19 Commits

Author SHA1 Message Date
Oleg Kalachev
d6e8be0c05 Add parameters for easier IMU orientation definition 2025-12-26 21:14:15 +03:00
Oleg Kalachev
68d16855df Add motors rotation diagram to usage article 2025-12-25 07:22:09 +03:00
Oleg Kalachev
0547ea548b Add parameters for acc weight and rates lpf alpha 2025-12-24 05:43:55 +03:00
Oleg Kalachev
c02dba6812 Rename gyroCalibrationFilter to gyroBiasFilter
Which seems a better name
2025-12-24 05:36:43 +03:00
Oleg Kalachev
f1dc4a0400 Updates to user builds article 2025-12-17 02:21:51 +03:00
Oleg Kalachev
158827ac55 Add new user builds, add school 548 course overview
+ minor doc fixes.
2025-12-13 21:09:33 +03:00
Oleg Kalachev
36ca30c3e4 Minor docs fix 2025-11-27 18:34:32 +03:00
Oleg Kalachev
48711b55e1 Add tip about CNT_TILT_MAX parameter to the simulator article 2025-11-26 17:34:08 +03:00
Oleg Kalachev
4d583185a9 Rename manual mode to raw mode
Make it callable from the console.
Increase the coefficient.
Corresponding change in pyflix.
pyflix@0.11.
2025-11-25 04:44:16 +03:00
Oleg Kalachev
d757ffa853 Move yaw dead zone handling from mavlink to control subsystem
So yaw dead zone works the same for rc and mavlink.
2025-11-22 05:11:46 +03:00
Oleg Kalachev
5352386486 Minor updates to pyflix library, pyflix@0.10
Fixes to documentation.
Improve logger format.
2025-11-22 05:07:46 +03:00
Oleg Kalachev
9b5872740f Add wifi cli command
To show wi-fi info.
2025-11-22 04:46:54 +03:00
Oleg Kalachev
31dbdaf241 Group control parameters
Also add IMU group to accelerometer calibration parameters.
2025-11-19 01:50:46 +03:00
Oleg Kalachev
f4b56262b1 Remove unneeded SERIAL_BAUDRATE define 2025-11-14 20:23:15 +03:00
Oleg Kalachev
49039f752d Refactor Wi-Fi log download
Use MAVLink LOG_REQUEST_DATA and LOG_DATA for download log instead of console.
Make Wi-Fi download default way of downloading the log.
Make `log` command only print the header and `log dump` dump the log.
2025-11-14 20:21:05 +03:00
Oleg Kalachev
348721acc9 Updates in documentation
Fixes, updates, new illustrations.
2025-11-10 20:16:14 +03:00
Oleg Kalachev
774144c430 Many updates to documentation
Updates to main readme.
Add much more info to usage article.
Move simulator building to simulation's readme.
Improve assembly article.
Many fixes.
Updates in diagrams.
2025-11-06 13:55:52 +03:00
Oleg Kalachev
0e6651ab82 Add Rate class for running the code at fixed rate 2025-11-06 13:41:33 +03:00
Oleg Kalachev
1a017ccb97 Keep only one floating point version of map function
Two variants are redundant
2025-11-02 00:02:28 +03:00
62 changed files with 891 additions and 326 deletions

View File

@@ -7,6 +7,7 @@
"MD024": false,
"MD033": false,
"MD034": false,
"MD059": false,
"MD044": {
"html_elements": false,
"code_blocks": false,
@@ -64,5 +65,6 @@
"PX4"
]
},
"MD045": false
"MD045": false,
"MD060": false
}

View File

@@ -32,7 +32,7 @@ simulator: build_simulator
gazebo --verbose ${CURDIR}/gazebo/flix.world
log:
PORT=$(PORT) tools/grab_log.py
tools/log.py
plot:
plotjuggler -d $(shell ls -t tools/log/*.csv | head -n1)

View File

@@ -1,6 +1,6 @@
# Flix
**Flix** (*flight + X*) — making an open source ESP32-based quadcopter from scratch.
**Flix** (*flight + X*) — open source ESP32-based quadcopter made from scratch.
<table>
<tr>
@@ -52,25 +52,29 @@ The simulator is implemented using Gazebo and runs the original Arduino code:
<img src="docs/img/simulator1.png" width=500 alt="Flix simulator">
## Articles
## Documentation
1. [Assembly instructions](docs/assembly.md).
2. [Usage: build, setup and flight](docs/usage.md).
3. [Simulation](gazebo/README.md).
4. [Python library](tools/pyflix/README.md).
Additional articles:
* [Assembly instructions](docs/assembly.md).
* [Usage: build, setup and flight](docs/usage.md).
* [Troubleshooting](docs/troubleshooting.md).
* [Firmware architecture overview](docs/firmware.md).
* [Python library tutorial](tools/pyflix/README.md).
* [Log analysis](docs/log.md).
* [User builds gallery](docs/user.md).
* [Firmware architectural overview](docs/firmware.md).
* [Troubleshooting](docs/troubleshooting.md).
* [Log analysis](docs/log.md).
## Components
|Type|Part|Image|Quantity|
|-|-|:-:|:-:|
|Microcontroller board|ESP32 Mini|<img src="docs/img/esp32.jpg" width=100>|1|
|IMU (and barometer²) board|GY91, MPU-9265 (or other MPU9250/MPU6500 board)<br>ICM20948V2 (ICM20948)³<br>GY-521 (MPU-6050)³⁻¹|<img src="docs/img/gy-91.jpg" width=90 align=center><br><img src="docs/img/icm-20948.jpg" width=100><br><img src="docs/img/gy-521.jpg" width=100>|1|
|<span style="background:yellow">Buck-boost converter</span> (recommended)|To be determined, output 5V or 3.3V, see [user-contributed schematics](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612179508274&cot=14)|<img src="docs/img/buck-boost.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (shaft 0.8mm).<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).|<img src="docs/img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="docs/img/prop.jpg" width=100>|4|
|IMU (and barometer¹) board|GY91, MPU-9265 (or other MPU9250/MPU6500 board)<br>ICM20948V2 (ICM20948)³<br>GY-521 (MPU-6050)³⁻¹|<img src="docs/img/gy-91.jpg" width=90 align=center><br><img src="docs/img/icm-20948.jpg" width=100><br><img src="docs/img/gy-521.jpg" width=100>|1|
|Boost converter (optional, for more stable power supply)|5V output|<img src="docs/img/buck-boost.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor.<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).<br>Make sure the motor shaft diameter and propeller hole diameter match!|<img src="docs/img/motor.jpeg" width=100>|4|
|Propeller|55 mm (alternatively 65 mm)|<img src="docs/img/prop.jpg" width=100>|4|
|MOSFET (transistor)|100N03A or [analog](https://t.me/opensourcequadcopter/33)|<img src="docs/img/100n03a.jpg" width=100>|4|
|Pull-down resistor|10 kΩ|<img src="docs/img/resistor10k.jpg" width=100>|4|
|3.7V Li-Po battery|LW 952540 (or any compatible by the size)|<img src="docs/img/battery.jpg" width=100>|1|
@@ -78,19 +82,17 @@ The simulator is implemented using Gazebo and runs the original Arduino code:
|Li-Po Battery charger|Any|<img src="docs/img/charger.jpg" width=100>|1|
|Screws for IMU board mounting|M3x5|<img src="docs/img/screw-m3.jpg" width=100>|2|
|Screws for frame assembly|M1.4x5|<img src="docs/img/screw-m1.4.jpg" height=30 align=center>|4|
|Frame main part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)<br>Recommended settings: layer 0.2 mm, line 0.4 mm, infill 100%.|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame top part|3D printed:<br>[`esp32-holder.stl`](docs/assets/esp32-holder.stl) [`esp32-holder.step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|Washer for IMU board mounting|3D printed:<br>[`washer-m3.stl`](docs/assets/washer-m3.stl) [`washer-m3.step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|Frame main part|3D printed²: [`stl`](docs/assets/flix-frame-1.1.stl) [`step`](docs/assets/flix-frame-1.1.step)<br>Recommended settings: layer 0.2 mm, line 0.4 mm, infill 100%.|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame top part|3D printed: [`stl`](docs/assets/esp32-holder.stl) [`step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|Washer for IMU board mounting|3D printed: [`stl`](docs/assets/washer-m3.stl) [`step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|Controller (recommended)|CC2500 transmitter, like BetaFPV LiteRadio CC2500 (RC receiver/Wi-Fi).<br>Two-sticks gamepad (Wi-Fi only) — see [recommended gamepads](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/setup_view/joystick.html#supported-joysticks).<br>Other⁵|<img src="docs/img/betafpv.jpg" width=100><img src="docs/img/logitech.jpg" width=80>|1|
|*RC receiver (optional)*|*DF500 or other*|<img src="docs/img/rx.jpg" width=100>|1|
|*RC receiver (optional)*|*DF500 or other³*|<img src="docs/img/rx.jpg" width=100>|1|
|Wires|28 AWG recommended|<img src="docs/img/wire-28awg.jpg" width=100>||
|Tape, double-sided tape||||
*² barometer is not used for now.*<br>
*³ — change `MPU9250` to `ICM20948` or `MPU6050` in `imu.ino` file for using the appropriate boards.*<br>
*³⁻¹ — MPU-6050 supports I²C interface only (not recommended). To use it change IMU declaration to `MPU6050 IMU(Wire)`.*<br>
*⁴ — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
*⁵ — you also may use any transmitter-receiver pair with SBUS interface.*
*¹ barometer is not used for now.*<br>
*² — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
*³ — you also may use any transmitter-receiver pair with SBUS interface.*
Tools required for assembly:
@@ -100,7 +102,7 @@ Tools required for assembly:
* Screwdrivers.
* Multimeter.
Feel free to modify the design and or code, and create your own improved versions of Flix! Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
Feel free to modify the design and or code, and create your own improved versions. Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
## Schematics
@@ -108,7 +110,7 @@ Feel free to modify the design and or code, and create your own improved version
<img src="docs/img/schematics1.svg" width=700 alt="Flix version 1 schematics">
*(Dashed is optional).*
*(Dashed elements are optional).*
Motor connection scheme:
@@ -116,8 +118,6 @@ Motor connection scheme:
You can see a user-contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14) of the drone.
See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
### Notes
* Power ESP32 Mini with Li-Po battery using VCC (+) and GND (-) pins.
@@ -135,14 +135,15 @@ See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
* Solder pull-down resistors to the MOSFETs.
* Connect the motors to the ESP32 Mini using MOSFETs, by following scheme:
|Motor|Position|Direction|Wires|GPIO|
|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|Blue & Red|GPIO15 (*TD0*)|
|Motor|Position|Direction|Prop type|Motor wires|GPIO|
|-|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|B|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|A|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|B|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|A|Blue & Red|GPIO15 (*TD0*)|
Counter-clockwise motors have black and white wires and clockwise motors have blue and red wires.
Clockwise motors have blue & red wires and correspond to propeller type A (marked on the propeller).
Counter-clockwise motors have black & white wires correspond to propeller type B.
* Optionally connect the RC receiver to the ESP32's UART2:
@@ -150,32 +151,18 @@ See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
|-|-|
|GND|GND|
|VIN|VCC (or 3.3V depending on the receiver)|
|Signal (TX)|GPIO4|
|Signal (TX)|GPIO4¹|
* — UART2 RX pin was [changed](https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html#id14) to GPIO4 in Arduino ESP32 core 3.0.*
*¹ — UART2 RX pin was [changed](https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html#id14) to GPIO4 in Arduino ESP32 core 3.0.*
### IMU placement
## Resources
Default IMU orientation in the code is **LFD** (Left-Forward-Down):
<img src="docs/img/gy91-lfd.svg" width=400 alt="GY-91 axes">
In case of using other IMU orientation, modify the `rotateIMU` function in the `imu.ino` file.
See [FlixPeriph documentation](https://github.com/okalachev/flixperiph?tab=readme-ov-file#imu-axes-orientation) to learn axis orientation of other IMU boards.
## Materials
Subscribe to the Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
Join the official Telegram chat: https://t.me/opensourcequadcopterchat.
Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
* Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
* Official Telegram chat: https://t.me/opensourcequadcopterchat.
* Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.
## Disclaimer
This is a fun DIY project, and I hope you find it interesting and useful. However, it's not easy to assemble and set up, and it's provided "as is" without any warranties. Theres no guarantee that it will work perfectly or even work at all.
This is a DIY project, and I hope you find it interesting and useful. However, it's not easy to assemble and set up, and it's provided "as is" without any warranties. There's no guarantee that it will work perfectly, or even work at all.
⚠️ The author is not responsible for any damage, injury, or loss resulting from the use of this project. Use at your own risk!

View File

@@ -27,3 +27,27 @@ Soldered components ([schematics variant](https://miro.com/app/board/uXjVN-dTjoo
<br>Assembled drone:
<img src="img/assembly/7.jpg" width=600>
## Motor directions
> [!WARNING]
> The drone above is an early build, and it has **inversed** motor directions scheme. The photos only illustrate the assembly process in general.
Use standard motor directions scheme:
<img src="img/motors.svg" width=200>
Motors connection table:
|Motor|Position|Direction|Prop type|Motor wires|GPIO|
|-|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|B|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|A|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|B|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|A|Blue & Red|GPIO15 (*TD0*)|
## Motors tightening
Motors should be installed very tightly — any vibration may lead to bad attitude estimation and unstable flight. If motors are loose, use tiny tape pieces to fix them tightly as shown below:
<img src="img/motor-tape.jpg" width=600>

View File

@@ -12,8 +12,8 @@
* `acc` *(Vector)* — данные с акселерометра, *м/с<sup>2</sup>*.
* `rates` *(Vector)* — отфильтрованные угловые скорости, *рад/с*.
* `attitude` *(Quaternion)* — оценка ориентации (положения) дрона.
* `controlRoll`, `controlPitch`, ... *(float[])* — команды управления от пилота, в диапазоне [-1, 1].
* `motors` *(float[])* — выходные сигналы на моторы, в диапазоне [0, 1].
* `controlRoll`, `controlPitch`, `controlYaw`, `controlThrottle`, `controlMode` *(float)* — команды управления от пилота, в диапазоне [-1, 1].
* `motors` *(float[4])* — выходные сигналы на моторы, в диапазоне [0, 1].
## Исходные файлы

View File

@@ -1 +0,0 @@
usage.md

2
docs/build.md Normal file
View File

@@ -0,0 +1,2 @@
<!-- markdownlint-disable MD041 -->
Build instructions are moved to [usage article](usage.md).

View File

@@ -6,7 +6,7 @@ The firmware is a regular Arduino sketch, and it follows the classic Arduino one
<img src="img/dataflow.svg" width=600 alt="Firmware dataflow diagram">
The main loop is running at 1000 Hz. All the dataflow goes through global variables (for simplicity):
The main loop is running at 1000 Hz. The dataflow goes through global variables, including:
* `t` *(float)* — current step time, *s*.
* `dt` *(float)* — time delta between the current and previous steps, *s*.
@@ -14,12 +14,12 @@ The main loop is running at 1000 Hz. All the dataflow goes through global variab
* `acc` *(Vector)* — acceleration data from the accelerometer, *m/s<sup>2</sup>*.
* `rates` *(Vector)* — filtered angular rates, *rad/s*.
* `attitude` *(Quaternion)* — estimated attitude (orientation) of drone.
* `controlRoll`, `controlPitch`, ... *(float[])* — pilot control inputs, range [-1, 1].
* `motors` *(float[])* — motor outputs, range [0, 1].
* `controlRoll`, `controlPitch`, `controlYaw`, `controlThrottle`, `controlMode` *(float)* — pilot control inputs, range [-1, 1].
* `motors` *(float[4])* — motor outputs, range [0, 1].
## Source files
Firmware source files are located in `flix` directory. The core files are:
Firmware source files are located in `flix` directory.
* [`flix.ino`](../flix/flix.ino) — Arduino sketch main file, entry point.Includes some global variable definitions and the main loop.
* [`imu.ino`](../flix/imu.ino) — reading data from the IMU sensor (gyroscope and accelerometer), IMU calibration.
@@ -28,6 +28,7 @@ Firmware source files are located in `flix` directory. The core files are:
* [`control.ino`](../flix/control.ino) — control subsystem, three-dimensional two-level cascade PID controller.
* [`motors.ino`](../flix/motors.ino) — PWM motor output control.
* [`mavlink.ino`](../flix/mavlink.ino) — interaction with QGroundControl or [pyflix](../tools/pyflix) via MAVLink protocol.
* [`cli.ino`](../flix/cli.ino) — serial and MAVLink console.
Utility files:
@@ -45,12 +46,22 @@ Pilot inputs are interpreted in `interpretControls()`, and then converted to the
* `torqueTarget` *(Vector)* — target torque, range [-1, 1].
* `thrustTarget` *(float)* — collective thrust target, range [0, 1].
Control command is processed in `controlAttitude()`, `controlRates()`, `controlTorque()` functions. Each function may be skipped if the corresponding target is set to `NAN`.
Control command is handled in `controlAttitude()`, `controlRates()`, `controlTorque()` functions. Each function may be skipped if the corresponding control target is set to `NAN`.
<img src="img/control.svg" width=300 alt="Control subsystem diagram">
Armed state is stored in `armed` variable, and current mode is stored in `mode` variable.
## Building
### Console
To write into the console, `print()` function is used. This function sends data both to the Serial console and to the MAVLink console (which can be accessed wirelessly in QGroundControl). The function supports formatting:
```cpp
print("Test value: %.2f\n", testValue);
```
In order to add a console command, modify the `doCommand()` function in `cli.ino` file.
## Building the firmware
See build instructions in [usage.md](usage.md).

BIN
docs/img/arduino-ide.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 140 KiB

After

Width:  |  Height:  |  Size: 15 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 101 KiB

After

Width:  |  Height:  |  Size: 13 KiB

View File

@@ -0,0 +1,136 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 813.79 508.65">
<defs>
<style>
.a, .d, .f, .j, .p {
fill: none;
}
.a {
stroke: #d5d5d5;
stroke-width: 31px;
}
.a, .p {
stroke-miterlimit: 10;
}
.b {
fill: #ff9400;
}
.c {
opacity: 0.8;
}
.d {
stroke: #d80100;
}
.d, .f, .j {
stroke-linejoin: bevel;
stroke-width: 13px;
}
.e {
fill: #d80100;
}
.f {
stroke: #57ed00;
}
.g {
fill: #57ed00;
}
.h {
fill: #c1c1c1;
}
.i {
opacity: 0.12;
}
.j {
stroke: #0076ba;
}
.k {
fill: #0076ba;
}
.l {
font-size: 50px;
font-family: Tahoma;
}
.m {
letter-spacing: -0.01em;
}
.n {
letter-spacing: -0.01em;
}
.o {
letter-spacing: 0em;
}
.p {
stroke: #000;
stroke-width: 10px;
}
</style>
</defs>
<g>
<g>
<line class="a" x1="259.14" y1="432.84" x2="532.46" y2="340.23"/>
<line class="a" x1="311.69" y1="313.16" x2="481.62" y2="461.39"/>
<ellipse class="b" cx="311.35" cy="312.8" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="532.53" cy="340.42" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="479.72" cy="460.7" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="259.21" cy="433.03" rx="88.68" ry="47.94"/>
</g>
<g class="c">
<g>
<line class="d" x1="396.65" y1="386.83" x2="564.66" y2="35.72"/>
<polygon class="e" points="582.76 51.95 579.15 5.42 540.66 31.8 582.76 51.95"/>
</g>
</g>
<g class="c">
<g>
<line class="f" x1="396.77" y1="387.06" x2="69.41" y2="341.09"/>
<polygon class="g" points="79.42 318.93 36.15 336.42 72.93 365.15 79.42 318.93"/>
</g>
</g>
<ellipse class="h" cx="396.36" cy="386.61" rx="47.21" ry="25.52"/>
<path class="i" d="M398,375.67l-14.42,12.95a4.32,4.32,0,0,0,2.35,7.5l16.81,2.11a4.33,4.33,0,0,0,4.8-5l-2.39-15.06A4.32,4.32,0,0,0,398,375.67Z"/>
<g class="c">
<g>
<line class="j" x1="396.77" y1="385.56" x2="396.77" y2="92.64"/>
<polygon class="k" points="420.1 99.47 396.77 59.06 373.43 99.47 420.1 99.47"/>
</g>
</g>
<text class="l" transform="translate(0 292.27)">y/left</text>
<text class="l" transform="translate(268.4 81.58)">z/up</text>
<text class="l" transform="translate(600.99 43.18)">x/<tspan class="m" x="43.87" y="0">f</tspan><tspan x="59.3" y="0">or</tspan><tspan class="n" x="104.47" y="0">w</tspan><tspan x="141.14" y="0">a</tspan><tspan class="o" x="167.38" y="0">r</tspan><tspan x="185.16" y="0">d</tspan></text>
<g class="c">
<g>
<path class="p" d="M470.35,114a52.71,52.71,0,0,1,103.57-2.31,51.67,51.67,0,0,1-1.33,25.92"/>
<polygon points="562.15 128.29 563.93 154.16 585.44 139.69 562.15 128.29"/>
</g>
</g>
<g class="c">
<g>
<path class="p" d="M344.16,164.77a52.66,52.66,0,1,0,103.78,16.31"/>
<polygon points="460.61 184.04 446.18 162.5 434.74 185.76 460.61 184.04"/>
</g>
</g>
<g class="c">
<g>
<path class="p" d="M138.4,411.11a52.71,52.71,0,0,1,18.43-101.94A51.68,51.68,0,0,1,182,315.65"/>
<polygon points="170.73 324.01 196.43 327.44 186.55 303.47 170.73 324.01"/>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 3.5 KiB

110
docs/img/drone-axes.svg Normal file
View File

@@ -0,0 +1,110 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 664.49 478.47">
<defs>
<style>
.a, .d, .f, .j {
fill: none;
}
.a {
stroke: #d5d5d5;
stroke-miterlimit: 10;
stroke-width: 31px;
}
.b {
fill: #ff9400;
}
.c {
opacity: 0.8;
}
.d {
stroke: #d80100;
}
.d, .f, .j {
stroke-linejoin: bevel;
stroke-width: 13px;
}
.e {
fill: #d80100;
}
.f {
stroke: #57ed00;
}
.g {
fill: #57ed00;
}
.h {
fill: #c1c1c1;
}
.i {
opacity: 0.12;
}
.j {
stroke: #0076ba;
}
.k {
fill: #0076ba;
}
.l {
font-size: 50px;
font-family: Tahoma;
}
.m {
letter-spacing: -0.01em;
}
.n {
letter-spacing: -0.01em;
}
.o {
letter-spacing: 0em;
}
</style>
</defs>
<g>
<g>
<line class="a" x1="207.39" y1="402.28" x2="480.71" y2="309.67"/>
<line class="a" x1="259.93" y1="282.6" x2="429.86" y2="430.83"/>
<ellipse class="b" cx="259.59" cy="282.24" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="480.77" cy="309.86" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="427.96" cy="430.14" rx="88.68" ry="47.94"/>
<ellipse class="b" cx="207.45" cy="402.47" rx="88.68" ry="47.94"/>
</g>
<g class="c">
<g>
<line class="d" x1="344.89" y1="356.27" x2="422.02" y2="172.47"/>
<polygon class="e" points="440.89 187.79 435.01 141.5 397.86 169.74 440.89 187.79"/>
</g>
</g>
<g class="c">
<g>
<line class="f" x1="345.01" y1="356.5" x2="79.27" y2="319.17"/>
<polygon class="g" points="89.28 297.01 46.01 314.5 82.78 343.23 89.28 297.01"/>
</g>
</g>
<ellipse class="h" cx="344.6" cy="356.05" rx="47.21" ry="25.52"/>
<path class="i" d="M346.25,345.11l-14.41,12.95a4.32,4.32,0,0,0,2.34,7.5L351,367.67a4.33,4.33,0,0,0,4.8-5l-2.39-15.06A4.31,4.31,0,0,0,346.25,345.11Z"/>
<g class="c">
<g>
<line class="j" x1="345.01" y1="355" x2="345.01" y2="62.08"/>
<polygon class="k" points="368.35 68.91 345.01 28.5 321.67 68.91 368.35 68.91"/>
</g>
</g>
<text class="l" transform="translate(-0.76 281.71)">y/left</text>
<text class="l" transform="translate(371.65 38.02)">z/up</text>
<text class="l" transform="translate(455.23 152.62)">x/<tspan class="m" x="43.87" y="0">f</tspan><tspan x="59.3" y="0">or</tspan><tspan class="n" x="104.47" y="0">w</tspan><tspan x="141.14" y="0">a</tspan><tspan class="o" x="167.38" y="0">r</tspan><tspan x="185.16" y="0">d</tspan></text>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.7 KiB

BIN
docs/img/imu-axes.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

BIN
docs/img/imu-rot-1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
docs/img/imu-rot-2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
docs/img/imu-rot-3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/img/imu-rot-4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

BIN
docs/img/imu-rot-5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

BIN
docs/img/imu-rot-6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.6 KiB

BIN
docs/img/imu-rot-7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

BIN
docs/img/imu-rot-8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 38 KiB

After

Width:  |  Height:  |  Size: 46 KiB

BIN
docs/img/motor-tape.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

89
docs/img/motors.svg Normal file
View File

@@ -0,0 +1,89 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 356.79 357.11">
<defs>
<style>
.a, .e {
fill: none;
stroke-miterlimit: 10;
}
.a {
stroke: #d5d5d5;
stroke-width: 31px;
}
.b {
fill: #c1c1c1;
}
.c {
fill: #ff9400;
}
.d {
opacity: 0.12;
}
.e {
stroke: #cc5200;
stroke-width: 8px;
}
.f {
fill: #cc5200;
}
.g {
font-size: 50px;
fill: #fff;
}
.g, .h {
font-family: Tahoma;
}
.h {
font-size: 20px;
}
.i {
letter-spacing: 0em;
}
</style>
</defs>
<g>
<g>
<line class="a" x1="77.4" y1="278.67" x2="277.4" y2="77.67"/>
<line class="a" x1="78.4" y1="78.67" x2="278.4" y2="279.67"/>
<circle class="b" cx="177.9" cy="178.17" r="41.5"/>
<circle class="c" cx="77.97" cy="78.17" r="77.95"/>
<circle class="c" cx="277.52" cy="77.95" r="77.95"/>
</g>
<path class="d" d="M174.29,163.6l-8.45,26.05A4.32,4.32,0,0,0,170,195.3h16.9a4.32,4.32,0,0,0,4.11-5.65l-8.45-26.05A4.32,4.32,0,0,0,174.29,163.6Z"/>
<g>
<path class="e" d="M307.47,122.53a52.66,52.66,0,1,0-72.08-76"/>
<polygon class="f" points="228.68 38.51 227.44 59.21 245.99 49.94 228.68 38.51"/>
</g>
<g>
<path class="e" d="M48.11,122.22a52.66,52.66,0,1,1,72.08-75.95"/>
<polygon class="f" points="109.59 49.63 128.14 58.91 126.9 38.2 109.59 49.63"/>
</g>
<text class="g" transform="translate(64.89 98.77)">3</text>
<text class="g" transform="translate(260.92 98.8)">2</text>
<text class="h" transform="translate(66.06 129.25)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op A</tspan></text>
<text class="h" transform="translate(232.55 128.95)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op B</tspan></text>
<circle class="c" cx="278.83" cy="277.92" r="77.95"/>
<g>
<path class="e" d="M249,322a52.66,52.66,0,1,1,72.09-76"/>
<polygon class="f" points="310.45 249.38 329 258.66 327.76 237.95 310.45 249.38"/>
</g>
<text class="g" transform="translate(265.76 298.52)">1</text>
<text class="h" transform="translate(266.92 329.01)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op A</tspan></text>
<circle class="c" cx="77.95" cy="277.92" r="77.95"/>
<g>
<path class="e" d="M107.9,322.49a52.66,52.66,0,1,0-72.08-76"/>
<polygon class="f" points="29.11 238.47 27.87 259.18 46.42 249.91 29.11 238.47"/>
</g>
<text class="g" transform="translate(61.35 298.76)">0</text>
<text class="h" transform="translate(32.98 328.92)">p<tspan class="i" x="11.05" y="0">r</tspan><tspan x="18.16" y="0">op B</tspan></text>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.8 KiB

BIN
docs/img/qgc-attitude.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

File diff suppressed because one or more lines are too long

Before

Width:  |  Height:  |  Size: 18 KiB

After

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -2,11 +2,7 @@
Flix quadcopter uses RAM to store flight log data. The default log capacity is 10 seconds at 100 Hz. This configuration can be adjusted in the `log.ino` file.
To perform log analysis, you need to download the log right after the flight without powering off the drone. Then you can use several tools to analyze the log data.
## Log download
To download the log, connect the ESP32 using USB right after the flight and run the following command:
To perform log analysis, you need to download the flight log. To to that, ensure you're connected to the drone using Wi-Fi and run the following command:
```bash
make log

View File

@@ -32,6 +32,8 @@ Do the following:
* `mfl` — should rotate front left motor (clockwise).
* `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise).
* **Check the propeller directions are correct**. Make sure your propeller types (A or B) are installed as on the picture:
<img src="img/user/peter_ukhov-2/1.jpg" width="200">
* **Check the remote control**. Using `rc` command, check the control values reflect your sticks movement. All the controls should change between -1 and 1, and throttle between 0 and 1.
* If using SBUS receiver, **calibrate the RC**. Type `cr` command in Serial Monitor and follow the instructions.
* **Check the IMU output using QGroundControl**. Connect to the drone using QGroundControl on your computer. Go to the *Analyze* tab, *MAVLINK Inspector*. Plot the data from the `SCALED_IMU` message. The gyroscope and accelerometer data should change according to the drone movement.

View File

@@ -1,130 +1,38 @@
# Usage: build, setup and flight
To use Flix, you need to build the firmware and upload it to the ESP32 board. For simulation, you need to build and run the simulator.
To fly Flix quadcopter, you need to build the firmware, upload it to the ESP32 board, and set up the drone for flight.
For the start, clone the repository using git:
To get the firmware sources, clone the repository using git:
```bash
git clone https://github.com/okalachev/flix.git
cd flix
git clone https://github.com/okalachev/flix.git && cd flix
```
## Simulation
Beginners can [download the source code as a ZIP archive](https://github.com/okalachev/flix/archive/refs/heads/master.zip).
### Ubuntu
## Building the firmware
The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you have a newer version, consider using a virtual machine.
1. Install Arduino CLI:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Install Gazebo 11:
```bash
sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget https://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt-get install -y gazebo11 libgazebo11-dev
```
Set up your Gazebo environment variables:
```bash
echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc
source ~/.bashrc
```
3. Install SDL2 and other dependencies:
```bash
sudo apt-get update && sudo apt-get install build-essential libsdl2-dev
```
4. Add your user to the `input` group to enable joystick support (you need to re-login after this command):
```bash
sudo usermod -a -G input $USER
```
5. Run the simulation:
```bash
make simulator
```
### macOS
1. Install Homebrew package manager, if you don't have it installed:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
2. Install Arduino CLI, Gazebo 11 and SDL2:
```bash
brew tap osrf/simulation
brew install arduino-cli
brew install gazebo11
brew install sdl2
```
Set up your Gazebo environment variables:
```bash
echo "source /opt/homebrew/share/gazebo/setup.sh" >> ~/.zshrc
source ~/.zshrc
```
3. Run the simulation:
```bash
make simulator
```
### Setup
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone. For **iOS**, use [QGroundControl build from TAJISOFT](https://apps.apple.com/ru/app/qgc-from-tajisoft/id1618653051).
2. Connect your smartphone to the same Wi-Fi network as the machine running the simulator.
3. If you're using a virtual machine, make sure that its network is set to the **bridged** mode with Wi-Fi adapter selected.
4. Run the simulation.
5. Open QGroundControl app. It should connect and begin showing the virtual drone's telemetry automatically.
6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
7. Use the virtual joystick to fly the drone!
#### Control with USB remote control
1. Connect your USB remote control to the machine running the simulator.
2. Run the simulation.
3. Calibrate the RC using `cr` command in the command line interface.
4. Run the simulation again.
5. Use the USB remote control to fly the drone!
## Firmware
You can build and upload the firmware using either **Arduino IDE** (easier for beginners) or **command line**.
### Arduino IDE (Windows, Linux, macOS)
<img src="img/arduino-ide.png" width="400" alt="Flix firmware open in Arduino IDE">
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
2. *Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).*
3. Install ESP32 core, version 3.2.0. See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.16.
5. Clone the project using git or [download the source code as a ZIP archive](https://codeload.github.com/okalachev/flix/zip/refs/heads/master).
6. Open the downloaded Arduino sketch `flix/flix.ino` in Arduino IDE.
7. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
8. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
5. Open the `flix/flix.ino` sketch from downloaded firmware sources in Arduino IDE.
6. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
7. [Build and upload](https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-uploading-a-sketch) the firmware using Arduino IDE.
### Command line (Windows, Linux, macOS)
1. [Install Arduino CLI](https://arduino.github.io/arduino-cli/installation/).
On Linux, use:
On Linux, install it like this:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
@@ -149,19 +57,113 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
make upload monitor
```
See other available Make commands in the [Makefile](../Makefile).
See other available Make commands in [Makefile](../Makefile).
> [!TIP]
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including CLI and QGroundControl connection should work.
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including console and QGroundControl connection should work.
### Setup
## Before first flight
### Choose the IMU model
In case if using different IMU model than MPU9250, change `imu` variable declaration in the `imu.ino`:
```cpp
ICM20948 imu(SPI); // For ICM-20948
MPU6050 imu(Wire); // For MPU-6050
```
### Connect using QGroundControl
QGroundControl is a ground control station software that can be used to monitor and control the drone.
1. Install mobile or desktop version of [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html).
2. Power up the drone.
3. Connect your computer or smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
### Access console
The console is a command line interface (CLI) that allows to interact with the drone, change parameters, and perform various actions. There are two ways of accessing the console: using **serial port** or using **QGroundControl (wirelessly)**.
To access the console using serial port:
1. Connect the ESP32 board to the computer using USB cable.
2. Open Serial Monitor in Arduino IDE (or use `make monitor` in the command line).
3. In Arduino IDE, make sure the baudrate is set to 115200.
To access the console using QGroundControl:
1. Connect to the drone using QGroundControl app.
2. Go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Analyze Tools* ⇒ *MAVLink Console*.
<img src="img/cli.png" width="400">
> [!TIP]
> Use `help` command to see the list of available commands.
### Access parameters
The drone is configured using parameters. To access and modify them, go to the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Parameters*:
<img src="img/parameters.png" width="400">
### Define IMU orientation
Use parameters, to define the IMU board axes orientation relative to the drone's axes: `IMU_ROT_ROLL`, `IMU_ROT_PITCH`, and `IMU_ROT_YAW`.
The drone has *X* axis pointing forward, *Y* axis pointing left, and *Z* axis pointing up, and the supported IMU boards have *X* axis pointing to the pins side and *Z* axis pointing up from the component side:
<img src="img/imu-axes.png" width="200">
Use the following table to set the parameters for common IMU orientations:
|Orientation|Parameters|Orientation|Parameters|
|:-:|-|-|-|
|<img src="img/imu-rot-1.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 0 |<img src="img/imu-rot-5.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 0|
|<img src="img/imu-rot-2.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 1.571|<img src="img/imu-rot-6.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = -1.571|
|<img src="img/imu-rot-3.png" width="180">|`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 3.142|<img src="img/imu-rot-7.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 3.142|
|<img src="img/imu-rot-4.png" width="180"><br>☑️ **Default**|<br>`IMU_ROT_ROLL` = 0<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = -1.571|<img src="img/imu-rot-8.png" width="180">|`IMU_ROT_ROLL` = 3.142<br>`IMU_ROT_PITCH` = 0<br>`IMU_ROT_YAW` = 1.571|
### Calibrate accelerometer
Before flight you need to calibrate the accelerometer:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
1. Access the console using QGroundControl (recommended) or Serial Monitor.
2. Type `ca` command there and follow the instructions.
#### Control with smartphone
### Check everything works
1. Check the IMU is working: perform `imu` command and check its output:
* The `status` field should be `OK`.
* The `rate` field should be about 1000 (Hz).
* The `accel` and `gyro` fields should change as you move the drone.
* The `landed` field should be `1` when the drone is still on the ground and `0` when you lift it up.
2. Check the attitude estimation: connect to the drone using QGroundControl, rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct. Attitude indicator in QGroundControl is shown below:
<img src="img/qgc-attitude.png" height="200">
3. Perform motor tests in the console. Use the following commands **— remove the propellers before running the tests!**
* `mfr` — should rotate front right motor (counter-clockwise).
* `mfl` — should rotate front left motor (clockwise).
* `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise).
Rotation diagram:
<img src="img/motors.svg" width=200>
> [!WARNING]
> Never run the motors when powering the drone from USB, always use the battery for that.
## Setup remote control
There are several ways to control the drone's flight: using **smartphone** (Wi-Fi), using **SBUS remote control**, or using **USB remote control** (Wi-Fi).
### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
@@ -171,17 +173,17 @@ Before flight you need to calibrate the accelerometer:
6. Use the virtual joystick to fly the drone!
> [!TIP]
> Decrease `TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
> Decrease `CTL_TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
#### Control with remote control
### Control with remote control
Before flight using remote control, you need to calibrate it:
Before using remote SBUS-connected remote control, you need to calibrate it:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
2. Type `cr` command there and follow the instructions.
1. Access the console using QGroundControl (recommended) or Serial Monitor.
2. Type `cr` command and follow the instructions.
3. Use the remote control to fly the drone!
#### Control with USB remote control (Wi-Fi)
### Control with USB remote control
If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it.
@@ -193,9 +195,6 @@ If your drone doesn't have RC receiver installed, you can use USB remote control
6. Go the the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Joystick*. Calibrate you USB remote control there.
7. Use the USB remote control to fly the drone!
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
## Flight
For both virtual sticks and a physical joystick, the default control scheme is left stick for throttle and yaw and right stick for pitch and roll:
@@ -214,6 +213,9 @@ When finished flying, **disarm** the drone, moving the left stick to the bottom
<img src="img/disarming.svg" width="150">
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.
### Flight modes
Flight mode is changed using mode switch on the remote control or using the command line.
@@ -229,9 +231,9 @@ The default mode is *STAB*. In this mode, the drone stabilizes its attitude (ori
In this mode, the pilot controls the angular rates. This control method is difficult to fly and mostly used in FPV racing.
#### MANUAL
#### RAW
Manual mode disables all the stabilization, and the pilot inputs are passed directly to the motors. This mode is intended for testing and demonstration purposes only, and basically the drone **cannot fly in this mode**.
*RAW* mode disables all the stabilization, and the pilot inputs are mixed directly to the motors. The IMU sensor is not involved. This mode is intended for testing and demonstration purposes only, and basically the drone **cannot fly in this mode**.
#### AUTO
@@ -239,14 +241,12 @@ In this mode, the pilot inputs are ignored (except the mode switch, if configure
If the pilot moves the control sticks, the drone will switch back to *STAB* mode.
## Adjusting parameters
## Flight log
You can adjust some of the drone's parameters (include PID coefficients) in QGroundControl app. In order to do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Parameters*.
After the flight, you can download the flight log for analysis wirelessly. Use the following for that:
<img src="img/parameters.png" width="400">
```bash
make log
```
## CLI access
In addition to accessing the drone's command line interface (CLI) using the serial port, you can also access it with QGroundControl using Wi-Fi connection. To do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Analyze Tools**MAVLink Console*.
<img src="img/cli.png" width="400">
See more details about log analysis in the [log analysis](log.md) article.

View File

@@ -4,12 +4,67 @@ This page contains user-built drones based on the Flix project. Publish your pro
---
Author: [goldarte](https://t.me/goldarte).<br>
<img src="img/user/goldarte/1.jpg" height=150> <img src="img/user/goldarte/2.jpg" height=150>
**Flight video:**
<a href="https://drive.google.com/file/d/1nQtFjEcGGLx-l4xkL5ko9ZpOTVU-WDjL/view?usp=sharing"><img height=200 src="img/user/goldarte/video.jpg"></a>
---
## School 548 course
Special quadcopter design and engineering course took place in october-november 2025 in School 548, Moscow. Course included UAV control theory, electronics, and practical drone assembly and setup using the Flix project.
<img height=200 src="img/user/school548/1.jpg"> <img height=200 src="img/user/school548/2.jpg"> <img height=200 src="img/user/school548/3.jpg">
STL files and other materials: see [here](https://drive.google.com/drive/folders/1wTUzj087LjKQQl3Lz5CjHCuobxoykhyp?usp=share_link).
### Selected works
Author: [KiraFlux](https://t.me/@kiraflux_0XC0000005).<br>
Description: **custom ESPNOW remote control** is implemented, firmware modified to support ESPNOW protocol.<br>
Telegram posts: [1](https://t.me/opensourcequadcopter/106), [2](https://t.me/opensourcequadcopter/114).<br>
Modified Flix firmware: https://github.com/KiraFlux/flix/tree/klyax.<br>
Remote control project: https://github.com/KiraFlux/ESP32-DJC.<br>
Drone design: https://github.com/KiraFlux/Klyax.<br>
<img src="img/user/school548/kiraflux1.jpg" height=150> <img src="img/user/school548/kiraflux2.jpg" height=150>
**ESPNOW remote control demonstration**:
<img height=200 src="img/user/school548/kiraflux-video.jpg"><a href="https://drive.google.com/file/d/1soHDAeHQWnm97Y4dg4nWevJuMiTdJJXW/view?usp=sharing"></a>
Author: [tolyan4krut](https://t.me/tolyan4krut).<br>
Description: the first drone based on ESP32-S3-CAM board **with a camera**, implementing Wi-Fi video streaming. Runs HTTP server and HTTP video stream.<br>
Modified Flix firmware: https://github.com/CatRey/Flix-Camera-Streaming.<br>
[Telegram post](https://t.me/opensourcequadcopter/117).
<img src="img/user/school548/tolyan4krut.jpg" height=150>
**Video streaming and flight demonstration**:
<a href="https://drive.google.com/file/d/1KuOBsujLsk7q8FoqKD8u7uoq4ptS5onp/view?usp=sharing"><img height=200 src="img/user/school548/tolyan4krut-video.jpg"></a>
Author: [Vlad Tolshinov](https://t.me/Vlad_Tolshinov).<br>
Description: custom frame with enlarged arm length, which provides very high flight stability, 65 mm props.
<img src="img/user/school548/vlad_tolshinov1.jpg" height=150> <img src="img/user/school548/vlad_tolshinov2.jpg" height=150>
**Flight video**:
<a href="https://drive.google.com/file/d/1zu00DZxhC7DJ9Z2mYjtxdNQqOOLAyYbp/view?usp=sharing"><img height=200 src="img/user/school548/vlad_tolshinov-video.jpg"></a>
---
## RoboCamp
Author: RoboCamp participants.<br>
Description: 3D-printed and wooden frames, ESP32 Mini, DC-DC buck-boost converters. BetaFPV LiteRadio 3 to control the drones via Wi-Fi connection.<br>
Features: altitude hold, obstacle avoidance, autonomous flight elements.<br>
Some of the designed model files: https://drive.google.com/drive/folders/18YHWGquKeIevzrMH4-OUT-zKXMETTEUu?usp=share_link.
Some of the designed model files: see [here](https://drive.google.com/drive/folders/18YHWGquKeIevzrMH4-OUT-zKXMETTEUu?usp=share_link).
RoboCamp took place in July 2025, Saint Petersburg, where 9 participants designed and built their own drones using the Flix project, and then modified the firmware to complete specific flight tasks.

View File

@@ -14,7 +14,7 @@ Flix version 0 (obsolete):
|Motor|8520 3.7V brushed motor (**shaft 0.8mm!**)|<img src="img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="img/prop.jpg" width=100>|4|
|Motor ESC|2.7A 1S Dual Way Micro Brush ESC|<img src="img/esc.jpg" width=100>|4|
|RC transmitter|KINGKONG TINY X8|<img src="img/tx.jpg" width=100>|1|
|RC transmitter|KINGKONG TINY X8|<img src="img/kingkong.jpg" width=100>|1|
|RC receiver|DF500 (SBUS)|<img src="img/rx.jpg" width=100>|1|
|~~SBUS inverter~~*||<img src="img/inv.jpg" width=100>|~~1~~|
|Battery|3.7 Li-Po 850 MaH 60C|||

View File

@@ -8,7 +8,7 @@
#include "util.h"
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern const int ACRO, STAB, AUTO;
extern const int RAW, ACRO, STAB, AUTO;
extern float t, dt, loopRate;
extern uint16_t channels[16];
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlMode;
@@ -35,10 +35,11 @@ const char* motd =
"imu - show IMU data\n"
"arm - arm the drone\n"
"disarm - disarm the drone\n"
"stab/acro/auto - set mode\n"
"raw/stab/acro/auto - set mode\n"
"rc - show RC data\n"
"wifi - show Wi-Fi info\n"
"mot - show motor output\n"
"log - dump in-RAM log\n"
"log [dump] - print log header [and data]\n"
"cr - calibrate RC\n"
"ca - calibrate accel\n"
"mfr, mfl, mrr, mrl - test motor (remove props)\n"
@@ -116,6 +117,8 @@ void doCommand(String str, bool echo = false) {
armed = true;
} else if (command == "disarm") {
armed = false;
} else if (command == "raw") {
mode = RAW;
} else if (command == "stab") {
mode = STAB;
} else if (command == "acro") {
@@ -131,11 +134,16 @@ void doCommand(String str, bool echo = false) {
controlRoll, controlPitch, controlYaw, controlThrottle, controlMode);
print("mode: %s\n", getModeName());
print("armed: %d\n", armed);
} else if (command == "wifi") {
#if WIFI_ENABLED
printWiFiInfo();
#endif
} else if (command == "mot") {
print("front-right %g front-left %g rear-right %g rear-left %g\n",
motors[MOTOR_FRONT_RIGHT], motors[MOTOR_FRONT_LEFT], motors[MOTOR_REAR_RIGHT], motors[MOTOR_REAR_LEFT]);
} else if (command == "log") {
dumpLog();
printLogHeader();
if (arg0 == "dump") printLogData();
} else if (command == "cr") {
calibrateRC();
} else if (command == "ca") {

View File

@@ -34,7 +34,7 @@
#define TILT_MAX radians(30)
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
const int MANUAL = 0, ACRO = 1, STAB = 2, AUTO = 3; // flight modes
const int RAW = 0, ACRO = 1, STAB = 2, AUTO = 3; // flight modes
int mode = STAB;
bool armed = false;
@@ -65,7 +65,6 @@ void control() {
}
void interpretControls() {
// NOTE: put ACRO or MANUAL modes there if you want to use them
if (controlMode < 0.25) mode = STAB;
if (controlMode < 0.75) mode = STAB;
if (controlMode > 0.75) mode = STAB;
@@ -75,6 +74,8 @@ void interpretControls() {
if (controlThrottle < 0.05 && controlYaw > 0.95) armed = true; // arm gesture
if (controlThrottle < 0.05 && controlYaw < -0.95) armed = false; // disarm gesture
if (abs(controlYaw) < 0.1) controlYaw = 0; // yaw dead zone
thrustTarget = controlThrottle;
if (mode == STAB) {
@@ -91,10 +92,10 @@ void interpretControls() {
ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU
}
if (mode == MANUAL) { // passthrough mode
if (mode == RAW) { // direct torque control
attitudeTarget.invalidate(); // skip attitude control
ratesTarget.invalidate(); // skip rate control
torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.01;
torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.1;
}
}
@@ -155,7 +156,7 @@ void controlTorque() {
const char* getModeName() {
switch (mode) {
case MANUAL: return "MANUAL";
case RAW: return "RAW";
case ACRO: return "ACRO";
case STAB: return "STAB";
case AUTO: return "AUTO";

View File

@@ -8,8 +8,8 @@
#include "lpf.h"
#include "util.h"
#define WEIGHT_ACC 0.003
#define RATES_LFP_ALPHA 0.2 // cutoff frequency ~ 40 Hz
float accWeight = 0.003;
LowPassFilter<Vector> ratesFilter(0.2); // cutoff frequency ~ 40 Hz
void estimate() {
applyGyro();
@@ -18,7 +18,6 @@ void estimate() {
void applyGyro() {
// filter gyro to get angular rates
static LowPassFilter<Vector> ratesFilter(RATES_LFP_ALPHA);
rates = ratesFilter.update(gyro);
// apply rates to attitude
@@ -34,7 +33,7 @@ void applyAcc() {
// calculate accelerometer correction
Vector up = Quaternion::rotateVector(Vector(0, 0, 1), attitude);
Vector correction = Vector::rotationVectorBetween(acc, up) * WEIGHT_ACC;
Vector correction = Vector::rotationVectorBetween(acc, up) * accWeight;
// apply correction
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(correction));

View File

@@ -7,7 +7,6 @@
#include "quaternion.h"
#include "util.h"
#define SERIAL_BAUDRATE 115200
#define WIFI_ENABLED 1
float t = NAN; // current step time, s
@@ -22,7 +21,7 @@ bool landed; // are we landed and stationary
float motors[4]; // normalized motors thrust in range [0..1]
void setup() {
Serial.begin(SERIAL_BAUDRATE);
Serial.begin(115200);
print("Initializing flix\n");
disableBrownOut();
setupParameters();

View File

@@ -10,6 +10,7 @@
#include "util.h"
MPU9250 imu(SPI);
Vector imuRotation(0, 0, -PI / 2); // imu orientation as Euler angles
Vector accBias;
Vector accScale(1, 1, 1);
@@ -37,24 +38,18 @@ void readIMU() {
// apply scale and bias
acc = (acc - accBias) / accScale;
gyro = gyro - gyroBias;
// rotate
rotateIMU(acc);
rotateIMU(gyro);
}
void rotateIMU(Vector& data) {
// Rotate from LFD to FLU
// NOTE: In case of using other IMU orientation, change this line:
data = Vector(data.y, data.x, -data.z);
// Axes orientation for various boards: https://github.com/okalachev/flixperiph#imu-axes-orientation
// rotate to body frame
Quaternion rotation = Quaternion::fromEuler(imuRotation);
acc = Quaternion::rotateVector(acc, rotation.inversed());
gyro = Quaternion::rotateVector(gyro, rotation.inversed());
}
void calibrateGyroOnce() {
static Delay landedDelay(2);
if (!landedDelay.update(landed)) return; // calibrate only if definitely stationary
static LowPassFilter<Vector> gyroCalibrationFilter(0.001);
gyroBias = gyroCalibrationFilter.update(gyro);
static LowPassFilter<Vector> gyroBiasFilter(0.001);
gyroBias = gyroBiasFilter.update(gyro);
}
void calibrateAccel() {

View File

@@ -4,10 +4,10 @@
// In-RAM logging
#include "vector.h"
#include "util.h"
#define LOG_RATE 100
#define LOG_DURATION 10
#define LOG_PERIOD 1.0 / LOG_RATE
#define LOG_SIZE LOG_DURATION * LOG_RATE
Vector attitudeEuler;
@@ -46,9 +46,8 @@ void prepareLogData() {
void logData() {
if (!armed) return;
static int logPointer = 0;
static float logTime = 0;
if (t - logTime < LOG_PERIOD) return;
logTime = t;
static Rate period(LOG_RATE);
if (!period) return;
prepareLogData();
@@ -62,12 +61,13 @@ void logData() {
}
}
void dumpLog() {
// Print header
void printLogHeader() {
for (int i = 0; i < logColumns; i++) {
print("%s%s", logEntries[i].name, i < logColumns - 1 ? "," : "\n");
}
// Print data
}
void printLogData() {
for (int i = 0; i < LOG_SIZE; i++) {
if (logBuffer[i][0] == 0) continue; // skip empty records
for (int j = 0; j < logColumns; j++) {

View File

@@ -6,11 +6,11 @@
#if WIFI_ENABLED
#include <MAVLink.h>
#include "util.h"
#define SYSTEM_ID 1
#define PERIOD_SLOW 1.0
#define PERIOD_FAST 0.1
#define MAVLINK_CONTROL_YAW_DEAD_ZONE 0.1f
#define MAVLINK_RATE_SLOW 1
#define MAVLINK_RATE_FAST 10
bool mavlinkConnected = false;
String mavlinkPrintBuffer;
@@ -26,15 +26,12 @@ void processMavlink() {
void sendMavlink() {
sendMavlinkPrint();
static float lastSlow = 0;
static float lastFast = 0;
mavlink_message_t msg;
uint32_t time = t * 1000;
if (t - lastSlow >= PERIOD_SLOW) {
lastSlow = t;
static Rate slow(MAVLINK_RATE_SLOW), fast(MAVLINK_RATE_FAST);
if (slow) {
mavlink_msg_heartbeat_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, MAV_TYPE_QUADROTOR, MAV_AUTOPILOT_GENERIC,
(armed ? MAV_MODE_FLAG_SAFETY_ARMED : 0) |
((mode == STAB) ? MAV_MODE_FLAG_STABILIZE_ENABLED : 0) |
@@ -49,9 +46,7 @@ void sendMavlink() {
sendMessage(&msg);
}
if (t - lastFast >= PERIOD_FAST && mavlinkConnected) {
lastFast = t;
if (fast && mavlinkConnected) {
const float zeroQuat[] = {0, 0, 0, 0};
mavlink_msg_attitude_quaternion_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
time, attitude.w, attitude.x, -attitude.y, -attitude.z, rates.x, -rates.y, -rates.z, zeroQuat); // convert to frd
@@ -109,8 +104,6 @@ void handleMavlink(const void *_msg) {
controlYaw = m.r / 1000.0f;
controlMode = NAN;
controlTime = t;
if (abs(controlYaw) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controlYaw = 0;
}
if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_LIST) {
@@ -214,6 +207,20 @@ void handleMavlink(const void *_msg) {
armed = motors[0] > 0 || motors[1] > 0 || motors[2] > 0 || motors[3] > 0;
}
if (msg.msgid == MAVLINK_MSG_ID_LOG_REQUEST_DATA) {
mavlink_log_request_data_t m;
mavlink_msg_log_request_data_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
// Send all log records
for (int i = 0; i < sizeof(logBuffer) / sizeof(logBuffer[0]); i++) {
mavlink_message_t msg;
mavlink_msg_log_data_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, 0, i,
sizeof(logBuffer[0]), (uint8_t *)logBuffer[i]);
sendMessage(&msg);
}
}
// Handle commands
if (msg.msgid == MAVLINK_MSG_ID_COMMAND_LONG) {
mavlink_command_long_t m;

View File

@@ -38,9 +38,9 @@ void setupMotors() {
int getDutyCycle(float value) {
value = constrain(value, 0, 1);
float pwm = mapff(value, 0, 1, PWM_MIN, PWM_MAX);
float pwm = mapf(value, 0, 1, PWM_MIN, PWM_MAX);
if (value == 0) pwm = PWM_STOP;
float duty = mapff(pwm, 0, 1000000 / PWM_FREQUENCY, 0, (1 << PWM_RESOLUTION) - 1);
float duty = mapf(pwm, 0, 1000000 / PWM_FREQUENCY, 0, (1 << PWM_RESOLUTION) - 1);
return round(duty);
}

View File

@@ -4,6 +4,7 @@
// Parameters storage in flash memory
#include <Preferences.h>
#include "util.h"
extern float channelZero[16];
extern float channelMax[16];
@@ -12,42 +13,48 @@ extern float rollChannel, pitchChannel, throttleChannel, yawChannel, armedChanne
Preferences storage;
struct Parameter {
const char *name; // max length is 16
const char *name; // max length is 15 (Preferences key limit)
float *variable;
float value; // cache
};
Parameter parameters[] = {
// control
{"ROLLRATE_P", &rollRatePID.p},
{"ROLLRATE_I", &rollRatePID.i},
{"ROLLRATE_D", &rollRatePID.d},
{"ROLLRATE_I_LIM", &rollRatePID.windup},
{"PITCHRATE_P", &pitchRatePID.p},
{"PITCHRATE_I", &pitchRatePID.i},
{"PITCHRATE_D", &pitchRatePID.d},
{"PITCHRATE_I_LIM", &pitchRatePID.windup},
{"YAWRATE_P", &yawRatePID.p},
{"YAWRATE_I", &yawRatePID.i},
{"YAWRATE_D", &yawRatePID.d},
{"ROLL_P", &rollPID.p},
{"ROLL_I", &rollPID.i},
{"ROLL_D", &rollPID.d},
{"PITCH_P", &pitchPID.p},
{"PITCH_I", &pitchPID.i},
{"PITCH_D", &pitchPID.d},
{"YAW_P", &yawPID.p},
{"PITCHRATE_MAX", &maxRate.y},
{"ROLLRATE_MAX", &maxRate.x},
{"YAWRATE_MAX", &maxRate.z},
{"TILT_MAX", &tiltMax},
{"CTL_R_RATE_P", &rollRatePID.p},
{"CTL_R_RATE_I", &rollRatePID.i},
{"CTL_R_RATE_D", &rollRatePID.d},
{"CTL_R_RATE_WU", &rollRatePID.windup},
{"CTL_P_RATE_P", &pitchRatePID.p},
{"CTL_P_RATE_I", &pitchRatePID.i},
{"CTL_P_RATE_D", &pitchRatePID.d},
{"CTL_P_RATE_WU", &pitchRatePID.windup},
{"CTL_Y_RATE_P", &yawRatePID.p},
{"CTL_Y_RATE_I", &yawRatePID.i},
{"CTL_Y_RATE_D", &yawRatePID.d},
{"CTL_R_P", &rollPID.p},
{"CTL_R_I", &rollPID.i},
{"CTL_R_D", &rollPID.d},
{"CTL_P_P", &pitchPID.p},
{"CTL_P_I", &pitchPID.i},
{"CTL_P_D", &pitchPID.d},
{"CTL_Y_P", &yawPID.p},
{"CTL_P_RATE_MAX", &maxRate.y},
{"CTL_R_RATE_MAX", &maxRate.x},
{"CTL_Y_RATE_MAX", &maxRate.z},
{"CTL_TILT_MAX", &tiltMax},
// imu
{"ACC_BIAS_X", &accBias.x},
{"ACC_BIAS_Y", &accBias.y},
{"ACC_BIAS_Z", &accBias.z},
{"ACC_SCALE_X", &accScale.x},
{"ACC_SCALE_Y", &accScale.y},
{"ACC_SCALE_Z", &accScale.z},
{"IMU_ROT_ROLL", &imuRotation.x},
{"IMU_ROT_PITCH", &imuRotation.y},
{"IMU_ROT_YAW", &imuRotation.z},
{"IMU_ACC_BIAS_X", &accBias.x},
{"IMU_ACC_BIAS_Y", &accBias.y},
{"IMU_ACC_BIAS_Z", &accBias.z},
{"IMU_ACC_SCALE_X", &accScale.x},
{"IMU_ACC_SCALE_Y", &accScale.y},
{"IMU_ACC_SCALE_Z", &accScale.z},
// estimate
{"EST_ACC_WEIGHT", &accWeight},
{"EST_RATES_LPF_A", &ratesFilter.alpha},
// rc
{"RC_ZERO_0", &channelZero[0]},
{"RC_ZERO_1", &channelZero[1]},
@@ -118,10 +125,9 @@ bool setParameter(const char *name, const float value) {
}
void syncParameters() {
static float lastSync = 0;
if (t - lastSync < 1) return; // sync once per second
static Rate rate(1);
if (!rate) return; // sync once per second
if (motorsActive()) return; // don't use flash while flying, it may cause a delay
lastSync = t;
for (auto &parameter : parameters) {
if (parameter.value == *parameter.variable) continue;

View File

@@ -12,11 +12,7 @@
const float ONE_G = 9.80665;
extern float t;
float mapf(long x, long in_min, long in_max, float out_min, float out_max) {
return (float)(x - in_min) * (out_max - out_min) / (float)(in_max - in_min) + out_min;
}
float mapff(float x, float in_min, float in_max, float out_min, float out_max) {
float mapf(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
@@ -54,20 +50,34 @@ void splitString(String& str, String& token0, String& token1, String& token2) {
token2 = strtok(NULL, "");
}
// Rate limiter
class Rate {
public:
float rate;
float last = 0;
Rate(float rate) : rate(rate) {}
operator bool() {
if (t - last >= 1 / rate) {
last = t;
return true;
}
return false;
}
};
// Delay filter for boolean signals - ensures the signal is on for at least 'delay' seconds
class Delay {
public:
float delay;
float start = NAN;
Delay(float delay) : delay(delay) {}
bool update(bool on) {
if (!on) {
start = NAN;
return false;
}
if (isnan(start)) {
} else if (isnan(start)) {
start = t;
}
return t - start >= delay;

View File

@@ -35,4 +35,15 @@ int receiveWiFi(uint8_t *buf, int len) {
return udp.read(buf, len);
}
void printWiFiInfo() {
print("MAC: %s\n", WiFi.softAPmacAddress().c_str());
print("SSID: %s\n", WiFi.softAPSSID().c_str());
print("Password: %s\n", WIFI_PASSWORD);
print("Clients: %d\n", WiFi.softAPgetStationNum());
print("Status: %d\n", WiFi.status());
print("IP: %s\n", WiFi.softAPIP().toString().c_str());
print("Remote IP: %s\n", udp.remoteIP().toString().c_str());
print("MAVLink connected: %d\n", mavlinkConnected);
}
#endif

View File

@@ -1,15 +1,99 @@
# Gazebo Simulation
# Simulation
<img src="../docs/img/simulator.png" width=500 alt="Flix simulator">
The Flix drone simulator is based on Gazebo 11 and runs the firmware code in virtual physical environment.
## Building and running
Gazebo 11 works on **Ubuntu 20.04** and used to work on macOS. However, on the recent macOS versions it seems to be broken, so Ubuntu 20.04 is recommended.
See [building and running instructions](../docs/usage.md#simulation).
<img src="../docs/img/simulator1.png" width=600 alt="Flix simulator running on macOS">
## Installation
1. Clone the Flix repository using it:
```bash
git clone https://github.com/okalachev/flix.git && cd flix
```
2. Install Arduino CLI:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
3. Install Gazebo 11:
```bash
sudo sh -c 'echo "deb http://packages.osrfoundation.org/gazebo/ubuntu-stable `lsb_release -cs` main" > /etc/apt/sources.list.d/gazebo-stable.list'
wget https://packages.osrfoundation.org/gazebo.key -O - | sudo apt-key add -
sudo apt-get update
sudo apt-get install -y gazebo11 libgazebo11-dev
```
Set up your Gazebo environment variables:
```bash
echo "source /usr/share/gazebo/setup.sh" >> ~/.bashrc
source ~/.bashrc
```
4. Install SDL2 and other dependencies:
```bash
sudo apt-get update && sudo apt-get install build-essential libsdl2-dev
```
5. Add your user to the `input` group to enable joystick support (you need to re-login after this command):
```bash
sudo usermod -a -G input $USER
```
6. Run the simulation:
```bash
make simulator
```
## Usage
Just like the real drone, the simulator can be controlled using a USB remote control or a smartphone.
### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone. For **iOS**, use [QGroundControl build from TAJISOFT](https://apps.apple.com/ru/app/qgc-from-tajisoft/id1618653051).
2. Connect your smartphone to the same Wi-Fi network as the machine running the simulator.
3. If you're using a virtual machine, make sure that its network is set to the **bridged** mode with Wi-Fi adapter selected.
4. Run the simulation.
5. Open QGroundControl app. It should connect and begin showing the virtual drone's telemetry automatically.
6. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
7. Use the virtual joystick to fly the drone!
> [!TIP]
> Decrease `CTL_TILT_MAX` parameter when flying using the smartphone to make the controls less sensitive.
### Control with USB remote control
1. Connect your USB remote control to the machine running the simulator.
2. Run the simulation.
3. Calibrate the RC using `cr` command in the command line interface.
4. Use the USB remote control to fly the drone!
### Piloting
To start the flight, arm the drone moving the throttle stick to the bottom right position:
<img src="../docs/img/arming.svg" width="150">
To disarm, move the throttle stick to the bottom left position:
<img src="../docs/img/disarming.svg" width="150">
See other piloting and usage details in general [usage article](../docs/usage.md).
## Code structure
Flix simulator is based on [Gazebo Classic](https://classic.gazebosim.org) and consists of the following components:
Flix simulator consists of the following components:
* Physical model of the drone: [`models/flix/flix.sdf`](models/flix/flix.sdf).
* Physical model of the drone in Gazebo format: [`models/flix/flix.sdf`](models/flix/flix.sdf).
* Plugin for Gazebo: [`simulator.cpp`](simulator.cpp). The plugin is attached to the physical model. It receives stick positions from the controller, gets the data from the virtual sensors, and then passes this data to the Arduino code.
* Arduino imitation: [`Arduino.h`](Arduino.h). This file contains partial implementation of the Arduino API, that is working within Gazebo plugin environment.
* Arduino emulation: [`Arduino.h`](Arduino.h). This file contains partial implementation of the Arduino API, that is working within Gazebo plugin environment.

View File

@@ -22,6 +22,7 @@ Vector gyro;
Vector rates;
Quaternion attitude;
bool landed;
Vector imuRotation;
// declarations
void step();
@@ -45,7 +46,8 @@ void normalizeRC();
void calibrateRC();
void calibrateRCChannel(float *channel, uint16_t zero[16], uint16_t max[16], const char *str);
void printRCCalibration();
void dumpLog();
void printLogHeader();
void printLogData();
void processMavlink();
void sendMavlink();
void sendMessage(const void *msg);
@@ -72,4 +74,5 @@ void calibrateGyro() { print("Skip gyro calibrating\n"); };
void calibrateAccel() { print("Skip accel calibrating\n"); };
void printIMUCalibration() { print("cal: N/A\n"); };
void printIMUInfo() {};
void printWiFiInfo() {};
Vector accBias, gyroBias, accScale(1, 1, 1);

View File

@@ -3,21 +3,49 @@
# Download flight log remotely and save to file
import os
import time
import datetime
import struct
from pymavlink.dialects.v20.common import MAVLink_log_data_message
from pyflix import Flix
DIR = os.path.dirname(os.path.realpath(__file__))
flix = Flix()
print('Downloading log...')
lines = flix.cli('log').splitlines()
# sort by timestamp
header = lines.pop(0)
lines.sort(key=lambda line: float(line.split(',')[0]))
header = flix.cli('log')
print('Received header:\n- ' + '\n- '.join(header.split(',')))
records = []
def on_record(msg: MAVLink_log_data_message):
global stop
stop = time.time() + 1 # extend timeout
records.append([])
i = 0
data = bytes(msg.data)
while i + 4 <= msg.count:
records[-1].append(struct.unpack('<f', data[i:i+4])[0])
i += 4
stop = time.time() + 3
flix.on('mavlink.LOG_DATA', on_record)
flix.mavlink.log_request_data_send(flix.system_id, 0, 0, 0, 0xFFFFFFFF)
while time.time() < stop:
time.sleep(1)
flix.off(on_record)
records.sort(key=lambda record: record[0])
records = [record for record in records if record[0] != 0]
print(f'Received records: {len(records)}')
log = open(f'{DIR}/log/{datetime.datetime.now().isoformat()}.csv', 'wb')
content = header.encode() + b'\n' + b'\n'.join(line.encode() for line in lines)
log.write(content)
log.write(header.encode() + b'\n')
for record in records:
line = ','.join(f'{value}' for value in record)
log.write(line.encode() + b'\n')
print(f'Written {os.path.relpath(log.name, os.curdir)}')

View File

@@ -1,8 +1,8 @@
# Flix Python library
The Flix Python library allows you to remotely connect to a Flix quadcopter. It provides access to telemetry data, supports executing CLI commands, and controlling the drone's flight.
The Flix Python library allows you to remotely connect to a Flix quadcopter. It provides access to telemetry data, supports executing console commands, and controlling the drone's flight.
To use the library, connect to the drone's Wi-Fi. To use it with the simulator, ensure the script runs on the same local network as the simulator.
To use the library, connect to the drone's Wi-Fi. To use it with the simulator, ensure the script runs on the same network as the simulator.
## Installation
@@ -30,7 +30,7 @@ flix = Flix() # create a Flix object and wait for connection
### Telemetry
Basic telemetry is available through object properties. The properties names generally match the corresponding variables in the firmware itself:
Basic telemetry is available through object properties. The property names generally match the corresponding variables in the firmware itself:
```python
print(flix.connected) # True if connected to the drone
@@ -41,13 +41,16 @@ print(flix.attitude) # attitude quaternion [w, x, y, z]
print(flix.attitude_euler) # attitude as Euler angles [roll, pitch, yaw]
print(flix.rates) # angular rates [roll_rate, pitch_rate, yaw_rate]
print(flix.channels) # raw RC channels (list)
print(flix.motors) # motors outputs (list)
print(flix.motors) # motor outputs (list)
print(flix.acc) # accelerometer output (list)
print(flix.gyro) # gyroscope output (list)
```
> [!NOTE]
> The library uses the Front-Left-Up coordinate system — the same as in the firmware. All angles are in radians.
The library uses the Front-Left-Up coordinate system — the same as the firmware:
<img src="../../docs/img/drone-axes-rotate.svg" width="300">
All angles are in radians.
### Events
@@ -97,17 +100,17 @@ Full list of events:
|`attitude_euler`|Attitude update|Euler angles (*list*)|
|`rates`|Angular rates update|Angular rates (*list*)|
|`channels`|Raw RC channels update|Raw RC channels (*list*)|
|`motors`|Motors outputs update|Motors outputs (*list*)|
|`motors`|Motor outputs update|Motor outputs (*list*)|
|`acc`|Accelerometer update|Accelerometer output (*list*)|
|`gyro`|Gyroscope update|Gyroscope output (*list*)|
|`mavlink`|Received MAVLink message|Message object|
|`mavlink.<message_name>`|Received specific MAVLink message|Message object|
|`mavlink.<message_id>`|Received specific MAVLink message|Message object|
|`value`|Named value update (see below)|Name, value|
|`value.<name>`|Specific named value update (see bellow)|Value|
|`value.<name>`|Specific named value update (see below)|Value|
> [!NOTE]
> Update events trigger on every new data from the drone, and do not mean the value is changed.
> Update events trigger on every new piece of data from the drone, and do not mean the value has changed.
### Common methods
@@ -118,7 +121,7 @@ pitch_p = flix.get_param('PITCH_P') # get parameter value
flix.set_param('PITCH_P', 5) # set parameter value
```
Execute CLI commands using `cli` method. This method returns command response:
Execute console commands using `cli` method. This method returns the command response:
```python
imu = flix.cli('imu') # get detailed IMU data
@@ -136,7 +139,7 @@ flix.set_armed(True) # arm the drone
flix.set_armed(False) # disarm the drone
```
You can imitate pilot's controls using `set_controls` method:
You can pass pilot's controls using `set_controls` method:
```python
flix.set_controls(roll=0, pitch=0, yaw=0, throttle=0.6)
@@ -166,10 +169,10 @@ Setting angular rates target:
flix.set_rates([0.1, 0.2, 0.3], 0.6) # set target roll rate, pitch rate, yaw rate and thrust
```
You also can control raw motors outputs directly:
You also can control raw motor outputs directly:
```python
flix.set_motors([0.5, 0.5, 0.5, 0.5]) # set motors outputs in range [0, 1]
flix.set_motors([0.5, 0.5, 0.5, 0.5]) # set motor outputs in range [0, 1]
```
In *AUTO* mode, the drone will arm automatically if the thrust is greater than zero, and disarm if thrust is zero. Therefore, to disarm the drone, set thrust to zero:
@@ -183,7 +186,7 @@ The following methods are in development and are not functional yet:
* `set_position` — set target position.
* `set_velocity` — set target velocity.
To exit from *AUTO* mode move control sticks and the drone will switch to *STAB* mode.
To exit *AUTO* mode move control sticks and the drone will switch to *STAB* mode.
## Usage alongside QGroundControl

View File

@@ -17,7 +17,7 @@ from pymavlink.dialects.v20 import common as mavlink
logger = logging.getLogger('flix')
if not logger.hasHandlers():
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(name)s - %(levelname)s - %(message)s'))
handler.setFormatter(logging.Formatter('%(name)s: %(message)s'))
logger.addHandler(handler)
logger.setLevel(logging.INFO)
@@ -40,7 +40,7 @@ class Flix:
_connection_timeout = 3
_print_buffer: str = ''
_modes = ['MANUAL', 'ACRO', 'STAB', 'AUTO']
_modes = ['RAW', 'ACRO', 'STAB', 'AUTO']
def __init__(self, system_id: int=1, wait_connection: bool=True):
if not (0 <= system_id < 256):

View File

@@ -1,6 +1,6 @@
[project]
name = "pyflix"
version = "0.9"
version = "0.11"
description = "Python API for Flix drone"
authors = [{ name="Oleg Kalachev", email="okalachev@gmail.com" }]
license = "MIT"