NAN, throttleChannel = NAN, yawChannel = NAN, modeChannel = NAN;
@@ -41,11 +38,11 @@ void normalizeRC() {
controls[i] = mapf(channels[i], channelZero[i], channelMax[i], 0, 1); controls[i] = mapf(channels[i], channelZero[i], channelMax[i], 0, 1);
} }
// Update control values // Update control values
controlRoll = rollChannel >= 0 ? controls[(int)rollChannel] : 0; controlRoll = rollChannel >= 0 ? controls[(int)rollChannel] : NAN;
controlPitch = pitchChannel >= 0 ? controls[(int)pitchChannel] : 0; controlPitch = pitchChannel >= 0 ? controls[(int)pitchChannel] : NAN;
controlYaw = yawChannel >= 0 ? controls[(int)yawChannel] : 0; controlYaw = yawChannel >= 0 ? controls[(int)yawChannel] : NAN;
controlThrottle = throttleChannel >= 0 ? controls[(int)throttleChannel] : 0; controlThrottle = throttleChannel >= 0 ? controls[(int)throttleChannel] : NAN;
controlMode = modeChannel >= 0 ? controls[(int)modeChannel] : NAN; // mode switch should not have affect if not set controlMode = modeChannel >= 0 ? controls[(int)modeChannel] : NAN;
} }
void calibrateRC() { void calibrateRC() {

View File

@@ -3,11 +3,11 @@
// Fail-safe functions // Fail-safe functions
#include "config.h" #define RC_LOSS_TIMEOUT 1
#include "flix.h" #define DESCEND_TIME 10
extern float controlTime; extern float controlTime;
extern const int AUTO, STAB; extern float controlRoll, controlPitch, controlThrottle, controlYaw;
void failsafe() { void failsafe() {
rcLossFailsafe(); rcLossFailsafe();

View File

@@ -3,11 +3,6 @@
// Time related functions // Time related functions
#include "Arduino.h"
#include "flix.h"
float t = NAN; // current time, s
float dt; // time delta with the previous step, s
float loopRate; // Hz float loopRate; // Hz
void step() { void step() {

View File

@@ -8,24 +8,24 @@
#include <math.h> #include <math.h>
#include <soc/soc.h> #include <soc/soc.h>
#include <soc/rtc_cntl_reg.h> #include <soc/rtc_cntl_reg.h>
#include "flix.h"
const float ONE_G = 9.80665; const float ONE_G = 9.80665;
extern float t;
inline float mapf(float x, float in_min, float in_max, float out_min, float out_max) { float mapf(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min; return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
} }
inline bool invalid(float x) { bool invalid(float x) {
return !isfinite(x); return !isfinite(x);
} }
inline bool valid(float x) { bool valid(float x) {
return isfinite(x); return isfinite(x);
} }
// Wrap angle to [-PI, PI) // Wrap angle to [-PI, PI)
inline float wrapAngle(float angle) { float wrapAngle(float angle) {
angle = fmodf(angle, 2 * PI); angle = fmodf(angle, 2 * PI);
if (angle > PI) { if (angle > PI) {
angle -= 2 * PI; angle -= 2 * PI;
@@ -36,12 +36,12 @@ inline float wrapAngle(float angle) {
} }
// Disable reset on low voltage // Disable reset on low voltage
inline void disableBrownOut() { void disableBrownOut() {
REG_CLR_BIT(RTC_CNTL_BROWN_OUT_REG, RTC_CNTL_BROWN_OUT_ENA); REG_CLR_BIT(RTC_CNTL_BROWN_OUT_REG, RTC_CNTL_BROWN_OUT_ENA);
} }
// Trim and split string by spaces // Trim and split string by spaces
inline void splitString(String& str, String& token0, String& token1, String& token2) { void splitString(String& str, String& token0, String& token1, String& token2) {
str.trim(); str.trim();
char chars[str.length() + 1]; char chars[str.length() + 1];
str.toCharArray(chars, str.length() + 1); str.toCharArray(chars, str.length() + 1);

View File

@@ -5,8 +5,6 @@
#pragma once #pragma once
#include <Arduino.h>
class Vector : public Printable { class Vector : public Printable {
public: public:
float x, y, z; float x, y, z;
@@ -37,6 +35,7 @@ public:
z = NAN; z = NAN;
} }
float norm() const { float norm() const {
return sqrt(x * x + y * y + z * z); return sqrt(x * x + y * y + z * z);
} }
@@ -125,5 +124,5 @@ public:
} }
}; };
inline Vector operator * (const float a, const Vector& b) { return b * a; } Vector operator * (const float a, const Vector& b) { return b * a; }
inline Vector operator + (const float a, const Vector& b) { return b + a; } Vector operator + (const float a, const Vector& b) { return b + a; }

View File

@@ -3,22 +3,30 @@
// Wi-Fi support // Wi-Fi support
#include "config.h"
#include "flix.h"
#if WIFI_ENABLED #if WIFI_ENABLED
#include <WiFi.h> #include <WiFi.h>
#include <WiFiAP.h> #include <WiFiAP.h>
#include <WiFiUdp.h> #include <WiFiUdp.h>
WiFiUDP udp; #define WIFI_AP_MODE 1
#define WIFI_AP_SSID "flix"
#define WIFI_AP_PASSWORD "flixwifi"
#define WIFI_SSID ""
#define WIFI_PASSWORD ""
#define WIFI_UDP_PORT 14550
#define WIFI_UDP_REMOTE_PORT 14550
#define WIFI_UDP_REMOTE_ADDR "255.255.255.255"
extern bool mavlinkConnected; WiFiUDP udp;
void setupWiFi() { void setupWiFi() {
print("Setup Wi-Fi\n"); print("Setup Wi-Fi\n");
WiFi.softAP(WIFI_SSID, WIFI_PASSWORD); if (WIFI_AP_MODE) {
WiFi.softAP(WIFI_AP_SSID, WIFI_AP_PASSWORD);
} else {
WiFi.begin(WIFI_SSID, WIFI_PASSWORD);
}
udp.begin(WIFI_UDP_PORT); udp.begin(WIFI_UDP_PORT);
} }
@@ -34,15 +42,4 @@ int receiveWiFi(uint8_t *buf, int len) {
return udp.read(buf, len); return udp.read(buf, len);
} }
void printWiFiInfo() {
print("MAC: %s\n", WiFi.softAPmacAddress().c_str());
print("SSID: %s\n", WiFi.softAPSSID().c_str());
print("Password: %s\n", WIFI_PASSWORD);
print("Clients: %d\n", WiFi.softAPgetStationNum());
print("Status: %d\n", WiFi.status());
print("IP: %s\n", WiFi.softAPIP().toString().c_str());
print("Remote IP: %s\n", udp.remoteIP().toString().c_str());
print("MAVLink connected: %d\n", mavlinkConnected);
}
#endif #endif

View File

@@ -68,9 +68,6 @@ Just like the real drone, the simulator can be controlled using a USB remote con
6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**. 6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
7. Use the virtual joystick to fly the drone! 7. Use the virtual joystick to fly the drone!
> [!TIP]
> Decrease `CTL_TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
### Control with USB remote control ### Control with USB remote control
1. Connect your USB remote control to the machine running the simulator. 1. Connect your USB remote control to the machine running the simulator.

View File

@@ -12,15 +12,16 @@
#define WIFI_ENABLED 1 #define WIFI_ENABLED 1
extern float t, dt; float t = NAN;
extern float controlRoll, controlPitch, controlYaw, controlThrottle, controlMode; float dt;
extern Vector rates; float motors[4];
extern Quaternion attitude; float controlRoll, controlPitch, controlYaw, controlThrottle = NAN;
extern bool landed; float controlMode = NAN;
extern float motors[4]; Vector acc;
Vector gyro;
Vector gyro, acc, imuRotation; Vector rates;
Vector accBias, gyroBias, accScale(1, 1, 1); Quaternion attitude;
bool landed;
// declarations // declarations
void step(); void step();
@@ -72,4 +73,4 @@ void calibrateGyro() { print("Skip gyro calibrating\n"); };
void calibrateAccel() { print("Skip accel calibrating\n"); }; void calibrateAccel() { print("Skip accel calibrating\n"); };
void printIMUCalibration() { print("cal: N/A\n"); }; void printIMUCalibration() { print("cal: N/A\n"); };
void printIMUInfo() {}; void printIMUInfo() {};
void printWiFiInfo() {}; Vector accBias, gyroBias, accScale(1, 1, 1);

View File

@@ -1,8 +1,8 @@
# Flix Python library # Flix Python library
The Flix Python library allows you to remotely connect to a Flix quadcopter. It provides access to telemetry data, supports executing console commands, and controlling the drone's flight. The Flix Python library allows you to remotely connect to a Flix quadcopter. It provides access to telemetry data, supports executing CLI commands, and controlling the drone's flight.
To use the library, connect to the drone's Wi-Fi. To use it with the simulator, ensure the script runs on the same network as the simulator. To use the library, connect to the drone's Wi-Fi. To use it with the simulator, ensure the script runs on the same local network as the simulator.
## Installation ## Installation
@@ -30,7 +30,7 @@ flix = Flix() # create a Flix object and wait for connection
### Telemetry ### Telemetry
Basic telemetry is available through object properties. The property names generally match the corresponding variables in the firmware itself: Basic telemetry is available through object properties. The properties names generally match the corresponding variables in the firmware itself:
```python ```python
print(flix.connected) # True if connected to the drone print(flix.connected) # True if connected to the drone
@@ -41,7 +41,7 @@ print(flix.attitude) # attitude quaternion [w, x, y, z]
print(flix.attitude_euler) # attitude as Euler angles [roll, pitch, yaw] print(flix.attitude_euler) # attitude as Euler angles [roll, pitch, yaw]
print(flix.rates) # angular rates [roll_rate, pitch_rate, yaw_rate] print(flix.rates) # angular rates [roll_rate, pitch_rate, yaw_rate]
print(flix.channels) # raw RC channels (list) print(flix.channels) # raw RC channels (list)
print(flix.motors) # motor outputs (list) print(flix.motors) # motors outputs (list)
print(flix.acc) # accelerometer output (list) print(flix.acc) # accelerometer output (list)
print(flix.gyro) # gyroscope output (list) print(flix.gyro) # gyroscope output (list)
``` ```
@@ -95,24 +95,24 @@ Full list of events:
|`armed`|Armed state update|Armed state (*bool*)| |`armed`|Armed state update|Armed state (*bool*)|
|`mode`|Flight mode update|Flight mode (*str*)| |`mode`|Flight mode update|Flight mode (*str*)|
|`landed`|Landed state update|Landed state (*bool*)| |`landed`|Landed state update|Landed state (*bool*)|
|`print`|The drone prints text to the console|Text| |`print`|The drone sends text to the console|Text|
|`attitude`|Attitude update|Attitude quaternion (*list*)| |`attitude`|Attitude update|Attitude quaternion (*list*)|
|`attitude_euler`|Attitude update|Euler angles (*list*)| |`attitude_euler`|Attitude update|Euler angles (*list*)|
|`rates`|Angular rates update|Angular rates (*list*)| |`rates`|Angular rates update|Angular rates (*list*)|
|`channels`|Raw RC channels update|Raw RC channels (*list*)| |`channels`|Raw RC channels update|Raw RC channels (*list*)|
|`motors`|Motor outputs update|Motor outputs (*list*)| |`motors`|Motors outputs update|Motors outputs (*list*)|
|`acc`|Accelerometer update|Accelerometer output (*list*)| |`acc`|Accelerometer update|Accelerometer output (*list*)|
|`gyro`|Gyroscope update|Gyroscope output (*list*)| |`gyro`|Gyroscope update|Gyroscope output (*list*)|
|`mavlink`|Received MAVLink message|Message object| |`mavlink`|Received MAVLink message|Message object|
|`mavlink.<message_name>`|Received specific MAVLink message|Message object| |`mavlink.<message_name>`|Received specific MAVLink message|Message object|
|`mavlink.<message_id>`|Received specific MAVLink message|Message object| |`mavlink.<message_id>`|Received specific MAVLink message|Message object|
|`value`|Named value update (see below)|Name, value| |`value`|Named value update (see below)|Name, value|
|`value.<name>`|Specific named value update (see below)|Value| |`value.<name>`|Specific named value update (see bellow)|Value|
> [!NOTE] > [!NOTE]
> Update events trigger on every new piece of data from the drone, and do not mean the value has changed. > Update events trigger on every new data from the drone, and do not mean the value has changed.
### Basic methods ### Common methods
Get and set firmware parameters using `get_param` and `set_param` methods: Get and set firmware parameters using `get_param` and `set_param` methods:
@@ -121,7 +121,7 @@ pitch_p = flix.get_param('PITCH_P') # get parameter value
flix.set_param('PITCH_P', 5) # set parameter value flix.set_param('PITCH_P', 5) # set parameter value
``` ```
Execute console commands using `cli` method. This method returns the command response: Execute console commands using `cli` method. This method returns command response:
```python ```python
imu = flix.cli('imu') # get detailed IMU data imu = flix.cli('imu') # get detailed IMU data
@@ -169,10 +169,10 @@ Setting angular rates target:
flix.set_rates([0.1, 0.2, 0.3], 0.6) # set target roll rate, pitch rate, yaw rate and thrust flix.set_rates([0.1, 0.2, 0.3], 0.6) # set target roll rate, pitch rate, yaw rate and thrust
``` ```
You also can control raw motor outputs directly: You also can control raw motors outputs directly:
```python ```python
flix.set_motors([0.5, 0.5, 0.5, 0.5]) # set motor outputs in range [0, 1] flix.set_motors([0.5, 0.5, 0.5, 0.5]) # set motors outputs in range [0, 1]
``` ```
In *AUTO* mode, the drone will arm automatically if the thrust is greater than zero, and disarm if thrust is zero. Therefore, to disarm the drone, set thrust to zero: In *AUTO* mode, the drone will arm automatically if the thrust is greater than zero, and disarm if thrust is zero. Therefore, to disarm the drone, set thrust to zero:
@@ -186,7 +186,7 @@ The following methods are in development and are not functional yet:
* `set_position` — set target position. * `set_position` — set target position.
* `set_velocity` — set target velocity. * `set_velocity` — set target velocity.
To exit *AUTO* mode move control sticks and the drone will switch to *STAB* mode. To exit from *AUTO* mode move control sticks and the drone will switch to *STAB* mode.
## Usage alongside QGroundControl ## Usage alongside QGroundControl

View File

@@ -17,7 +17,7 @@ from pymavlink.dialects.v20 import common as mavlink
logger = logging.getLogger('flix') logger = logging.getLogger('flix')
if not logger.hasHandlers(): if not logger.hasHandlers():
handler = logging.StreamHandler() handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(name)s: %(message)s')) handler.setFormatter(logging.Formatter('%(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler) logger.addHandler(handler)
logger.setLevel(logging.INFO) logger.setLevel(logging.INFO)
@@ -40,7 +40,7 @@ class Flix:
_connection_timeout = 3 _connection_timeout = 3
_print_buffer: str = '' _print_buffer: str = ''
_modes = ['RAW', 'ACRO', 'STAB', 'AUTO'] _modes = ['MANUAL', 'ACRO', 'STAB', 'AUTO']
def __init__(self, system_id: int=1, wait_connection: bool=True): def __init__(self, system_id: int=1, wait_connection: bool=True):
if not (0 <= system_id < 256): if not (0 <= system_id < 256):

View File

@@ -1,6 +1,6 @@
[project] [project]
name = "pyflix" name = "pyflix"
version = "0.11" version = "0.9"
description = "Python API for Flix drone" description = "Python API for Flix drone"
authors = [{ name="Oleg Kalachev", email="okalachev@gmail.com" }] authors = [{ name="Oleg Kalachev", email="okalachev@gmail.com" }]
license = "MIT" license = "MIT"