Compare commits

...

70 Commits
v1.1 ... master

Author SHA1 Message Date
Oleg Kalachev
7e8bd3e834 Minor updates 2025-07-28 22:07:33 +03:00
Oleg Kalachev
bb0643e8c6 Add missing set_velocity method stub to pyflix 2025-07-28 22:06:30 +03:00
Oleg Kalachev
32f417efae Updates in pyflix
Rename mav_to to system_id to match firmware naming.
Readme updates.
2025-07-24 09:15:44 +03:00
Oleg Kalachev
018a6d4fce Add repository field to python library 2025-07-22 17:21:51 +03:00
Oleg Kalachev
1f47aa6d62
Add Python library (#20) 2025-07-22 14:17:08 +03:00
Oleg Kalachev
779fa13e80 Increase connection timeout for arduino-cli as it prevents some users from downloading the core 2025-07-21 11:12:47 +03:00
Oleg Kalachev
5eccb3f0c4 Fix rates, acc and gyro coordinate frame in mavlink
All of them should be in frd.
Get rid of fluToFrd function - there is no big need for it.
2025-07-19 05:32:49 +03:00
Oleg Kalachev
29f1a2b22b Minor fixes to builds list 2025-07-18 14:19:43 +03:00
Oleg Kalachev
1d4ce810a9 Add chkroko's bldc build 2025-07-18 12:14:42 +03:00
Oleg Kalachev
32874b92fd Minor fixes 2025-07-14 12:05:16 +03:00
Oleg Kalachev
6b38070e43 Rename printIMUCal to printIMUCalibration for consistency with rc 2025-07-14 12:04:02 +03:00
Oleg Kalachev
52819e403b Major rework of rc subsystem
Implement channels mapping calibration.
Store mapping in parameters.
Get rid of `controls` array and store control inputs in `controlRoll`, `controlPitch`, ... variables.
Move `channels` variable to rc.ino, channels are not involved when controled using mavlink.
'Neutral' values are renamed to 'zero' - more precise naming.
`controlsTime` is renamed to `controlTime`.
Use unsigned values for channels.
Make channel values in simulation more alike to real world: unsigned values in range [1000, 2000].
Send RC_CHANNELS_RAW instead of RC_CHANNELS_SCALED via mavlink
Don't send channels data via mavlink if rc is not used
2025-07-14 12:01:29 +03:00
Oleg Kalachev
449dd44741 Fix storing nans and infs in preferences in simulator
Turns out file streams cannot parse nans and infs on some platforms, so use std::stof to parse.
2025-07-14 09:52:49 +03:00
Oleg Kalachev
e389d717d6 Show unspecified core as * in sys command 2025-07-13 11:12:54 +03:00
Oleg Kalachev
ea8463ed70 Fixes in firmware variables description 2025-07-12 10:07:52 +03:00
Oleg Kalachev
85afe405cb Improve pause function work
Fix disconnecting from qgc while pausing in the simulation. 
Consider total delay time in micros() in simulation to increase t while delaying.
Simplify and get rid of ARDUINO macro check.
2025-07-12 09:29:47 +03:00
Oleg Kalachev
fd4bcbeb89 Minor changes 2025-07-10 07:27:53 +03:00
Oleg Kalachev
121b50d896 Increase motors pwm frequency to 78Khz
1000 Hz is too low frequency considering the update loop for motors signal is also 1000 Hz.
Decrease resolution as it's required to set larger pwm frequencies.
This change should vastly improve control jitter and remove audible motors noise.
2025-07-03 03:46:11 +03:00
Oleg Kalachev
48c7135efb Return zero rotation vector when converting neutral quaternion
Previously it would return nans
2025-07-01 02:48:49 +03:00
Oleg Kalachev
9229b743eb Add missing equals and non-equals operators for quaternion lib 2025-07-01 02:47:01 +03:00
Oleg Kalachev
52d31ba7a5 Add missing includes to Arduino.h to make build more portable 2025-07-01 02:38:47 +03:00
Oleg Kalachev
f11ab2dc16 Add info on mpu-6050 2025-06-30 12:29:07 +03:00
Oleg Kalachev
93383cc7f9 Add chkroko's build 2025-06-19 13:25:01 +03:00
Oleg Kalachev
389cfb94ab Add missing newlines to initialization prints 2025-06-19 13:19:00 +03:00
Oleg Kalachev
045f2c5ed5 Minor docs changes 2025-06-19 13:19:00 +03:00
Oleg Kalachev
31f5e1efbb Upload built firmware binaries as artifact 2025-06-02 02:32:27 +03:00
Oleg Kalachev
2d77317abc Minor fixes in book 2025-05-31 16:56:05 +03:00
Oleg Kalachev
963cbe09dd Minor fix in book 2025-05-31 13:15:25 +03:00
Oleg Kalachev
98fc0cf5b4 Add quaternion and vector chapter to book 2025-05-31 12:46:33 +03:00
Oleg Kalachev
6b7601c0bd Improve vector and quaternion libraries
Make the order or basic methods consistent between Vector and Quaternion.
Remove `ZYX` from Euler method names as this is standard for robotics.
Rename angular rates to rotation vector, which is more correct.
Make rotation methods static, to keep the arguments order consistent.
Make `Quaternion::fromAxisAngle` accept Vector for axis.
Minor fixes.
2025-05-31 04:17:00 +03:00
Oleg Kalachev
929bdd1f35 Minor fixes in book 2025-05-31 03:29:44 +03:00
Oleg Kalachev
660913f8bb Remove version 0 section from the readme 2025-05-23 17:17:27 +03:00
Oleg Kalachev
25e3056891 Add disclaimer to readme 2025-05-23 16:47:04 +03:00
Oleg Kalachev
be7b6ec0c9 Fix simulator build 2025-05-16 05:02:27 +03:00
Oleg Kalachev
9c8c0e2578 Minor code updates 2025-05-15 09:22:17 +03:00
Oleg Kalachev
7e5a75a01f Revert sending mavlink udp packets in unicast
This requires more complex approach as client ip may change between reconnections
2025-05-10 05:45:57 +03:00
Oleg Kalachev
2bcab6edb3 Make cli command case insensitive
iOS QGC capitalizes the command by default, so it's more convinient
2025-05-10 05:15:54 +03:00
Oleg Kalachev
df2b10acd4 Make wi-fi code more consistent between the firmware and simulation 2025-05-10 05:13:57 +03:00
Oleg Kalachev
31d6636754 Send mavlink udp packets in unicast after connected
Tests and research show this is more efficient way of sending telemetry
2025-05-10 05:08:04 +03:00
Oleg Kalachev
b143c2f1b3 Add recommended 3D printing settings to readme 2025-05-09 06:55:28 +03:00
Oleg Kalachev
a491b28201 Make sending udp packets much faster
Turns out parsing IP address string is very slow
2025-05-06 04:32:36 +03:00
Oleg Kalachev
4a4642bcf6 Update ESP32-Core to 3.2.0 2025-05-06 03:52:46 +03:00
Oleg Kalachev
81037d94ec Some cli improvements
Improve loop rate formatting
Show cpu temperature in sys command
2025-05-06 03:16:45 +03:00
Oleg Kalachev
965813e8f0 Use interrupts instead of polling for main loop 2025-05-05 13:58:23 +03:00
Oleg Kalachev
94c2d399b3 Add sys command
Show ESP32 model and free heap
Show tasks table with stack and cpu usage
2025-05-05 04:32:41 +03:00
Oleg Kalachev
21dc47c472 Make mavlink print buffered
Combine all output of each step into one SERIAL_CONTROL message
2025-05-05 00:44:06 +03:00
Oleg Kalachev
4b938e8d89 Make accelerometer calibration more verbose
Print the number of each calibration step
2025-05-05 00:38:08 +03:00
Oleg Kalachev
67efcdd08a Remove unused macro
MAVLINK_CONTROL_SCALE is now parameter
2025-05-04 00:03:38 +03:00
Oleg Kalachev
d1d10c4c6c Updates to readme and documentation 2025-04-30 00:05:52 +03:00
Oleg Kalachev
4e0a1fcdab Update simulator illustration 2025-04-29 23:37:34 +03:00
Oleg Kalachev
5165355abc Make low pass filter formula more straightforward 2025-04-29 23:28:56 +03:00
Oleg Kalachev
a268475f7a Add notice about firewall and vpn to troubleshooting 2025-04-29 23:22:40 +03:00
Oleg Kalachev
c14fe7c48b Add some missing operator for vector library 2025-04-29 23:21:12 +03:00
Oleg Kalachev
b2736e6a5b Fix simulation build in Actions
Switched runner to Ubuntu 22.04 since Gazebo 11 now has binaries for 22.04 (amd64 only).
Changed the building tutorial to reflect that.
2025-04-24 19:38:47 +03:00
Oleg Kalachev
962757f46e Update user builds illustration in readme 2025-04-23 20:10:29 +03:00
Oleg Kalachev
f03dec4fae Update demo video 2025-04-22 11:27:29 +03:00
Oleg Kalachev
fe98a5bf97 Minor code simplifications 2025-04-13 01:42:47 +03:00
Oleg Kalachev
253f2fe3dd Update MAVLink-Arduino to 2.0.16 2025-04-11 07:01:54 +03:00
Oleg Kalachev
94dc566643 Show landed state in imu command output 2025-03-29 16:19:23 +03:00
Oleg Kalachev
547f5087ef Pass landed state to mavlink
Using EXTENDED_SYS_STATE message
2025-03-29 16:14:37 +03:00
Oleg Kalachev
66a43ab246
Continuous gyro bias estimation (#17)
Estimate gyro bias continuously instead of calibrating the gyro at startup.
2025-03-29 12:21:40 +03:00
Oleg Kalachev
117ae42d1b Add Wi-Fi password to build tutorial 2025-03-29 12:02:59 +03:00
Oleg Kalachev
3a61dca102 Simplify and improve acc calibration command output 2025-03-29 01:05:55 +03:00
Oleg Kalachev
a8fe1324c3 Minor readme update 2025-03-28 20:50:23 +03:00
Oleg Kalachev
fc0b805cc2 Add cryptokobans's build to user projects 2025-03-28 18:23:09 +03:00
Oleg Kalachev
d68222953d Simplify user builds article layout: remove tables
Tables make photos squeezed in phones
2025-03-27 18:56:35 +03:00
Oleg Kalachev
bca1312b46 Remove twxs.cmake from the list of recommended extensions 2025-03-14 03:24:30 +03:00
Oleg Kalachev
d5148d12a1 Minor code style fix 2025-03-14 03:03:27 +03:00
Oleg Kalachev
208e50aa15 Encode if the mode in stabilized in heartbeat message 2025-03-14 03:02:43 +03:00
Oleg Kalachev
0a87ccf435 Some minor readme updates 2025-03-01 00:27:55 +03:00
69 changed files with 2035 additions and 413 deletions

View File

@ -15,7 +15,14 @@ jobs:
- name: Install Arduino CLI
run: curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=/usr/local/bin sh
- name: Build firmware
env:
ARDUINO_SKETCH_ALWAYS_EXPORT_BINARIES: 1
run: make
- name: Upload binaries
uses: actions/upload-artifact@v4
with:
name: firmware-binary
path: flix/build
- name: Build firmware without Wi-Fi
run: sed -i 's/^#define WIFI_ENABLED 1$/#define WIFI_ENABLED 0/' flix/flix.ino && make
- name: Check c_cpp_properties.json
@ -46,7 +53,7 @@ jobs:
run: python3 tools/check_c_cpp_properties.py
build_simulator:
runs-on: ubuntu-20.04
runs-on: ubuntu-22.04
steps:
- name: Install Arduino CLI
uses: arduino/setup-arduino-cli@v1.1.1

View File

@ -19,6 +19,21 @@ jobs:
echo -e "t,x,y,z\n0,1,2,3\n1,4,5,6" > log.csv
./csv_to_ulog log.csv
test $(stat -c %s log.ulg) -eq 196
pyflix:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install Python build tools
run: pip install build
- name: Build pyflix
run: python3 -m build tools
- name: Upload artifacts
uses: actions/upload-artifact@v4
with:
name: pyflix
path: |
tools/dist/pyflix-*.tar.gz
tools/dist/pyflix-*.whl
python_tools:
runs-on: ubuntu-latest
steps:

2
.gitignore vendored
View File

@ -2,6 +2,8 @@
*.elf
build/
tools/log/
tools/dist/
*.egg-info/
.dependencies
.vscode/*
!.vscode/settings.json

View File

@ -34,6 +34,7 @@
"MPU-6050",
"MPU-9250",
"GY-91",
"GY-521",
"ICM-20948",
"Linux",
"Windows",

View File

@ -5,18 +5,18 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/Arduino/libraries/**",
"/usr/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@ -31,7 +31,7 @@
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@ -51,19 +51,19 @@
"name": "Mac",
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
// "${workspaceFolder}/gazebo",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**",
"/opt/homebrew/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/flix.ino",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
@ -78,7 +78,7 @@
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@ -100,17 +100,17 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@ -125,7 +125,7 @@
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
],
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++.exe",
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++.exe",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [

View File

@ -2,7 +2,6 @@
// See https://go.microsoft.com/fwlink/?LinkId=827846 to learn about workspace recommendations.
"recommendations": [
"ms-vscode.cpptools",
"twxs.cmake",
"ms-vscode.cmake-tools",
"ms-python.python"
],

View File

@ -13,10 +13,10 @@ monitor:
dependencies .dependencies:
arduino-cli core update-index --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.1.0 --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.2.0 --config-file arduino-cli.yaml
arduino-cli lib update-index
arduino-cli lib install "FlixPeriph"
arduino-cli lib install "MAVLink"@2.0.12
arduino-cli lib install "MAVLink"@2.0.16
touch .dependencies
gazebo/build cmake: gazebo/CMakeLists.txt

View File

@ -15,49 +15,56 @@
## Features
* Simple and clean Arduino based source code.
* Acro and Stabilized flight using remote control.
* Precise simulation using Gazebo.
* [In-RAM logging](docs/log.md).
* Command line interface through USB port.
* Wi-Fi support.
* MAVLink support.
* Control using mobile phone (with QGroundControl app).
* Completely 3D-printed frame.
* Textbook for students on writing a flight controller ([in development](https://quadcopter.dev)).
* *Position control and autonomous flights using external camera¹*.
* [Building and running instructions](docs/build.md).
* Dedicated for education and research.
* Made from general-purpose components.
* Simple and clean source code in Arduino.
* Control using remote control or smartphone.
* Precise simulation with Gazebo.
* Wi-Fi and MAVLink support.
* Wireless command line interface and analyzing.
* Python library.
* Textbook on flight control theory and practice ([in development](https://quadcopter.dev)).
* *Position control (using external camera) and autonomous flights¹*.
*¹ — planned.*
## It actually flies
See detailed demo video (for version 0): https://youtu.be/8GzzIQ3C6DQ.
See detailed demo video: https://youtu.be/hT46CZ1CgC4.
<a href="https://youtu.be/hT46CZ1CgC4"><img width=500 src="https://i3.ytimg.com/vi/hT46CZ1CgC4/maxresdefault.jpg"></a>
Version 0 demo video: https://youtu.be/8GzzIQ3C6DQ.
<a href="https://youtu.be/8GzzIQ3C6DQ"><img width=500 src="https://i3.ytimg.com/vi/8GzzIQ3C6DQ/maxresdefault.jpg"></a>
Version 1 test flight: https://t.me/opensourcequadcopter/42.
<a href="https://t.me/opensourcequadcopter/42"><img width=500 src="docs/img/flight-video.jpg"></a>
See the [user builds gallery](docs/user.md).
<img src="docs/img/user/user.jpg" width=400>
<a href="docs/user.md"><img src="docs/img/user/user.jpg" width=500></a>
## Simulation
The simulator is implemented using Gazebo and runs the original Arduino code:
<img src="docs/img/simulator.png" width=500 alt="Flix simulator">
<img src="docs/img/simulator1.png" width=500 alt="Flix simulator">
See [instructions on running the simulation](docs/build.md).
## Articles
## Components (version 1)
* [Assembly instructions](docs/assembly.md).
* [Building and running the code](docs/build.md).
* [Troubleshooting](docs/troubleshooting.md).
* [Firmware architecture overview](docs/firmware.md).
* [Python library tutorial](tools/pyflix/README.md).
* [Log analysis](docs/log.md).
* [User builds gallery](docs/user.md).
## Components
|Type|Part|Image|Quantity|
|-|-|:-:|:-:|
|Microcontroller board|ESP32 Mini|<img src="docs/img/esp32.jpg" width=100>|1|
|IMU (and barometer²) board|GY91 (or other MPU9250/MPU6500 board), ICM20948³|<img src="docs/img/gy-91.jpg" width=90 align=center><img src="docs/img/icm-20948.jpg" width=100>|1|
|IMU (and barometer²) board|GY91, MPU-9265 (or other MPU9250/MPU6500 board)<br>ICM20948³<br>GY-521 (MPU-6050)³⁻¹|<img src="docs/img/gy-91.jpg" width=90 align=center><br><img src="docs/img/icm-20948.jpg" width=100><br><img src="docs/img/gy-521.jpg" width=100>|1|
|<span style="background:yellow">(Recommended) Buck-boost converter</span>|To be determined, output 5V or 3.3V, see [user-contributed schematics](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612179508274&cot=14)|<img src="docs/img/buck-boost.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (shaft 0.8mm).<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).|<img src="docs/img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="docs/img/prop.jpg" width=100>|4|
|MOSFET (transistor)|100N03A or [analog](https://t.me/opensourcequadcopter/33)|<img src="docs/img/100n03a.jpg" width=100>|4|
@ -67,16 +74,17 @@ See [instructions on running the simulation](docs/build.md).
|Li-Po Battery charger|Any|<img src="docs/img/charger.jpg" width=100>|1|
|Screws for IMU board mounting|M3x5|<img src="docs/img/screw-m3.jpg" width=100>|2|
|Screws for frame assembly|M1.4x5|<img src="docs/img/screw-m1.4.jpg" height=30 align=center>|4|
|Frame bottom part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame main part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)<br>Recommended settings: layer 0.2 mm, line 0.4 mm, infill 100%.|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame top part|3D printed:<br>[`esp32-holder.stl`](docs/assets/esp32-holder.stl) [`esp32-holder.step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|Washer for IMU board mounting|3D printed:<br>[`washer-m3.stl`](docs/assets/washer-m3.stl) [`washer-m3.step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|*RC transmitter (optional)*|*KINGKONG TINY X8 or other⁵*|<img src="docs/img/tx.jpg" width=100>|1|
|*RC transmitter (optional)*|*KINGKONG TINY X8 (warning: lacks USB support) or other⁵*|<img src="docs/img/tx.jpg" width=100>|1|
|*RC receiver (optional)*|*DF500 or other⁵*|<img src="docs/img/rx.jpg" width=100>|1|
|Wires|28 AWG recommended|<img src="docs/img/wire-28awg.jpg" width=100>||
|Tape, double-sided tape||||
*² — barometer is not used for now.*<br>
*³ — change `MPU9250` to `ICM20948` in `imu.ino` file if using ICM-20948 board.*<br>
*³⁻¹ — MPU-6050 supports I²C interface only (not recommended). To use it change IMU declaration to `MPU6050 IMU(Wire)`.*<br>
*⁴ — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
*⁵ — you may use any transmitter-receiver pair with SBUS interface.*
@ -90,7 +98,7 @@ Tools required for assembly:
Feel free to modify the design and or code, and create your own improved versions of Flix! Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
## Schematics (version 1)
## Schematics
### Simplified connection diagram
@ -150,10 +158,6 @@ In case of using other IMU orientation, modify the `rotateIMU` function in the `
See [FlixPeriph documentation](https://github.com/okalachev/flixperiph?tab=readme-ov-file#imu-axes-orientation) to learn axis orientation of other IMU boards.
## Version 0
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
## Materials
Subscribe to the Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
@ -161,3 +165,11 @@ Subscribe to the Telegram channel on developing the drone and the flight control
Join the official Telegram chat: https://t.me/opensourcequadcopterchat.
Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
## Disclaimer
This is a fun DIY project, and I hope you find it interesting and useful. However, it's not easy to assemble and set up, and it's provided "as is" without any warranties. Theres no guarantee that it will work perfectly — or even work at all.
⚠️ The author is not responsible for any damage, injury, or loss resulting from the use of this project. Use at your own risk!

View File

@ -1,3 +1,5 @@
board_manager:
additional_urls:
- https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
network:
connection_timeout: 1h

View File

@ -53,6 +53,12 @@ footer a.telegram, footer a.github {
border: 1px solid #c9c9c9;
}
@media (max-width: 600px) {
.MathJax_Display {
overflow-x: auto;
}
}
.firmware {
position: relative;
margin: 20px 0;

View File

@ -10,7 +10,7 @@ description = "Учебник по разработке полетного ко
build-dir = "build"
[output.html]
additional-css = ["book.css", "zoom.css"]
additional-css = ["book.css", "zoom.css", "rotation.css"]
additional-js = ["zoom.js", "js.js"]
edit-url-template = "https://github.com/okalachev/flix/blob/master/docs/{path}?plain=1"
mathjax-support = true

View File

@ -11,6 +11,7 @@
* [Светодиод]()
* [Моторы]()
* [Радиоуправление]()
* [Вектор, кватернион](geometry.md)
* [Гироскоп](gyro.md)
* [Акселерометр]()
* [Оценка состояния]()

View File

@ -10,8 +10,8 @@
* `acc` *(Vector)* — данные с акселерометра, *м/с<sup>2</sup>*.
* `rates` *(Vector)* — отфильтрованные угловые скорости, *рад/с*.
* `attitude` *(Quaternion)* — оценка ориентации (положения) дрона.
* `controls` *(float[])* — пользовательские управляющие сигналы с пульта, нормализованные в диапазоне [-1, 1].
* `motors` *(float[])* — выходные сигналы на моторы, нормализованные в диапазоне [-1, 1] (возможно вращение в обратную сторону).
* `controlRoll`, `controlPitch`, ... *(float[])* — команды управления от пилота, в диапазоне [-1, 1].
* `motors` *(float[])* — выходные сигналы на моторы, в диапазоне [0, 1].
## Исходные файлы

309
docs/book/geometry.md Normal file
View File

@ -0,0 +1,309 @@
# Вектор, кватернион
В алгоритме управления квадрокоптером широко применяются геометрические (и алгебраические) объекты, такие как **векторы** и **кватернионы**. Они позволяют упростить математические вычисления и улучшить читаемость кода. В этой главе мы рассмотрим именно те геометрические объекты, которые используются в алгоритме управления квадрокоптером Flix, причем акцент будет сделан на практических аспектах их использования.
## Система координат
### Оси координат
Для работы с объектами в трехмерном пространстве необходимо определить *систему координат*. Как известно, система координат задается тремя взаимно перпендикулярными осями, которые обозначаются как *X*, *Y* и *Z*. Порядок обозначения этих осей зависит от того, какую систему координат мы выбрали — *левую* или *правую*:
|Левая система координат|Правая система координат|
|-----------------------|------------------------|
|<img src="img/left-axes.svg" alt="Левая система координат" width="200">|<img src="img/right-axes.svg" alt="Правая система координат" width="200">|
В Flix для всех математических расчетов используется **правая система координат**, что является стандартом в робототехнике и авиации.
Также необходимо выбрать направление осей — в Flix они выбраны в соответствии со стандартом [REP-103](https://www.ros.org/reps/rep-0103.html). Для величин, заданных в подвижной системе координат, связанной с корпусом дрона, применяется порядок <abbr title="Forward Left Up">FLU</abbr>:
* ось X — направлена **вперед**;
* ось Y — направлена **влево**;
* ось Z — направлена **вверх**.
Для величин, заданных в *мировой* системе координат (относительно фиксированной точки в пространстве) — <abbr title="East North Up">ENU</abbr>:
* ось X — направлена на **восток** (условный);
* ось Y — направлена на **север** (условный);
* ось Z — направлена **вверх**.
> [!NOTE]
> Для системы ENU важно только взаимное направление осей. Если доступен магнитометр, то используются реальные восток и север, но если нет — то произвольно выбранные.
Углы и угловые скорости определяются в соответствии с правилами математики: значения увеличиваются против часовой стрелки, если смотреть в сторону начала координат. Общий вид системы координат:
<img src="img/axes-rotation.svg" alt="Система координат" width="200">
> [!TIP]
> Оси координат <i>X</i>, <i>Y</i> и <i>Z</i> часто обозначаются красными, зелеными и синими цветами соответственно. Запомнить это можно с помощью сокращения <abbr title="Red Green Blue">RGB</abbr>.
## Вектор
<div class="firmware">
<strong>Файл прошивки:</strong>
<a href="https://github.com/okalachev/flix/blob/master/flix/vector.h"><code>vector.h</code></a>.<br>
</div>
**Вектор** — простой геометрический объект, который содержит три значения, соответствующие координатам *X*, *Y* и *Z*. Эти значения называются *компонентами вектора*. Вектор может описывать точку в пространстве, направление или ось вращения, скорость, ускорение, угловые скорости и другие физические величины. В Flix векторы задаются объектами `Vector` из библиотеки `vector.h`:
```cpp
Vector v(1, 2, 3);
v.x = 5;
v.y = 10;
v.z = 15;
```
> [!TIP]
> Не следует путать геометрический вектор — <code>vector</code> и динамический массив в стандартной библиотеке C++ — <code>std::vector</code>.
В прошивке в виде векторов представлены, например:
* `acc` собственное ускорение с акселерометра.
* `gyro` — угловые скорости с гироскопа.
* `rates` — рассчитанная угловая скорость дрона.
* `accBias`, `accScale`, `gyroBias` — параметры калибровки IMU.
### Операции с векторами
**Длина вектора** рассчитывается при помощи теоремы Пифагора; в прошивке используется метод `norm()`:
```cpp
Vector v(3, 4, 5);
float length = v.norm(); // 7.071
```
Любой вектор можно привести к **единичному вектору** (сохранить направление, но сделать длину равной 1) при помощи метода `normalize()`:
```cpp
Vector v(3, 4, 5);
v.normalize(); // 0.424, 0.566, 0.707
```
**Сложение и вычитание** векторов реализуется через простое покомпонентное сложение и вычитание. Геометрически сумма векторов представляет собой вектор, который соединяет начало первого вектора с концом второго. Разность векторов представляет собой вектор, который соединяет конец первого вектора с концом второго. Это удобно для расчета относительных позиций, суммарных скоростей и решения других задач. В коде эти операции интуитивно понятны:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
Vector sum = a + b; // 5, 7, 9
Vector diff = a - b; // -3, -3, -3
```
Операция **умножения на число** `n` увеличивает (или уменьшает) длину вектора в `n` раз (сохраняя направление):
```cpp
Vector a(1, 2, 3);
Vector b = a * 2; // 2, 4, 6
```
В некоторых случаях полезна операция **покомпонентного умножения** (или деления) векторов. Например, для применения коэффициентов калибровки к данным с IMU. В разных библиотеках эта операция обозначается по разному, но в библиотеке `vector.h` используется простые знаки `*` и `/`:
```cpp
acc = acc / accScale;
```
**Угол между векторами** можно найти при помощи статического метода `Vector::angleBetween()`:
```cpp
Vector a(1, 0, 0);
Vector b(0, 1, 0);
float angle = Vector::angleBetween(a, b); // 1.57 (90 градусов)
```
#### Скалярное произведение
Скалярное произведение векторов (*dot product*) — это произведение длин двух векторов на косинус угла между ними. В математике оно обозначается знаком `·` или слитным написанием векторов. Интуитивно, результат скалярного произведения показывает, насколько два вектора *сонаправлены*.
В Flix используется статический метод `Vector::dot()`:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
float dotProduct = Vector::dot(a, b); // 32
```
Операция скалярного произведения может помочь, например, при расчете проекции одного вектора на другой.
#### Векторное произведение
Векторное произведение (*cross product*) позволяет найти вектор, перпендикулярный двум другим векторам. В математике оно обозначается знаком `×`, а в прошивке используется статический метод `Vector::cross()`:
```cpp
Vector a(1, 2, 3);
Vector b(4, 5, 6);
Vector crossProduct = Vector::cross(a, b); // -3, 6, -3
```
## Кватернион
### Ориентация в трехмерном пространстве
В отличие от позиции и скорости, у ориентации в трехмерном пространстве нет универсального для всех случаев способа представления. В зависимости от задачи ориентация может быть представлена в виде *углов Эйлера*, *матрицы поворота*, *вектора вращения* или *кватерниона*. Рассмотрим используемые в полетной прошивке способы представления ориентации.
### Углы Эйлера
**Углы Эйлера** — *крен*, *тангаж* и *рыскание* — это наиболее «естественный» для человека способ представления ориентации. Они описывают последовательные вращения объекта вокруг трех осей координат.
В прошивке углы Эйлера сохраняются в обычный объект `Vector` (хоть и, строго говоря, не являются вектором):
* Угол по крену (*roll*) — `vector.x`.
* Угол по тангажу (*pitch*) — `vector.y`.
* Угол по рысканию (*yaw*) — `vector.z`.
Особенности углов Эйлера:
1. Углы Эйлера зависят от порядка применения вращений, то есть существует 6 типов углов Эйлера. Порядок вращений, принятый в Flix (и в роботехнике в целом) — рыскание, тангаж, крен (ZYX).
2. Для некоторых ориентаций углы Эйлера «вырождаются». Так, если объект «смотрит» строго вниз, то угол по рысканию и угол по крену становятся неразличимыми. Эта ситуация называется *gimbal lock* — потеря одной степени свободы.
Ввиду этих особенности для углов Эйлера не существует общих формул для самых базовых задач с ориентациями, таких как применение одного вращения (ориентации) к другому, расчет разницы между ориентациями и подобных. Поэтому в основном углы Эйлера применяются в пользовательском интерфейсе, но редко используются в математических расчетах.
> [!IMPORTANT]
> Для углов Эйлера не существует общих формул для самых базовых операций с ориентациями.
### Axis-angle
Помимо углов Эйлера, любую ориентацию в трехмерном пространстве можно представить в виде вращения вокруг некоторой оси на некоторый угол. В геометрии это доказывается, как **теорема вращения Эйлера**. В таком представлении ориентация задается двумя величинами:
* **Ось вращения** (*axis*) — единичный вектор, определяющий ось вращения.
* **Угол поворота** (*angle* или *θ*) — угол, на который нужно повернуть объект вокруг этой оси.
В Flix ось вращения задается объектом `Vector`, а угол поворота — числом типа `float` в радианах:
```cpp
// Вращение на 45 градусов вокруг оси (1, 2, 3)
Vector axis(1, 2, 3);
float angle = radians(45);
```
Этот способ более удобен для расчетов, чем углы Эйлера, но все еще не является оптимальным.
### Вектор вращения
Если умножить вектор *axis* на угол поворота *θ*, то получится **вектор вращения** (*rotation vector*). Этот вектор играет важную роль в алгоритмах управления ориентацией летательного аппарата.
Вектор вращения обладает замечательным свойством: если угловые скорости объекта (в собственной системе координат) в каждый момент времени совпадают с компонентами этого вектора, то за единичное время объект придет к заданной этим вектором ориентации. Это свойство позволяет использовать вектор вращения для управления ориентацией объекта посредством управления угловыми скоростями.
> [!IMPORTANT]
> Чтобы за единичное время прийти к заданной ориентации, собственные угловые скорости объекта должны быть равны компонентам вектора вращения.
Вектора вращения в Flix представляются в виде объектов `Vector`:
```cpp
// Вращение на 45 градусов вокруг оси (1, 2, 3)
Vector rotation = radians(45) * Vector(1, 2, 3);
```
### Кватернион
<div class="firmware">
<strong>Файл прошивки:</strong>
<a href="https://github.com/okalachev/flix/blob/master/flix/quaternion.h"><code>quaternion.h</code></a>.<br>
</div>
Вектор вращения удобен, но еще удобнее использовать **кватернион**. В Flix кватернионы задаются объектами `Quaternion` из библиотеки `quaternion.h`. Кватернион состоит из четырех значений: *w*, *x*, *y*, *z* и рассчитывается из вектора оси вращения (*axis*) и угла поворота (*θ*) по формуле:
\\[ q = \left( \begin{array}{c} w \\\\ x \\\\ y \\\\ z \end{array} \right) = \left( \begin{array}{c} \cos\left(\frac{\theta}{2}\right) \\\\ axis\_x \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_y \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_z \cdot \sin\left(\frac{\theta}{2}\right) \end{array} \right) \\]
На практике оказывается, что **именно такое представление наиболее удобно для математических расчетов**.
Проиллюстрируем кватернион и описанные выше способы представления ориентации на интерактивной визуализации. Изменяйте угол поворота *θ* с помощью ползунка (ось вращения константна) и изучите, как меняется ориентация объекта, вектор вращения и кватернион:
<div id="rotation-diagram" class="diagram">
<p>
<label class="angle" for="angle-range"></label>
<input type="range" name="angle" id="angle-range" min="0" max="360" value="0" step="1">
</p>
<p class="axis"></p>
<p class="rotation-vector"></p>
<p class="quaternion"></p>
<p class="euler"></p>
</div>
<script type="importmap">
{
"imports": {
"three": "https://cdn.jsdelivr.net/npm/three@0.176.0/build/three.module.js",
"three/addons/": "https://cdn.jsdelivr.net/npm/three@0.176.0/examples/jsm/"
}
}
</script>
<script type="module" src="js/rotation.js"></script>
> [!IMPORTANT]
> В контексте управляющих алгоритмов кватернион — это оптимизированный для расчетов аналог вектора вращения.
Кватернион это наиболее часто используемый способ представления ориентации в алгоритмах. Кроме этого, у кватерниона есть большое значение в теории чисел и алгебре, как у расширения понятия комплексного числа, но рассмотрение этого аспекта выходит за рамки описания работы с вращениями с практической точки зрения.
В прошивке в виде кватернионов представлены, например:
* `attitude` — текущая ориентация квадрокоптера.
* `attitudeTarget` — целевая ориентация квадрокоптера.
### Операции с кватернионами
Кватернион создается напрямую из четырех его компонент:
```cpp
// Кватернион, представляющий нулевую (исходную) ориентацию
Quaternion q(1, 0, 0, 0);
```
Кватернион можно создать из оси вращения и угла поворота, вектора вращения или углов Эйлера:
```cpp
Quaternion q1 = Quaternion::fromAxisAngle(axis, angle);
Quaternion q2 = Quaternion::fromRotationVector(rotation);
Quaternion q3 = Quaternion::fromEuler(Vector(roll, pitch, yaw));
```
И наоборот:
```cpp
q1.toAxisAngle(axis, angle);
Vector rotation = q2.toRotationVector();
Vector euler = q3.toEuler();
```
Возможно рассчитать вращение между двумя обычными векторами:
```cpp
Quaternion q = Quaternion::fromBetweenVectors(v1, v2); // в виде кватерниона
Vector rotation = Vector::rotationVectorBetween(v1, v2); // в виде вектора вращения
```
Шорткаты для работы с углом Эйлера по рысканью (удобно для алгоритмов управления полетом):
```cpp
float yaw = q.getYaw();
q.setYaw(yaw);
```
#### Применения вращений
Чтобы применить вращение, выраженное в кватернионе, к другому кватерниону, в математике используется операция **умножения кватернионов**. При использовании этой операции, необходимо учитывать, что она не является коммутативной, то есть порядок операндов имеет значение. Формула умножения кватернионов выглядит так:
\\[ q_1 \times q_2 = \left( \begin{array}{c} w_1 \\\\ x_1 \\\\ y_1 \\\\ z_1 \end{array} \right) \times \left( \begin{array}{c} w_2 \\\\ x_2 \\\\ y_2 \\\\ z_2 \end{array} \right) = \left( \begin{array}{c} w_1 w_2 - x_1 x_2 - y_1 y_2 - z_1 z_2 \\\\ w_1 x_2 + x_1 w_2 + y_1 z_2 - z_1 y_2 \\\\ w_1 y_2 - x_1 z_2 + y_1 w_2 + z_1 x_2 \\\\ w_1 z_2 + x_1 y_2 - y_1 x_2 + z_1 w_2 \end{array} \right) \\]
В библиотеке `quaternion.h` для этой операции используется статический метод `Quaternion::rotate()`:
```cpp
// Композиция вращений q1 и q2
Quaternion result = Quaternion::rotate(q1, q2);
```
Также полезной является операция применения вращения к вектору, которая делается похожим образом:
```cpp
// Вращение вектора v кватернионом q
Vector result = Quaternion::rotateVector(v, q);
```
Для расчета разницы между двумя ориентациями используется метод `Quaternion::between()`:
```cpp
// Расчет вращения от q1 к q2
Quaternion q = Quaternion::between(q1, q2);
```
## Дополнительные материалы
* [Интерактивный учебник по кватернионам](https://eater.net/quaternions).
* [Визуализация вращения вектора с помощью кватернионов](https://quaternions.online).

View File

@ -1,7 +1,7 @@
# Гироскоп
<div class="firmware">
<strong>Файл прошивки Flix:</strong>
<strong>Файл прошивки:</strong>
<a href="https://github.com/okalachev/flix/blob/canonical/flix/imu.ino"><code>imu.ino</code></a> <small>(каноничная версия)</small>.<br>
Текущая версия: <a href="https://github.com/okalachev/flix/blob/master/flix/imu.ino"><code>imu.ino</code></a>.
</div>
@ -100,7 +100,7 @@ void setup() {
Для однократного считывания данных используется метод `read()`. Затем данные с гироскопа получаются при помощи метода `getGyro(x, y, z)`. Этот метод записывает в переменные `x`, `y` и `z` угловые скорости вокруг соответствующих осей в радианах в секунду.
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
Программа для чтения данных с гироскопа и вывода их в консоль для построения графиков в Serial Plotter выглядит так:
@ -153,7 +153,7 @@ IMU.setRate(IMU.RATE_1KHZ_APPROX);
* `RATE_MIN` — минимальная частота сэмплов для конкретного IMU.
* `RATE_50HZ_APPROX` — значение, близкое к 50 Гц.
* `RATE_1KHZ_APPROX`  — значение, близкое к 1 кГц.
* `RATE_1KHZ_APPROX` — значение, близкое к 1 кГц.
* `RATE_8KHZ_APPROX` — значение, близкое к 8 кГц.
* `RATE_MAX` — максимальная частота сэмплов для конкретного IMU.

262
docs/book/js/rotation.js Normal file
View File

@ -0,0 +1,262 @@
import * as THREE from 'three';
import { SVGRenderer, SVGObject } from 'three/addons/renderers/SVGRenderer.js';
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
const diagramEl = document.getElementById('rotation-diagram');
const scene = new THREE.Scene();
scene.background = new THREE.Color(0xffffff);
const camera = new THREE.OrthographicCamera();
camera.position.set(9, 26, 20);
camera.up.set(0, 0, 1);
camera.lookAt(0, 0, 0);
const renderer = new SVGRenderer();
diagramEl.prepend(renderer.domElement);
const controls = new OrbitControls(camera, renderer.domElement);
controls.enableZoom = false;
const LINE_WIDTH = 4;
function createLabel(text, x, y, z, min = false) {
const label = document.createElementNS('http://www.w3.org/2000/svg', 'text');
label.setAttribute('class', 'label' + (min ? ' min' : ''));
label.textContent = text;
label.setAttribute('y', -15);
const object = new SVGObject(label);
object.position.x = x;
object.position.y = y;
object.position.z = z;
return object;
}
function createLine(x1, y1, z1, x2, y2, z2, color) {
const geometry = new THREE.BufferGeometry().setFromPoints([
new THREE.Vector3(x1, y1, z1),
new THREE.Vector3(x2, y2, z2)
]);
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
const line = new THREE.Line(geometry, material);
scene.add(line);
return line;
}
function changeLine(line, x1, y1, z1, x2, y2, z2) {
line.geometry.setFromPoints([new THREE.Vector3(x1, y1, z1), new THREE.Vector3(x2, y2, z2)]);
return line;
}
function createVector(x1, y1, z1, x2, y2, z2, color, label = '') {
const HEAD_LENGTH = 1;
const HEAD_WIDTH = 0.2;
const group = new THREE.Group();
const direction = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).normalize();
const norm = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).length();
let end = new THREE.Vector3(x2, y2, z2);
if (norm > HEAD_LENGTH) {
end = new THREE.Vector3(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
}
// create line
const geometry = new THREE.BufferGeometry().setFromPoints([new THREE.Vector3(x1, y1, z1), end]);
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
const line = new THREE.Line(geometry, material);
group.add(line);
if (norm > HEAD_LENGTH) {
// Create arrow
const arrowGeometry = new THREE.ConeGeometry(HEAD_WIDTH, HEAD_LENGTH, 16);
const arrowMaterial = new THREE.MeshBasicMaterial({ color: color });
const arrow = new THREE.Mesh(arrowGeometry, arrowMaterial);
arrow.position.set(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
arrow.lookAt(new THREE.Vector3(x1, y1, z1));
arrow.rotateX(-Math.PI / 2);
group.add(arrow);
}
// create label
if (label) group.add(createLabel(label, x2, y2, z2));
scene.add(group);
return group;
}
function changeVector(vector, x1, y1, z1, x2, y2, z2, color, label = '') {
vector.removeFromParent();
return createVector(x1, y1, z1, x2, y2, z2, color, label);
}
function createDrone(x, y, z) {
const group = new THREE.Group();
// Fuselage and wing triangle (main body)
const fuselageGeometry = new THREE.BufferGeometry();
const fuselageVertices = new Float32Array([
1, 0, 0,
-1, 0.6, 0,
-1, -0.6, 0
]);
fuselageGeometry.setAttribute('position', new THREE.BufferAttribute(fuselageVertices, 3));
const fuselageMaterial = new THREE.MeshBasicMaterial({ color: 0xb3b3b3, side: THREE.DoubleSide, transparent: true, opacity: 0.8 });
const fuselage = new THREE.Mesh(fuselageGeometry, fuselageMaterial);
group.add(fuselage);
// Tail triangle
const tailGeometry = new THREE.BufferGeometry();
const tailVertices = new Float32Array([
-0.2, 0, 0,
-1, 0, 0,
-1, 0, 0.5,
]);
tailGeometry.setAttribute('position', new THREE.BufferAttribute(tailVertices, 3));
const tailMaterial = new THREE.MeshBasicMaterial({ color: 0xd80100, side: THREE.DoubleSide, transparent: true, opacity: 0.9 });
const tail = new THREE.Mesh(tailGeometry, tailMaterial);
group.add(tail);
group.position.set(x, y, z);
group.scale.set(2, 2, 2);
scene.add(group);
return group;
}
// Create axes
const AXES_LENGTH = 10;
createVector(0, 0, 0, AXES_LENGTH, 0, 0, 0xd80100, 'x');
createVector(0, 0, 0, 0, AXES_LENGTH, 0, 0x0076ba, 'y');
createVector(0, 0, 0, 0, 0, AXES_LENGTH, 0x57ed00, 'z');
// Rotation values
const rotationAxisSrc = new THREE.Vector3(2, 1, 3);
let rotationAngle = 0;
let rotationAxis = rotationAxisSrc.clone().normalize();
let rotationVector = new THREE.Vector3(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
let rotationVectorObj = createVector(0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
let axisObj = createLine(0, 0, 0, rotationAxis.x * AXES_LENGTH, rotationAxis.y * AXES_LENGTH, rotationAxis.z * AXES_LENGTH, 0xe8e8e8);
const drone = createDrone(0, 0, 0);
// UI
const angleInput = diagramEl.querySelector('input[name=angle]');
const rotationVectorEl = diagramEl.querySelector('.rotation-vector');
const angleEl = diagramEl.querySelector('.angle');
const quaternionEl = diagramEl.querySelector('.quaternion');
const eulerEl = diagramEl.querySelector('.euler');
diagramEl.querySelector('.axis').innerHTML = `<b style='color:#b6b6b6'>Ось вращения:</b> (${rotationAxisSrc.x}, ${rotationAxisSrc.y}, ${rotationAxisSrc.z}) ∥ (${rotationAxis.x.toFixed(1)}, ${rotationAxis.y.toFixed(1)}, ${rotationAxis.z.toFixed(1)})`;
function updateScene() {
rotationAngle = parseFloat(angleInput.value) * Math.PI / 180;
rotationVector.set(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
rotationVectorObj = changeVector(rotationVectorObj, 0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
// rotate drone
drone.rotation.set(0, 0, 0);
drone.rotateOnAxis(rotationAxis, rotationAngle);
// update labels
angleEl.innerHTML = `<b>Угол вращения:</b> ${parseFloat(angleInput.value).toFixed(0)}° = ${(rotationAngle).toFixed(2)} рад`;
rotationVectorEl.innerHTML = `<b style='color:#e49a44'>Вектор вращения:</b> (${rotationVector.x.toFixed(1)}, ${rotationVector.y.toFixed(1)}, ${rotationVector.z.toFixed(1)}) рад`;
let quaternion = new THREE.Quaternion();
quaternion.setFromAxisAngle(rotationAxis, rotationAngle);
quaternionEl.innerHTML = `<b>Кватернион:</b>
<math xmlns="http://www.w3.org/1998/Math/MathML">
<mrow>
<mo>(</mo>
<mrow>
<mi>cos</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>, </mo>
<mrow>
<mi>${rotationAxis.x.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>, </mo>
<mrow>
<mi>${rotationAxis.y.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>,</mo>
<mrow>
<mi>${rotationAxis.z.toFixed(1)}</mi>
<mo>·</mo>
<mi>sin</mi>
<mo>(</mo>
<mfrac>
<mi>${rotationAngle.toFixed(2)}</mi>
<mn>2</mn>
</mfrac>
<mo>)</mo>
</mrow>
<mo>)</mo>
</mrow>
</math>
= (${quaternion.w.toFixed(1)}, ${(quaternion.x).toFixed(1)}, ${(quaternion.y).toFixed(1)}, ${(quaternion.z).toFixed(1)})`;
eulerEl.innerHTML = `<b>Углы Эйлера:</b> крен ${(drone.rotation.x * 180 / Math.PI).toFixed(0)}°,
тангаж ${(drone.rotation.y * 180 / Math.PI).toFixed(0)}°, рыскание ${(drone.rotation.z * 180 / Math.PI).toFixed(0)}°`;
}
function updateCamera() {
const RANGE = 8;
const VERT_SHIFT = 2;
const HOR_SHIFT = -2;
const width = renderer.domElement.clientWidth;
const height = renderer.domElement.clientHeight;
const ratio = width / height;
if (ratio > 1) {
camera.left = -RANGE * ratio;
camera.right = RANGE * ratio;
camera.top = RANGE + VERT_SHIFT;
camera.bottom = -RANGE + VERT_SHIFT;
} else {
camera.left = -RANGE + HOR_SHIFT;
camera.right = RANGE + HOR_SHIFT;
camera.top = RANGE / ratio + VERT_SHIFT;
camera.bottom = -RANGE / ratio + VERT_SHIFT;
}
camera.updateProjectionMatrix();
renderer.setSize(width, height);
}
function update() {
// requestAnimationFrame(update);
updateCamera();
updateScene();
controls.update();
renderer.render(scene, camera);
}
update();
window.addEventListener('resize', update);
angleInput.addEventListener('input', update);
angleInput.addEventListener('change', update);
diagramEl.addEventListener('mousemove', update);
diagramEl.addEventListener('touchmove', update);
diagramEl.addEventListener('scroll', update);
diagramEl.addEventListener('wheel', update);

View File

@ -9,9 +9,9 @@ cd flix
## Simulation
### Ubuntu 20.04
### Ubuntu
The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you have a newer version, consider using a virtual machine.
The latest version of Ubuntu supported by Gazebo 11 simulator is 22.04. If you have a newer version, consider using a virtual machine.
1. Install Arduino CLI:
@ -106,10 +106,10 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Install ESP32 core, version 3.1.0 (version 2.x is not supported). See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
3. Install ESP32 core, version 3.2.0. See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.12.
* `MAVLink`, version 2.0.16.
5. Clone the project using git or [download the source code as a ZIP archive](https://codeload.github.com/okalachev/flix/zip/refs/heads/master).
6. Open the downloaded Arduino sketch `flix/flix.ino` in Arduino IDE.
7. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
@ -160,7 +160,7 @@ Before flight you need to calibrate the accelerometer:
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
3. Connect your smartphone to the appeared `flix` Wi-Fi network.
3. Connect your smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
4. Open QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
5. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
6. Use the virtual joystick to fly the drone!
@ -180,7 +180,7 @@ If your drone doesn't have RC receiver installed, you can use USB remote control
1. Install [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html) app on your computer.
2. Connect your USB remote control to the computer.
3. Power up the drone.
4. Connect your computer to the appeared `flix` Wi-Fi network.
4. Connect your computer to the appeared `flix` Wi-Fi network (password: `flixwifi`).
5. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
6. Go the the QGroundControl menu ⇒ *Vehicle Setup**Joystick*. Calibrate you USB remote control there.
7. Use the USB remote control to fly the drone!

View File

@ -1,5 +1,7 @@
# Firmware overview
The firmware is a regular Arduino sketch, and follows the classic Arduino one-threaded design. The initialization code is in the `setup()` function, and the main loop is in the `loop()` function. The sketch includes multiple files, each responsible for a specific part of the system.
## Dataflow
<img src="img/dataflow.svg" width=800 alt="Firmware dataflow diagram">
@ -12,8 +14,8 @@ The main loop is running at 1000 Hz. All the dataflow is happening through globa
* `acc` *(Vector)* — acceleration data from the accelerometer, *m/s<sup>2</sup>*.
* `rates` *(Vector)* — filtered angular rates, *rad/s*.
* `attitude` *(Quaternion)* — estimated attitude (orientation) of drone.
* `controls` *(float[])* user control inputs from the RC, normalized to [-1, 1] range.
* `motors` *(float[])* motor outputs, normalized to [-1, 1] range; reverse rotation is possible.
* `controlRoll`, `controlPitch`, ... *(float[])* pilot's control inputs, range [-1, 1].
* `motors` *(float[])* motor outputs, range [0, 1].
## Source files

View File

@ -0,0 +1,94 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
<defs>
<style>
.a {
font-size: 50px;
font-family: Tahoma;
}
.b {
opacity: 0.8;
}
.c, .e, .g, .i {
fill: none;
}
.c {
stroke: #0076ba;
}
.c, .e, .g {
stroke-linejoin: bevel;
stroke-width: 13px;
}
.d {
fill: #0076ba;
}
.e {
stroke: #d80100;
}
.f {
fill: #d80100;
}
.g {
stroke: #57ed00;
}
.h {
fill: #57ed00;
}
.i {
stroke: #000;
stroke-miterlimit: 10;
stroke-width: 10px;
}
</style>
</defs>
<g>
<text class="a" transform="translate(58.62 636.12)">x</text>
<text class="a" transform="translate(505.06 562.18)">y</text>
<text class="a" transform="translate(370.06 43.18)">z</text>
<g class="b">
<g>
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<g class="b">
<g>
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="b">
<g>
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M103.19,617.68a52.66,52.66,0,1,0-55.51-89.19"/>
<polygon points="41.63 516.97 34.76 541.97 59.85 535.42 41.63 516.97"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M295.58,87.51a52.66,52.66,0,1,0,103.78,16.31"/>
<polygon points="412.03 106.78 397.6 85.24 386.16 108.51 412.03 106.78"/>
</g>
</g>
<g class="b">
<g>
<path class="i" d="M505,452.58a52.66,52.66,0,1,0-76,72.53"/>
<polygon points="418.96 533.38 444.84 535 433.31 511.78 418.96 533.38"/>
</g>
</g>
</g>
</svg>

After

Width:  |  Height:  |  Size: 2.1 KiB

BIN
docs/img/buck-boost.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 33 KiB

BIN
docs/img/gy-521.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

67
docs/img/left-axes.svg Normal file
View File

@ -0,0 +1,67 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.68">
<defs>
<style>
.a {
font-size: 50px;
font-family: Tahoma;
}
.b {
opacity: 0.8;
}
.c, .e, .g {
fill: none;
stroke-linejoin: bevel;
stroke-width: 13px;
}
.c {
stroke: #0076ba;
}
.d {
fill: #0076ba;
}
.e {
stroke: #57ed00;
}
.f {
fill: #57ed00;
}
.g {
stroke: #d80100;
}
.h {
fill: #d80100;
}
</style>
</defs>
<g>
<text class="a" transform="translate(500.62 556.12)">x</text>
<text class="a" transform="translate(370.06 43.18)">z</text>
<g class="b">
<g>
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<g class="b">
<g>
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="b">
<g>
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<text class="a" transform="translate(58.06 635.89)">y</text>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.4 KiB

67
docs/img/right-axes.svg Normal file
View File

@ -0,0 +1,67 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
<defs>
<style>
.a {
opacity: 0.8;
}
.b, .d, .f {
fill: none;
stroke-linejoin: bevel;
stroke-width: 13px;
}
.b {
stroke: #57ed00;
}
.c {
fill: #57ed00;
}
.d {
stroke: #d80100;
}
.e {
fill: #d80100;
}
.f {
stroke: #0076ba;
}
.g {
fill: #0076ba;
}
.h {
font-size: 50px;
font-family: Tahoma;
}
</style>
</defs>
<g>
<g class="a">
<g>
<line class="b" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
<polygon class="c" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
</g>
</g>
<g class="a">
<g>
<line class="d" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
<polygon class="e" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
</g>
</g>
<g class="a">
<g>
<line class="f" x1="347" y1="420.2" x2="347" y2="61.78"/>
<polygon class="g" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
</g>
</g>
<text class="h" transform="translate(58.62 636.12)">x</text>
<text class="h" transform="translate(505.06 562.18)">y</text>
<text class="h" transform="translate(370.06 43.18)">z</text>
</g>
</svg>

After

Width:  |  Height:  |  Size: 1.4 KiB

BIN
docs/img/simulator1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 326 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

BIN
docs/img/user/chkroko/1.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

BIN
docs/img/user/chkroko/2.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

After

Width:  |  Height:  |  Size: 87 KiB

29
docs/rotation.css Normal file
View File

@ -0,0 +1,29 @@
.diagram svg {
display: block;
width: 100%;
height: 400px;
}
.diagram .label {
font-family: Arial, sans-serif;
font-size: 20px;
pointer-events: none;
color: black;
opacity: 0.8;
user-select: none;
}
.diagram label {
display: block;
}
@media (min-width: 800px) {
.diagram b {
width: 200px;
display: inline-block;
}
}
.diagram p.quaternion {
overflow-x: auto;
}
.diagram input {
text-align: center;
width: 100%;
}

View File

@ -118,7 +118,7 @@
<a href="https://t.me/opensourcequadcopter" class="telegram">Telegram-канал</a>
💰 Поддержать проект:
<iframe style="margin-top: 0.4em;" src="https://yoomoney.ru/quickpay/fundraise/button?billNumber=16U9OH2S4IT.241205&" width="330" height="50" frameborder="0" allowtransparency="true" scrolling="no"></iframe>
&copy; 2024 Олег Калачев
&copy; 2025 Олег Калачев
</footer>
</mdbook-sidebar-scrollbox>
<noscript>

View File

@ -13,10 +13,11 @@ Do the following:
* **Check the battery voltage**. Use a multimeter to measure the battery voltage. It should be in range of 3.7-4.2 V.
* **Check if there are some startup errors**. Connect the ESP32 to the computer and check the Serial Monitor output. Use the Reset button to make sure you see the whole ESP32 output.
* **Check the baudrate is correct**. If you see garbage characters in the Serial Monitor, make sure the baudrate is set to 115200.
* **Make sure correct IMU model is chosen**. If using ICM-20948 board, change `MPU9250` to `ICM20948` everywhere in the `imu.ino` file.
* **Check if the CLI is working**. Perform `help` command in Serial Monitor. You should see the list of available commands. You can also access the CLI using QGroundControl (*Vehicle Setup* ⇒ *Analyze Tools**MAVLink Console*).
* **Configure QGroundControl correctly before connecting to the drone** if you use it to control the drone. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
* **Make sure you're not moving the drone several seconds after the power on**. The drone calibrates its gyroscope on the start so it should stay still for a while.
* **If QGroundControl doesn't connect**, you might need to disable the firewall and/or VPN on your computer.
* **Check the IMU is working**. Perform `imu` command and check its output:
* The `status` field should be `OK`.
* The `rate` field should be about 1000 (Hz).

View File

@ -4,6 +4,43 @@ This page contains user-built drones based on the Flix project. Publish your pro
---
Author: chkroko.<br>
Description: the first Flix drone built with **brushless motors** (DShot interface).<br>
Features: SpeedyBee BLS 35A Mini V2 ESC, ESP32-S3 board, EMAX ECO 2 2207 1700kv motors, ICM20948V2 IMU, INA226 power monitor and Bluetooth gamepad for control.<br>
Patch for DShot ESC: https://github.com/Krokodilushka/flix/commit/568345a45ca7ed5b458a11a9d0a9f4c8a91e70ac.
**Flight video:**
<a href="https://drive.google.com/file/d/1GFRanASxKmXINi70fxS5RuzV3LJp7f3m/view?usp=share_link"><img height=300 src="img/user/chkroko-bldc/video.jpg"></a>
<img src="img/user/chkroko-bldc/1.jpg" height=150> <img src="img/user/chkroko-bldc/2.jpg" height=150> <img src="img/user/chkroko-bldc/3.jpg" height=150>
---
Author: chkroko.<br>
Modification: Control using Bluetooth with **Flydigi Vader 3** gamepad. Source code: https://github.com/Krokodilushka/flix/tree/dev.<br>
Features: ESP32-C3 SuperMini, BMP580 barometer, INA226 power monitor, IRLZ44N MOSFETs.<br>
Full description: https://telegra.ph/Flix-dron-06-13.
**Flight video:**
<a href="https://drive.google.com/file/d/1orVKA_-gsezDTns2Xt8xW1BCWPcyPitR/view?usp=sharing"><img height=300 src="img/user/chkroko/video.jpg"></a>
<img src="img/user/chkroko/1.jpg" height=150> <img src="img/user/chkroko/2.jpg" height=150>
---
Author: chkroko.<br>
Features: ESP32-C3 SuperMini board, INA226 power monitor, IRLZ44N MOSFETs, MPU-6500 IMU.
**Flight video:**
<a href="https://drive.google.com/file/d/1-4ciDsj8slTEaxxRl1-QAkx0cUDkb8iy/view?usp=sharing"><img height=300 src="img/user/cryptokobans/video.jpg"></a>
<img src="img/user/cryptokobans/1.jpg" height=150> <img src="img/user/cryptokobans/2.jpg" height=150>
---
Author: [@jeka_chex](https://t.me/jeka_chex).<br>
Features: custom frame, FPV camera, 3-blade 31 mm propellers.<br>
Motor drivers: AON7410 MOSFET + capacitors.<br>
@ -17,27 +54,14 @@ Custom frame files: https://drive.google.com/drive/folders/1QCIc-_YYFxJN4cMhVLjL
<a href="https://drive.google.com/file/d/1RSU6VWs9omsge4hGloH5NQqnxvLyhMKB/view?usp=sharing"><img height=300 src="img/user/jeka_chex/video-fpv.jpg"></a>
<table>
<tr>
<td><img src="img/user/jeka_chex/1.jpg" height=150></td>
<td><img src="img/user/jeka_chex/2.jpg" height=150></td>
<td><img src="img/user/jeka_chex/3.jpg" height=150></td>
<td><img src="img/user/jeka_chex/4.jpg" height=150></td>
<td><img src="img/user/jeka_chex/5.jpg" height=150></td>
</tr>
</table>
<img src="img/user/jeka_chex/1.jpg" height=150> <img src="img/user/jeka_chex/2.jpg" height=150> <img src="img/user/jeka_chex/3.jpg" height=150> <img src="img/user/jeka_chex/4.jpg" height=150> <img src="img/user/jeka_chex/5.jpg" height=150>
---
Author: [@fisheyeu](https://t.me/fisheyeu).<br>
[Video](https://drive.google.com/file/d/1IT4eMmWPZpmaZR_qsIRmNJ52hYkFB_0q/view?usp=share_link).
<table>
<tr>
<td><img src="img/user/fisheyeu/1.jpg" height=300></td>
<td><img src="img/user/fisheyeu/2.jpg" height=300></td>
</tr>
</table>
<img src="img/user/fisheyeu/1.jpg" height=300> <img src="img/user/fisheyeu/2.jpg" height=300>
---
@ -46,13 +70,7 @@ Custom propellers guard 3D-model: https://drive.google.com/file/d/1TKnzwvrZYzYuR
Features: ESP32-C3 microcontroller is used.<br>
[Video](https://drive.google.com/file/d/1B0NMcsk0fgwUgNr9XuLOdR2yYCuaj008/view?usp=share_link).
<table>
<tr>
<td><img src="img/user/p_kabakov/1.jpg" width=150></td>
<td><img src="img/user/p_kabakov/2.jpg" width=150></td>
<td><img src="img/user/p_kabakov/3.jpg" width=150></td>
</tr>
</table>
<img src="img/user/p_kabakov/1.jpg" width=150> <img src="img/user/p_kabakov/2.jpg" width=150> <img src="img/user/p_kabakov/3.jpg" width=150>
**Custom Wi-Fi RC control:**
@ -65,12 +83,7 @@ See source and description (in Russian): https://github.com/pavelkabakov/flix/tr
Author: [@yi_lun](https://t.me/yi_lun).<br>
[Video](https://drive.google.com/file/d/1TkSuvHQ_0qQPFUpY5XjJzmhnpX_07cTg/view?usp=share_link).
<table>
<tr>
<td><img src="img/user/yi_lun/1.jpg" width=300></td>
<td><img src="img/user/yi_lun/2.jpg" width=300></td>
</tr>
</table>
<img src="img/user/yi_lun/1.jpg" width=300> <img src="img/user/yi_lun/2.jpg" width=300>
---
@ -81,12 +94,7 @@ Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=34587646121795
<a href="https://www.youtube.com/watch?v=wi4w_hOmKcQ"><img width=500 src="img/user/peter_ukhov-2/video.jpg"></a>
<table>
<tr>
<td><img src="img/user/peter_ukhov-2/1.jpg" width=300></td>
<td><img src="img/user/peter_ukhov-2/2.jpg" width=300></td>
</tr>
</table>
<img src="img/user/peter_ukhov-2/1.jpg" width=300> <img src="img/user/peter_ukhov-2/2.jpg" width=300>
---
@ -95,15 +103,7 @@ Files for 3D printing of the custom frame: https://drive.google.com/file/d/1tkNm
<a href="https://t.me/opensourcequadcopter/61"><img width=500 src="img/user/alexey_karakash/video.jpg"></a>
<table>
<tr>
<td><img src="img/user/alexey_karakash/1.jpg" height=150></td>
<td><img src="img/user/alexey_karakash/2.jpg" height=150></td>
<td><img src="img/user/alexey_karakash/3.jpg" height=150></td>
<td><img src="img/user/alexey_karakash/4.jpg" height=150></td>
<td><img src="img/user/alexey_karakash/5.jpg" height=150></td>
</tr>
</table>
<img src="img/user/alexey_karakash/1.jpg" height=150> <img src="img/user/alexey_karakash/2.jpg" height=150> <img src="img/user/alexey_karakash/3.jpg" height=150> <img src="img/user/alexey_karakash/4.jpg" height=150> <img src="img/user/alexey_karakash/5.jpg" height=150>
---
@ -111,13 +111,7 @@ Author: [@rudpa](https://t.me/rudpa).<br>
<a href="https://t.me/opensourcequadcopter/46"><img width=500 src="img/user/rudpa/video.jpg"></a>
<table>
<tr>
<td><img src="img/user/rudpa/1.jpg" height=150></td>
<td><img src="img/user/rudpa/2.jpg" height=150></td>
<td><img src="img/user/rudpa/3.jpg" height=150></td>
</tr>
</table>
<img src="img/user/rudpa/1.jpg" height=150> <img src="img/user/rudpa/2.jpg" height=150> <img src="img/user/rudpa/3.jpg" height=150>
---
@ -126,10 +120,4 @@ Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=34587646123382
<a href="https://t.me/opensourcequadcopter/24"><img width=500 src="img/user/peter_ukhov/video.jpg"></a>
<table>
<tr>
<td><img src="img/user/peter_ukhov/1.jpg" height=150></td>
<td><img src="img/user/peter_ukhov/2.jpg" height=150></td>
<td><img src="img/user/peter_ukhov/3.jpg" height=150></td>
</tr>
</table>
<img src="img/user/peter_ukhov/1.jpg" height=150> <img src="img/user/peter_ukhov/2.jpg" height=150> <img src="img/user/peter_ukhov/3.jpg" height=150>

View File

@ -10,7 +10,8 @@
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern float loopRate, dt;
extern double t;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern uint16_t channels[16];
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlArmed, controlMode;
const char* motd =
"\nWelcome to\n"
@ -34,9 +35,9 @@ const char* motd =
"mot - show motor output\n"
"log - dump in-RAM log\n"
"cr - calibrate RC\n"
"cg - calibrate gyro\n"
"ca - calibrate accel\n"
"mfr, mfl, mrr, mrl - test motor (remove props)\n"
"sys - show system info\n"
"reset - reset drone's state\n"
"reboot - reboot the drone\n";
@ -53,7 +54,6 @@ void print(const char* format, ...) {
}
void pause(float duration) {
#if ARDUINO
double start = t;
while (t - start < duration) {
step();
@ -61,11 +61,8 @@ void pause(float duration) {
#if WIFI_ENABLED
processMavlink();
#endif
delay(50);
}
#else
// Code above won't work in the simulation
delay(duration * 1000);
#endif
}
void doCommand(String str, bool echo = false) {
@ -78,6 +75,8 @@ void doCommand(String str, bool echo = false) {
print("> %s\n", str.c_str());
}
command.toLowerCase();
// execute command
if (command == "help" || command == "motd") {
print("%s\n", motd);
@ -96,10 +95,10 @@ void doCommand(String str, bool echo = false) {
resetParameters();
} else if (command == "time") {
print("Time: %f\n", t);
print("Loop rate: %f\n", loopRate);
print("Loop rate: %.0f\n", loopRate);
print("dt: %f\n", dt);
} else if (command == "ps") {
Vector a = attitude.toEulerZYX();
Vector a = attitude.toEuler();
print("roll: %f pitch: %f yaw: %f\n", degrees(a.x), degrees(a.y), degrees(a.z));
} else if (command == "psq") {
print("qx: %f qy: %f qz: %f qw: %f\n", attitude.x, attitude.y, attitude.z, attitude.w);
@ -107,25 +106,24 @@ void doCommand(String str, bool echo = false) {
printIMUInfo();
print("gyro: %f %f %f\n", rates.x, rates.y, rates.z);
print("acc: %f %f %f\n", acc.x, acc.y, acc.z);
printIMUCal();
print("rate: %f\n", loopRate);
printIMUCalibration();
print("rate: %.0f\n", loopRate);
print("landed: %d\n", landed);
} else if (command == "rc") {
print("Raw: throttle %d yaw %d pitch %d roll %d armed %d mode %d\n",
channels[throttleChannel], channels[yawChannel], channels[pitchChannel],
channels[rollChannel], channels[armedChannel], channels[modeChannel]);
print("Control: throttle %g yaw %g pitch %g roll %g armed %g mode %g\n",
controls[throttleChannel], controls[yawChannel], controls[pitchChannel],
controls[rollChannel], controls[armedChannel], controls[modeChannel]);
print("Mode: %s\n", getModeName());
print("channels: ");
for (int i = 0; i < 16; i++) {
print("%u ", channels[i]);
}
print("\nroll: %g pitch: %g yaw: %g throttle: %g armed: %g mode: %g\n",
controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode);
print("mode: %s\n", getModeName());
} else if (command == "mot") {
print("Motors: front-right %g front-left %g rear-right %g rear-left %g\n",
print("front-right %g front-left %g rear-right %g rear-left %g\n",
motors[MOTOR_FRONT_RIGHT], motors[MOTOR_FRONT_LEFT], motors[MOTOR_REAR_RIGHT], motors[MOTOR_REAR_LEFT]);
} else if (command == "log") {
dumpLog();
} else if (command == "cr") {
calibrateRC();
} else if (command == "cg") {
calibrateGyro();
} else if (command == "ca") {
calibrateAccel();
} else if (command == "mfr") {
@ -136,6 +134,25 @@ void doCommand(String str, bool echo = false) {
testMotor(MOTOR_REAR_RIGHT);
} else if (command == "mrl") {
testMotor(MOTOR_REAR_LEFT);
} else if (command == "sys") {
#ifdef ESP32
print("Chip: %s\n", ESP.getChipModel());
print("Temperature: %.1f °C\n", temperatureRead());
print("Free heap: %d\n", ESP.getFreeHeap());
// Print tasks table
print("Num Task Stack Prio Core CPU%%\n");
int taskCount = uxTaskGetNumberOfTasks();
TaskStatus_t *systemState = new TaskStatus_t[taskCount];
uint32_t totalRunTime;
uxTaskGetSystemState(systemState, taskCount, &totalRunTime);
for (int i = 0; i < taskCount; i++) {
String core = systemState[i].xCoreID == tskNO_AFFINITY ? "*" : String(systemState[i].xCoreID);
int cpuPercentage = systemState[i].ulRunTimeCounter / (totalRunTime / 100);
print("%-5d%-20s%-7d%-6d%-6s%d\n",systemState[i].xTaskNumber, systemState[i].pcTaskName,
systemState[i].usStackHighWaterMark, systemState[i].uxCurrentPriority, core, cpuPercentage);
}
delete[] systemState;
#endif
} else if (command == "reset") {
attitude = Quaternion();
} else if (command == "reboot") {

View File

@ -21,7 +21,7 @@
#define YAWRATE_I 0.0
#define YAWRATE_D 0.0
#define YAWRATE_I_LIM 0.3
#define ROLL_P 4.5
#define ROLL_P 6
#define ROLL_I 0
#define ROLL_D 0
#define PITCH_P ROLL_P
@ -32,7 +32,6 @@
#define ROLLRATE_MAX radians(360)
#define YAWRATE_MAX radians(300)
#define TILT_MAX radians(30)
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
enum { MANUAL, ACRO, STAB, USER } mode = STAB;
@ -54,7 +53,7 @@ Vector torqueTarget;
float thrustTarget;
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlArmed, controlMode;
void control() {
interpretRC();
@ -72,39 +71,38 @@ void control() {
}
void interpretRC() {
armed = controls[throttleChannel] >= 0.05 &&
(controls[armedChannel] >= 0.5 || isnan(controls[armedChannel])); // assume armed if armed channel is not defined
armed = controlThrottle >= 0.05 && controlArmed >= 0.5;
// NOTE: put ACRO or MANUAL modes there if you want to use them
if (controls[modeChannel] < 0.25) {
if (controlMode < 0.25) {
mode = STAB;
} else if (controls[modeChannel] < 0.75) {
} else if (controlMode < 0.75) {
mode = STAB;
} else {
mode = STAB;
}
thrustTarget = controls[throttleChannel];
thrustTarget = controlThrottle;
if (mode == ACRO) {
yawMode = YAW_RATE;
ratesTarget.x = controls[rollChannel] * maxRate.x;
ratesTarget.y = controls[pitchChannel] * maxRate.y;
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
ratesTarget.x = controlRoll * maxRate.x;
ratesTarget.y = controlPitch* maxRate.y;
ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU
} else if (mode == STAB) {
yawMode = controls[yawChannel] == 0 ? YAW : YAW_RATE;
yawMode = controlYaw == 0 ? YAW : YAW_RATE;
attitudeTarget = Quaternion::fromEulerZYX(Vector(
controls[rollChannel] * tiltMax,
controls[pitchChannel] * tiltMax,
attitudeTarget = Quaternion::fromEuler(Vector(
controlRoll * tiltMax,
controlPitch * tiltMax,
attitudeTarget.getYaw()));
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU
} else if (mode == MANUAL) {
// passthrough mode
yawMode = YAW_RATE;
torqueTarget = Vector(controls[rollChannel], controls[pitchChannel], -controls[yawChannel]) * 0.01;
torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.01;
}
if (yawMode == YAW_RATE || !motorsActive()) {
@ -122,10 +120,10 @@ void controlAttitude() {
}
const Vector up(0, 0, 1);
Vector upActual = attitude.rotateVector(up);
Vector upTarget = attitudeTarget.rotateVector(up);
Vector upActual = Quaternion::rotateVector(up, attitude);
Vector upTarget = Quaternion::rotateVector(up, attitudeTarget);
Vector error = Vector::angularRatesBetweenVectors(upTarget, upActual);
Vector error = Vector::rotationVectorBetween(upTarget, upActual);
ratesTarget.x = rollPID.update(error.x, dt);
ratesTarget.y = pitchPID.update(error.y, dt);

View File

@ -23,20 +23,20 @@ void applyGyro() {
rates = ratesFilter.update(gyro);
// apply rates to attitude
attitude = attitude.rotate(Quaternion::fromAngularRates(rates * dt));
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(rates * dt));
}
void applyAcc() {
// test should we apply accelerometer gravity correction
float accNorm = acc.norm();
bool landed = !motorsActive() && abs(accNorm - ONE_G) < ONE_G * 0.1f;
landed = !motorsActive() && abs(accNorm - ONE_G) < ONE_G * 0.1f;
if (!landed) return;
// calculate accelerometer correction
Vector up = attitude.rotateVector(Vector(0, 0, 1));
Vector correction = Vector::angularRatesBetweenVectors(acc, up) * WEIGHT_ACC;
Vector up = Quaternion::rotateVector(Vector(0, 0, 1), attitude);
Vector correction = Vector::rotationVectorBetween(acc, up) * WEIGHT_ACC;
// apply correction
attitude = attitude.rotate(Quaternion::fromAngularRates(correction));
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(correction));
}

View File

@ -6,8 +6,8 @@
#define RC_LOSS_TIMEOUT 0.2
#define DESCEND_TIME 3.0 // time to descend from full throttle to zero
extern double controlsTime;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel;
extern double controlTime;
extern float controlRoll, controlPitch, controlThrottle, controlYaw;
void failsafe() {
armingFailsafe();
@ -19,13 +19,13 @@ void armingFailsafe() {
static double zeroThrottleTime;
static double armingTime;
if (!armed) armingTime = t; // stores the last time when the drone was disarmed, therefore contains arming time
if (controlsTime > 0 && controls[throttleChannel] < 0.05) zeroThrottleTime = controlsTime;
if (controlTime > 0 && controlThrottle < 0.05) zeroThrottleTime = controlTime;
if (armingTime - zeroThrottleTime > 0.1) armed = false; // prevent arming if there was no zero throttle for 0.1 sec
}
// RC loss failsafe
void rcLossFailsafe() {
if (t - controlsTime > RC_LOSS_TIMEOUT) {
if (t - controlTime > RC_LOSS_TIMEOUT) {
descend();
}
}
@ -33,9 +33,9 @@ void rcLossFailsafe() {
// Smooth descend on RC lost
void descend() {
mode = STAB;
controls[rollChannel] = 0;
controls[pitchChannel] = 0;
controls[yawChannel] = 0;
controls[throttleChannel] -= dt / DESCEND_TIME;
if (controls[throttleChannel] < 0) controls[throttleChannel] = 0;
controlRoll = 0;
controlPitch = 0;
controlYaw = 0;
controlThrottle -= dt / DESCEND_TIME;
if (controlThrottle < 0) controlThrottle = 0;
}

View File

@ -12,17 +12,17 @@
double t = NAN; // current step time, s
float dt; // time delta from previous step, s
int16_t channels[16]; // raw rc channels
float controls[16]; // normalized controls in range [-1..1] ([0..1] for throttle)
float controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode; // pilot's inputs, range [-1, 1]
Vector gyro; // gyroscope data
Vector acc; // accelerometer data, m/s/s
Vector rates; // filtered angular rates, rad/s
Quaternion attitude; // estimated attitude
float motors[4]; // normalized motors thrust in range [-1..1]
bool landed; // are we landed and stationary
float motors[4]; // normalized motors thrust in range [0..1]
void setup() {
Serial.begin(SERIAL_BAUDRATE);
print("Initializing flix");
print("Initializing flix\n");
disableBrownOut();
setupParameters();
setupLED();
@ -34,7 +34,7 @@ void setup() {
setupIMU();
setupRC();
setLED(false);
print("Initializing complete");
print("Initializing complete\n");
}
void loop() {

View File

@ -5,20 +5,19 @@
#include <SPI.h>
#include <MPU9250.h>
#include "lpf.h"
#include "util.h"
MPU9250 IMU(SPI);
Vector accBias;
Vector gyroBias;
Vector accScale(1, 1, 1);
Vector gyroBias;
void setupIMU() {
print("Setup IMU\n");
IMU.begin();
configureIMU();
delay(500); // wait a bit before calibrating
calibrateGyro();
}
void configureIMU() {
@ -26,12 +25,14 @@ void configureIMU() {
IMU.setGyroRange(IMU.GYRO_RANGE_2000DPS);
IMU.setDLPF(IMU.DLPF_MAX);
IMU.setRate(IMU.RATE_1KHZ_APPROX);
IMU.setupInterrupt();
}
void readIMU() {
IMU.waitForData();
IMU.getGyro(gyro.x, gyro.y, gyro.z);
IMU.getAccel(acc.x, acc.y, acc.z);
calibrateGyroOnce();
// apply scale and bias
acc = (acc - accBias) / accScale;
gyro = gyro - gyroBias;
@ -47,47 +48,40 @@ void rotateIMU(Vector& data) {
// Axes orientation for various boards: https://github.com/okalachev/flixperiph#imu-axes-orientation
}
void calibrateGyro() {
const int samples = 1000;
print("Calibrating gyro, stand still\n");
IMU.setGyroRange(IMU.GYRO_RANGE_250DPS); // the most sensitive mode
void calibrateGyroOnce() {
static float landedTime = 0;
landedTime = landed ? landedTime + dt : 0;
if (landedTime < 2) return; // calibrate only if definitely stationary
gyroBias = Vector(0, 0, 0);
for (int i = 0; i < samples; i++) {
IMU.waitForData();
IMU.getGyro(gyro.x, gyro.y, gyro.z);
gyroBias = gyroBias + gyro;
}
gyroBias = gyroBias / samples;
printIMUCal();
configureIMU();
static LowPassFilter<Vector> gyroCalibrationFilter(0.001);
gyroBias = gyroCalibrationFilter.update(gyro);
}
void calibrateAccel() {
print("Calibrating accelerometer\n");
IMU.setAccelRange(IMU.ACCEL_RANGE_2G); // the most sensitive mode
print("Place level [8 sec]\n");
print("1/6 Place level [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("Place nose up [8 sec]\n");
print("2/6 Place nose up [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("Place nose down [8 sec]\n");
print("3/6 Place nose down [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("Place on right side [8 sec]\n");
print("4/6 Place on right side [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("Place on left side [8 sec]\n");
print("5/6 Place on left side [8 sec]\n");
pause(8);
calibrateAccelOnce();
print("Place upside down [8 sec]\n");
print("6/6 Place upside down [8 sec]\n");
pause(8);
calibrateAccelOnce();
printIMUCal();
printIMUCalibration();
print("✓ Calibration done!\n");
configureIMU();
}
@ -113,15 +107,12 @@ void calibrateAccelOnce() {
if (acc.x < accMin.x) accMin.x = acc.x;
if (acc.y < accMin.y) accMin.y = acc.y;
if (acc.z < accMin.z) accMin.z = acc.z;
print("acc %f %f %f\n", acc.x, acc.y, acc.z);
print("max %f %f %f\n", accMax.x, accMax.y, accMax.z);
print("min %f %f %f\n", accMin.x, accMin.y, accMin.z);
// Compute scale and bias
accScale = (accMax - accMin) / 2 / ONE_G;
accBias = (accMax + accMin) / 2;
}
void printIMUCal() {
void printIMUCalibration() {
print("gyro bias: %f %f %f\n", gyroBias.x, gyroBias.y, gyroBias.z);
print("accel bias: %f %f %f\n", accBias.x, accBias.y, accBias.z);
print("accel scale: %f %f %f\n", accScale.x, accScale.y, accScale.z);

View File

@ -41,8 +41,8 @@ float logBuffer[LOG_SIZE][logColumns];
void prepareLogData() {
tFloat = t;
attitudeEuler = attitude.toEulerZYX();
attitudeTargetEuler = attitudeTarget.toEulerZYX();
attitudeEuler = attitude.toEuler();
attitudeTargetEuler = attitudeTarget.toEuler();
}
void logData() {

View File

@ -22,7 +22,8 @@ public:
output = input;
initialized = true;
}
return output = output * (1 - alpha) + input * alpha;
return output += alpha * (input - output);
}
void setCutOffFrequency(float cutOffFreq, float dt) {

View File

@ -10,13 +10,13 @@
#define SYSTEM_ID 1
#define PERIOD_SLOW 1.0
#define PERIOD_FAST 0.1
#define MAVLINK_CONTROL_SCALE 0.7f
#define MAVLINK_CONTROL_YAW_DEAD_ZONE 0.1f
float mavlinkControlScale = 0.7;
String mavlinkPrintBuffer;
extern double controlsTime;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern double controlTime;
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlArmed, controlMode;
void processMavlink() {
sendMavlink();
@ -24,6 +24,8 @@ void processMavlink() {
}
void sendMavlink() {
sendMavlinkPrint();
static double lastSlow = 0;
static double lastFast = 0;
@ -33,9 +35,13 @@ void sendMavlink() {
if (t - lastSlow >= PERIOD_SLOW) {
lastSlow = t;
mavlink_msg_heartbeat_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, MAV_TYPE_QUADROTOR,
MAV_AUTOPILOT_GENERIC, MAV_MODE_FLAG_MANUAL_INPUT_ENABLED | (armed ? MAV_MODE_FLAG_SAFETY_ARMED : 0),
0, MAV_STATE_STANDBY);
mavlink_msg_heartbeat_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, MAV_TYPE_QUADROTOR, MAV_AUTOPILOT_GENERIC,
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED | (armed * MAV_MODE_FLAG_SAFETY_ARMED) | ((mode == STAB) * MAV_MODE_FLAG_STABILIZE_ENABLED),
mode, MAV_STATE_STANDBY);
sendMessage(&msg);
mavlink_msg_extended_sys_state_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
MAV_VTOL_STATE_UNDEFINED, landed ? MAV_LANDED_STATE_ON_GROUND : MAV_LANDED_STATE_IN_AIR);
sendMessage(&msg);
}
@ -43,16 +49,13 @@ void sendMavlink() {
lastFast = t;
const float zeroQuat[] = {0, 0, 0, 0};
Quaternion attitudeFRD = fluToFrd(attitude); // MAVLink uses FRD coordinate system
mavlink_msg_attitude_quaternion_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
time, attitudeFRD.w, attitudeFRD.x, attitudeFRD.y, attitudeFRD.z, rates.x, rates.y, rates.z, zeroQuat);
time, attitude.w, attitude.x, -attitude.y, -attitude.z, rates.x, -rates.y, -rates.z, zeroQuat); // convert to frd
sendMessage(&msg);
mavlink_msg_rc_channels_scaled_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlsTime * 1000, 0,
controls[0] * 10000, controls[1] * 10000, controls[2] * 10000,
controls[3] * 10000, controls[4] * 10000, controls[5] * 10000,
INT16_MAX, INT16_MAX, UINT8_MAX);
sendMessage(&msg);
mavlink_msg_rc_channels_raw_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlTime * 1000, 0,
channels[0], channels[1], channels[2], channels[3], channels[4], channels[5], channels[6], channels[7], UINT8_MAX);
if (channels[0] != 0) sendMessage(&msg); // 0 means no RC input
float actuator[32];
memcpy(actuator, motors, sizeof(motors));
@ -60,8 +63,8 @@ void sendMavlink() {
sendMessage(&msg);
mavlink_msg_scaled_imu_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time,
acc.x * 1000, acc.y * 1000, acc.z * 1000,
gyro.x * 1000, gyro.y * 1000, gyro.z * 1000,
acc.x * 1000, -acc.y * 1000, -acc.z * 1000, // convert to frd
gyro.x * 1000, -gyro.y * 1000, -gyro.z * 1000,
0, 0, 0, 0);
sendMessage(&msg);
}
@ -88,22 +91,22 @@ void receiveMavlink() {
}
void handleMavlink(const void *_msg) {
const mavlink_message_t &msg = *(mavlink_message_t *)_msg;
const mavlink_message_t& msg = *(mavlink_message_t *)_msg;
if (msg.msgid == MAVLINK_MSG_ID_MANUAL_CONTROL) {
mavlink_manual_control_t m;
mavlink_msg_manual_control_decode(&msg, &m);
if (m.target && m.target != SYSTEM_ID) return; // 0 is broadcast
controls[throttleChannel] = m.z / 1000.0f;
controls[pitchChannel] = m.x / 1000.0f * mavlinkControlScale;
controls[rollChannel] = m.y / 1000.0f * mavlinkControlScale;
controls[yawChannel] = m.r / 1000.0f * mavlinkControlScale;
controls[modeChannel] = 1; // STAB mode
controls[armedChannel] = 1; // armed
controlsTime = t;
controlThrottle = m.z / 1000.0f;
controlPitch = m.x / 1000.0f * mavlinkControlScale;
controlRoll = m.y / 1000.0f * mavlinkControlScale;
controlYaw = m.r / 1000.0f * mavlinkControlScale;
controlMode = 1; // STAB mode
controlArmed = 1; // armed
controlTime = t;
if (abs(controls[yawChannel]) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controls[yawChannel] = 0;
if (abs(controlYaw) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controlYaw = 0;
}
if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_LIST) {
@ -194,20 +197,23 @@ void handleMavlink(const void *_msg) {
// Send shell output to GCS
void mavlinkPrint(const char* str) {
// Send data in chunks
mavlinkPrintBuffer += str;
}
void sendMavlinkPrint() {
// Send mavlink print data in chunks
const char *str = mavlinkPrintBuffer.c_str();
for (int i = 0; i < strlen(str); i += MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN) {
char data[MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN + 1];
strlcpy(data, str + i, sizeof(data));
mavlink_message_t msg;
mavlink_msg_serial_control_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
SERIAL_CONTROL_DEV_SHELL, 0, 0, 0, strlen(data), (uint8_t *)data, 0, 0);
SERIAL_CONTROL_DEV_SHELL,
i + MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN < strlen(str) ? SERIAL_CONTROL_FLAG_MULTI : 0, // more chunks to go
0, 0, strlen(data), (uint8_t *)data, 0, 0);
sendMessage(&msg);
}
}
// Convert Forward-Left-Up to Forward-Right-Down quaternion
inline Quaternion fluToFrd(const Quaternion &q) {
return Quaternion(q.w, q.x, -q.y, -q.z);
mavlinkPrintBuffer.clear();
}
#endif

View File

@ -11,8 +11,8 @@
#define MOTOR_2_PIN 14 // front right
#define MOTOR_3_PIN 15 // front left
#define PWM_FREQUENCY 1000
#define PWM_RESOLUTION 12
#define PWM_FREQUENCY 78000
#define PWM_RESOLUTION 10
#define PWM_STOP 0
#define PWM_MIN 0
#define PWM_MAX 1000000 / PWM_FREQUENCY
@ -55,7 +55,7 @@ bool motorsActive() {
return motors[0] != 0 || motors[1] != 0 || motors[2] != 0 || motors[3] != 0;
}
void testMotor(uint8_t n) {
void testMotor(int n) {
print("Testing motor %d\n", n);
motors[n] = 1;
delay(50); // ESP32 may need to wait until the end of the current cycle to change duty https://github.com/espressif/arduino-esp32/issues/5306

View File

@ -5,14 +5,15 @@
#include <Preferences.h>
extern float channelNeutral[16];
extern float channelZero[16];
extern float channelMax[16];
extern float rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern float mavlinkControlScale;
Preferences storage;
struct Parameter {
const char *name;
const char *name; // max length is 16
float *variable;
float value; // cache
};
@ -48,18 +49,15 @@ Parameter parameters[] = {
{"ACC_SCALE_X", &accScale.x},
{"ACC_SCALE_Y", &accScale.y},
{"ACC_SCALE_Z", &accScale.z},
{"GYRO_BIAS_X", &gyroBias.x},
{"GYRO_BIAS_Y", &gyroBias.y},
{"GYRO_BIAS_Z", &gyroBias.z},
// rc
{"RC_NEUTRAL_0", &channelNeutral[0]},
{"RC_NEUTRAL_1", &channelNeutral[1]},
{"RC_NEUTRAL_2", &channelNeutral[2]},
{"RC_NEUTRAL_3", &channelNeutral[3]},
{"RC_NEUTRAL_4", &channelNeutral[4]},
{"RC_NEUTRAL_5", &channelNeutral[5]},
{"RC_NEUTRAL_6", &channelNeutral[6]},
{"RC_NEUTRAL_7", &channelNeutral[7]},
{"RC_ZERO_0", &channelZero[0]},
{"RC_ZERO_1", &channelZero[1]},
{"RC_ZERO_2", &channelZero[2]},
{"RC_ZERO_3", &channelZero[3]},
{"RC_ZERO_4", &channelZero[4]},
{"RC_ZERO_5", &channelZero[5]},
{"RC_ZERO_6", &channelZero[6]},
{"RC_ZERO_7", &channelZero[7]},
{"RC_MAX_0", &channelMax[0]},
{"RC_MAX_1", &channelMax[1]},
{"RC_MAX_2", &channelMax[2]},
@ -68,6 +66,12 @@ Parameter parameters[] = {
{"RC_MAX_5", &channelMax[5]},
{"RC_MAX_6", &channelMax[6]},
{"RC_MAX_7", &channelMax[7]},
{"RC_ROLL", &rollChannel},
{"RC_PITCH", &pitchChannel},
{"RC_THROTTLE", &throttleChannel},
{"RC_YAW", &yawChannel},
{"RC_ARMED", &armedChannel},
{"RC_MODE", &modeChannel},
#if WIFI_ENABLED
// MAVLink
{"MAV_CTRL_SCALE", &mavlinkControlScale},

View File

@ -15,22 +15,22 @@ public:
Quaternion(float w, float x, float y, float z): w(w), x(x), y(y), z(z) {};
static Quaternion fromAxisAngle(float a, float b, float c, float angle) {
static Quaternion fromAxisAngle(const Vector& axis, float angle) {
float halfAngle = angle * 0.5;
float sin2 = sin(halfAngle);
float cos2 = cos(halfAngle);
float sinNorm = sin2 / sqrt(a * a + b * b + c * c);
return Quaternion(cos2, a * sinNorm, b * sinNorm, c * sinNorm);
float sinNorm = sin2 / axis.norm();
return Quaternion(cos2, axis.x * sinNorm, axis.y * sinNorm, axis.z * sinNorm);
}
static Quaternion fromAngularRates(const Vector& rates) {
if (rates.zero()) {
static Quaternion fromRotationVector(const Vector& rotation) {
if (rotation.zero()) {
return Quaternion();
}
return Quaternion::fromAxisAngle(rates.x, rates.y, rates.z, rates.norm());
return Quaternion::fromAxisAngle(rotation, rotation.norm());
}
static Quaternion fromEulerZYX(const Vector& euler) {
static Quaternion fromEuler(const Vector& euler) {
float cx = cos(euler.x / 2);
float cy = cos(euler.y / 2);
float cz = cos(euler.z / 2);
@ -60,14 +60,38 @@ public:
return ret;
}
void toAxisAngle(float& a, float& b, float& c, float& angle) const {
angle = acos(w) * 2;
a = x / sin(angle / 2);
b = y / sin(angle / 2);
c = z / sin(angle / 2);
bool finite() const {
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
}
Vector toEulerZYX() const {
float norm() const {
return sqrt(w * w + x * x + y * y + z * z);
}
void normalize() {
float n = norm();
w /= n;
x /= n;
y /= n;
z /= n;
}
void toAxisAngle(Vector& axis, float& angle) const {
angle = acos(w) * 2;
axis.x = x / sin(angle / 2);
axis.y = y / sin(angle / 2);
axis.z = z / sin(angle / 2);
}
Vector toRotationVector() const {
if (w == 1 && x == 0 && y == 0 && z == 0) return Vector(0, 0, 0); // neutral quaternion
float angle;
Vector axis;
toAxisAngle(axis, angle);
return angle * axis;
}
Vector toEuler() const {
// https://github.com/ros/geometry2/blob/589caf083cae9d8fae7effdb910454b4681b9ec1/tf2/include/tf2/impl/utils.h#L87
Vector euler;
float sqx = x * x;
@ -112,18 +136,9 @@ public:
void setYaw(float yaw) {
// TODO: optimize?
Vector euler = toEulerZYX();
Vector euler = toEuler();
euler.z = yaw;
(*this) = Quaternion::fromEulerZYX(euler);
}
Quaternion& operator *= (const Quaternion& q) {
Quaternion ret(
w * q.w - x * q.x - y * q.y - z * q.z,
w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y + y * q.w + z * q.x - x * q.z,
w * q.z + z * q.w + x * q.y - y * q.x);
return (*this = ret);
(*this) = Quaternion::fromEuler(euler);
}
Quaternion operator * (const Quaternion& q) const {
@ -134,6 +149,14 @@ public:
w * q.z + z * q.w + x * q.y - y * q.x);
}
bool operator == (const Quaternion& q) const {
return w == q.w && x == q.x && y == q.y && z == q.z;
}
bool operator != (const Quaternion& q) const {
return !(*this == q);
}
Quaternion inversed() const {
float normSqInv = 1 / (w * w + x * x + y * y + z * z);
return Quaternion(
@ -143,18 +166,6 @@ public:
-z * normSqInv);
}
float norm() const {
return sqrt(w * w + x * x + y * y + z * z);
}
void normalize() {
float n = norm();
w /= n;
x /= n;
y /= n;
z /= n;
}
Vector conjugate(const Vector& v) const {
Quaternion qv(0, v.x, v.y, v.z);
Quaternion res = (*this) * qv * inversed();
@ -167,22 +178,27 @@ public:
return Vector(res.x, res.y, res.z);
}
// Rotate vector by quaternion
Vector rotateVector(const Vector& v) const {
return conjugateInversed(v);
}
// Rotate quaternion by quaternion
Quaternion rotate(const Quaternion& q, const bool normalize = true) const {
Quaternion rotated = (*this) * q;
static Quaternion rotate(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
Quaternion rotated = a * b;
if (normalize) {
rotated.normalize();
}
return rotated;
}
bool finite() const {
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
// Rotate vector by quaternion
static Vector rotateVector(const Vector& v, const Quaternion& q) {
return q.conjugateInversed(v);
}
// Quaternion between two quaternions a and b
static Quaternion between(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
Quaternion q = a * b.inversed();
if (normalize) {
q.normalize();
}
return q;
}
size_t printTo(Print& p) const {

View File

@ -8,17 +8,13 @@
SBUS RC(Serial2); // NOTE: Use RC(Serial2, 16, 17) if you use the old UART2 pins
// RC channels mapping:
int rollChannel = 0;
int pitchChannel = 1;
int throttleChannel = 2;
int yawChannel = 3;
int armedChannel = 4;
int modeChannel = 5;
uint16_t channels[16]; // raw rc channels
double controlTime; // time of the last controls update
float channelZero[16]; // calibration zero values
float channelMax[16]; // calibration max values
double controlsTime; // time of the last controls update
float channelNeutral[16] = {NAN}; // first element NAN means not calibrated
float channelMax[16];
// Channels mapping (using float to store in parameters):
float rollChannel = NAN, pitchChannel = NAN, throttleChannel = NAN, yawChannel = NAN, armedChannel = NAN, modeChannel = NAN;
void setupRC() {
print("Setup RC\n");
@ -28,42 +24,76 @@ void setupRC() {
bool readRC() {
if (RC.read()) {
SBUSData data = RC.data();
memcpy(channels, data.ch, sizeof(channels)); // copy channels data
for (int i = 0; i < 16; i++) channels[i] = data.ch[i]; // copy channels data
normalizeRC();
controlsTime = t;
controlTime = t;
return true;
}
return false;
}
void normalizeRC() {
if (isnan(channelNeutral[0])) return; // skip if not calibrated
for (uint8_t i = 0; i < 16; i++) {
controls[i] = mapf(channels[i], channelNeutral[i], channelMax[i], 0, 1);
float controls[16];
for (int i = 0; i < 16; i++) {
controls[i] = mapf(channels[i], channelZero[i], channelMax[i], 0, 1);
}
// Update control values
controlRoll = rollChannel >= 0 ? controls[(int)rollChannel] : NAN;
controlPitch = pitchChannel >= 0 ? controls[(int)pitchChannel] : NAN;
controlYaw = yawChannel >= 0 ? controls[(int)yawChannel] : NAN;
controlThrottle = throttleChannel >= 0 ? controls[(int)throttleChannel] : NAN;
controlArmed = armedChannel >= 0 ? controls[(int)armedChannel] : 1; // assume armed by default
controlMode = modeChannel >= 0 ? controls[(int)modeChannel] : NAN;
}
void calibrateRC() {
print("Calibrate RC: move all sticks to maximum positions [4 sec]\n");
print("··o ··o\n··· ···\n··· ···\n");
pause(4);
while (!readRC());
for (int i = 0; i < 16; i++) {
channelMax[i] = channels[i];
}
print("Calibrate RC: move all sticks to neutral positions [4 sec]\n");
print("··· ···\n··· ·o·\n·o· ···\n");
pause(4);
while (!readRC());
for (int i = 0; i < 16; i++) {
channelNeutral[i] = channels[i];
}
printRCCal();
uint16_t zero[16];
uint16_t center[16];
uint16_t max[16];
print("1/9 Calibrating RC: put all switches to default positions [3 sec]\n");
pause(3);
calibrateRCChannel(NULL, zero, zero, "2/9 Move sticks [3 sec]\n... ...\n... .o.\n.o. ...\n");
calibrateRCChannel(NULL, center, center, "3/9 Move sticks [3 sec]\n... ...\n.o. .o.\n... ...\n");
calibrateRCChannel(&throttleChannel, zero, max, "4/9 Move sticks [3 sec]\n.o. ...\n... .o.\n... ...\n");
calibrateRCChannel(&yawChannel, center, max, "5/9 Move sticks [3 sec]\n... ...\n..o .o.\n... ...\n");
calibrateRCChannel(&pitchChannel, zero, max, "6/9 Move sticks [3 sec]\n... .o.\n... ...\n.o. ...\n");
calibrateRCChannel(&rollChannel, zero, max, "7/9 Move sticks [3 sec]\n... ...\n... ..o\n.o. ...\n");
calibrateRCChannel(&armedChannel, zero, max, "8/9 Switch to armed [3 sec]\n");
calibrateRCChannel(&modeChannel, zero, max, "9/9 Disarm and switch mode to max [3 sec]\n");
printRCCalibration();
}
void printRCCal() {
for (int i = 0; i < sizeof(channelNeutral) / sizeof(channelNeutral[0]); i++) print("%g ", channelNeutral[i]);
print("\n");
for (int i = 0; i < sizeof(channelMax) / sizeof(channelMax[0]); i++) print("%g ", channelMax[i]);
print("\n");
void calibrateRCChannel(float *channel, uint16_t in[16], uint16_t out[16], const char *str) {
print("%s", str);
pause(3);
for (int i = 0; i < 30; i++) readRC(); // try update 30 times max
memcpy(out, channels, sizeof(channels));
if (channel == NULL) return; // no channel to calibrate
// Find channel that changed the most between in and out
int ch = -1, diff = 0;
for (int i = 0; i < 16; i++) {
if (abs(out[i] - in[i]) > diff) {
ch = i;
diff = abs(out[i] - in[i]);
}
}
if (ch >= 0 && diff > 10) { // difference threshold is 10
*channel = ch;
channelZero[ch] = in[ch];
channelMax[ch] = out[ch];
} else {
*channel = NAN;
}
}
void printRCCalibration() {
print("Control Ch Zero Max\n");
print("Roll %-7g%-7g%-7g\n", rollChannel, rollChannel >= 0 ? channelZero[(int)rollChannel] : NAN, rollChannel >= 0 ? channelMax[(int)rollChannel] : NAN);
print("Pitch %-7g%-7g%-7g\n", pitchChannel, pitchChannel >= 0 ? channelZero[(int)pitchChannel] : NAN, pitchChannel >= 0 ? channelMax[(int)pitchChannel] : NAN);
print("Yaw %-7g%-7g%-7g\n", yawChannel, yawChannel >= 0 ? channelZero[(int)yawChannel] : NAN, yawChannel >= 0 ? channelMax[(int)yawChannel] : NAN);
print("Throttle %-7g%-7g%-7g\n", throttleChannel, throttleChannel >= 0 ? channelZero[(int)throttleChannel] : NAN, throttleChannel >= 0 ? channelMax[(int)throttleChannel] : NAN);
print("Armed %-7g%-7g%-7g\n", armedChannel, armedChannel >= 0 ? channelZero[(int)armedChannel] : NAN, armedChannel >= 0 ? channelMax[(int)armedChannel] : NAN);
print("Mode %-7g%-7g%-7g\n", modeChannel, modeChannel >= 0 ? channelZero[(int)modeChannel] : NAN, modeChannel >= 0 ? channelMax[(int)modeChannel] : NAN);
}

View File

@ -13,14 +13,18 @@ public:
Vector(float x, float y, float z): x(x), y(y), z(z) {};
float norm() const {
return sqrt(x * x + y * y + z * z);
}
bool zero() const {
return x == 0 && y == 0 && z == 0;
}
bool finite() const {
return isfinite(x) && isfinite(y) && isfinite(z);
}
float norm() const {
return sqrt(x * x + y * y + z * z);
}
void normalize() {
float n = norm();
x /= n;
@ -28,6 +32,10 @@ public:
z /= n;
}
Vector operator + (const float b) const {
return Vector(x + b, y + b, z + b);
}
Vector operator * (const float b) const {
return Vector(x * b, y * b, z * b);
}
@ -44,6 +52,14 @@ public:
return Vector(x - b.x, y - b.y, z - b.z);
}
Vector& operator += (const Vector& b) {
return *this = *this + b;
}
Vector& operator -= (const Vector& b) {
return *this = *this - b;
}
// Element-wise multiplication
Vector operator * (const Vector& b) const {
return Vector(x * b.x, y * b.y, z * b.z);
@ -62,10 +78,6 @@ public:
return !(*this == b);
}
bool finite() const {
return isfinite(x) && isfinite(y) && isfinite(z);
}
static float dot(const Vector& a, const Vector& b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
@ -74,18 +86,18 @@ public:
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
static float angleBetweenVectors(const Vector& a, const Vector& b) {
static float angleBetween(const Vector& a, const Vector& b) {
return acos(constrain(dot(a, b) / (a.norm() * b.norm()), -1, 1));
}
static Vector angularRatesBetweenVectors(const Vector& a, const Vector& b) {
static Vector rotationVectorBetween(const Vector& a, const Vector& b) {
Vector direction = cross(a, b);
if (direction.zero()) {
// vectors are opposite, return any perpendicular vector
return cross(a, Vector(1, 0, 0));
}
direction.normalize();
float angle = angleBetweenVectors(a, b);
float angle = angleBetween(a, b);
return direction * angle;
}
@ -96,3 +108,6 @@ public:
p.print(z, 15);
}
};
Vector operator * (const float a, const Vector& b) { return b * a; }
Vector operator + (const float a, const Vector& b) { return b + a; }

View File

@ -11,8 +11,8 @@
#define WIFI_SSID "flix"
#define WIFI_PASSWORD "flixwifi"
#define WIFI_UDP_IP "255.255.255.255"
#define WIFI_UDP_PORT 14550
#define WIFI_UDP_REMOTE_PORT 14550
WiFiUDP udp;
@ -24,7 +24,7 @@ void setupWiFi() {
void sendWiFi(const uint8_t *buf, int len) {
if (WiFi.softAPIP() == IPAddress(0, 0, 0, 0) && WiFi.status() != WL_CONNECTED) return;
udp.beginPacket(WIFI_UDP_IP, WIFI_UDP_PORT);
udp.beginPacket(WiFi.softAPBroadcastIP(), WIFI_UDP_REMOTE_PORT);
udp.write(buf, len);
udp.endPacket();
}

View File

@ -11,6 +11,8 @@
#include <stdio.h>
#include <unistd.h>
#include <sys/poll.h>
#include <chrono>
#include <thread>
#define PI 3.1415926535897932384626433832795
#define DEG_TO_RAD 0.017453292519943295769236907684886
@ -52,6 +54,10 @@ public:
this->erase(0, this->find_first_not_of(" \t\n\r"));
this->erase(this->find_last_not_of(" \t\n\r") + 1);
}
void toLowerCase() {
std::transform(this->begin(), this->end(), this->begin(),
[](unsigned char c) { return std::tolower(c); });
}
};
class Print;
@ -150,8 +156,11 @@ public:
void restart() { Serial.println("Ignore reboot in simulation"); }
} ESP;
unsigned long __delayTime = 0;
void delay(uint32_t ms) {
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
__delayTime += ms * 1000;
}
bool ledcAttach(uint8_t pin, uint32_t freq, uint8_t resolution) { return true; }
@ -161,5 +170,5 @@ unsigned long __micros;
unsigned long __resetTime = 0;
unsigned long micros() {
return __micros + __resetTime; // keep the time monotonic
return __micros + __resetTime + __delayTime; // keep the time monotonic
}

View File

@ -14,10 +14,9 @@ private:
void readFromFile() {
std::ifstream file(storagePath);
std::string key;
float value;
std::string key, value;
while (file >> key >> value) {
storage[key] = value;
storage[key] = std::stof(value); // using stof to support NaN and Infinity
}
}

View File

@ -18,6 +18,9 @@ public:
SBUSData data() {
SBUSData data;
joystickGet(data.ch);
for (int i = 0; i < 16; i++) {
data.ch[i] = map(data.ch[i], -32768, 32767, 1000, 2000); // convert to pulse width style
}
return data;
};
};

View File

@ -15,12 +15,12 @@
double t = NAN;
float dt;
float motors[4];
int16_t channels[16]; // raw rc channels
float controls[16];
float controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode;
Vector acc;
Vector gyro;
Vector rates;
Quaternion attitude;
bool landed;
// declarations
void step();
@ -35,14 +35,15 @@ void controlTorque();
const char* getModeName();
void sendMotors();
bool motorsActive();
void testMotor(uint8_t n);
void testMotor(int n);
void print(const char* format, ...);
void pause(float duration);
void doCommand(String str, bool echo);
void handleInput();
void calibrateRC();
void normalizeRC();
void printRCCal();
void calibrateRC();
void calibrateRCChannel(float *channel, uint16_t zero[16], uint16_t max[16], const char *str);
void printRCCalibration();
void dumpLog();
void processMavlink();
void sendMavlink();
@ -50,6 +51,7 @@ void sendMessage(const void *msg);
void receiveMavlink();
void handleMavlink(const void *_msg);
void mavlinkPrint(const char* str);
void sendMavlinkPrint();
inline Quaternion fluToFrd(const Quaternion &q);
void failsafe();
void armingFailsafe();
@ -67,6 +69,6 @@ void resetParameters();
void setLED(bool on) {};
void calibrateGyro() { print("Skip gyro calibrating\n"); };
void calibrateAccel() { print("Skip accel calibrating\n"); };
void printIMUCal() { print("cal: N/A\n"); };
void printIMUCalibration() { print("cal: N/A\n"); };
void printIMUInfo() {};
Vector accBias, gyroBias, accScale(1, 1, 1);

View File

@ -1,6 +1,7 @@
<?xml version="1.0"?>
<sdf version="1.5">
<model name="flix">
<plugin name="flix" filename="libflix.so"/>
<link name="body">
<inertial>
<mass>0.065</mass>
@ -23,38 +24,14 @@
<update_rate>1000</update_rate>
<imu>
<angular_velocity>
<x>
<noise type="gaussian">
<stddev>0.00174533</stddev><!-- 0.1 degrees per second -->
</noise>
</x>
<y>
<noise type="gaussian">
<stddev>0.00174533</stddev>
</noise>
</y>
<z>
<noise type="gaussian">
<stddev>0.00174533</stddev>
</noise>
</z>
<x><noise type="gaussian"><stddev>0.00174533</stddev></noise></x><!-- 0.1 degrees per second -->
<y><noise type="gaussian"><stddev>0.00174533</stddev></noise></y>
<z><noise type="gaussian"><stddev>0.00174533</stddev></noise></z>
</angular_velocity>
<linear_acceleration>
<x>
<noise type="gaussian">
<stddev>0.0784</stddev><!-- 8 mg -->
</noise>
</x>
<y>
<noise type="gaussian">
<stddev>0.0784</stddev>
</noise>
</y>
<z>
<noise type="gaussian">
<stddev>0.0784</stddev>
</noise>
</z>
<x><noise type="gaussian"><stddev>0.0784</stddev></noise></x><!-- 8 mg -->
<y><noise type="gaussian"><stddev>0.0784</stddev></noise></y>
<z><noise type="gaussian"><stddev>0.0784</stddev></noise></z>
</linear_acceleration>
</imu>
</sensor>
@ -90,6 +67,5 @@
<material><ambient>1 1 1 0.5</ambient><diffuse>1 1 1 0.5</diffuse></material>
</visual>
</link>
<plugin name="flix" filename="libflix.so"/>
</model>
</sdf>

View File

@ -71,11 +71,7 @@ public:
gyro = Vector(imu->AngularVelocity().X(), imu->AngularVelocity().Y(), imu->AngularVelocity().Z());
acc = this->accFilter.update(Vector(imu->LinearAcceleration().X(), imu->LinearAcceleration().Y(), imu->LinearAcceleration().Z()));
// read rc
readRC();
controls[modeChannel] = 1; // 0 acro, 1 stab
controls[armedChannel] = 1; // armed
estimate();
// correct yaw to the actual yaw

View File

@ -11,8 +11,8 @@
#include <sys/poll.h>
#include <gazebo/gazebo.hh>
#define WIFI_UDP_PORT_LOCAL 14580
#define WIFI_UDP_PORT_REMOTE 14550
#define WIFI_UDP_PORT 14580
#define WIFI_UDP_REMOTE_PORT 14550
int wifiSocket;
@ -21,14 +21,14 @@ void setupWiFi() {
sockaddr_in addr; // local address
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_ANY;
addr.sin_port = htons(WIFI_UDP_PORT_LOCAL);
addr.sin_port = htons(WIFI_UDP_PORT);
if (bind(wifiSocket, (sockaddr *)&addr, sizeof(addr))) {
gzerr << "Failed to bind WiFi UDP socket on port " << WIFI_UDP_PORT_LOCAL << std::endl;
gzerr << "Failed to bind WiFi UDP socket on port " << WIFI_UDP_PORT << std::endl;
return;
}
int broadcast = 1;
setsockopt(wifiSocket, SOL_SOCKET, SO_BROADCAST, &broadcast, sizeof(broadcast)); // enable broadcast
gzmsg << "WiFi UDP socket initialized on port " << WIFI_UDP_PORT_LOCAL << " (remote port " << WIFI_UDP_PORT_REMOTE << ")" << std::endl;
gzmsg << "WiFi UDP socket initialized on port " << WIFI_UDP_PORT << " (remote port " << WIFI_UDP_REMOTE_PORT << ")" << std::endl;
}
void sendWiFi(const uint8_t *buf, int len) {
@ -36,7 +36,7 @@ void sendWiFi(const uint8_t *buf, int len) {
sockaddr_in addr; // remote address
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = INADDR_BROADCAST; // send UDP broadcast
addr.sin_port = htons(WIFI_UDP_PORT_REMOTE);
addr.sin_port = htons(WIFI_UDP_REMOTE_PORT);
sendto(wifiSocket, buf, len, 0, (sockaddr *)&addr, sizeof(addr));
}

13
tools/cli.py Executable file
View File

@ -0,0 +1,13 @@
#!/usr/bin/env python3
# Remote CLI for Flix
from pyflix import Flix
flix = Flix()
flix.on('print', lambda text: print(text, end=''))
while True:
command = input()
flix.cli(command, wait_response=False)

39
tools/example.py Executable file
View File

@ -0,0 +1,39 @@
#!/usr/bin/env python3
import math
from pyflix import Flix
print('=== Connect...')
flix = Flix()
print('Connected:', flix.connected)
print('Mode:', flix.mode)
print('Armed:', flix.armed)
print('Landed:', flix.landed)
print('Rates:', *[f'{math.degrees(r):.0f}°/s' for r in flix.rates])
print('Attitude:', *[f'{math.degrees(a):.0f}°' for a in flix.attitude_euler])
print('Motors:', flix.motors)
print('Acc', flix.acc)
print('Gyro', flix.gyro)
print('=== Execute commands...')
print('> time')
print(flix.cli('time'))
print('> imu')
print(flix.cli('imu'))
print('=== Get parameter...')
pitch_p = flix.get_param('PITCH_P')
print('PITCH_P = ', pitch_p)
print('=== Set parameter...')
flix.set_param('PITCH_P', pitch_p)
print('=== Wait for gyro update...')
print('Gyro: ', flix.wait('gyro'))
print('=== Wait for HEARTBEAT message...')
print(flix.wait('mavlink.HEARTBEAT'))
print('=== When until landed = False (remove drone from the surface)')
flix.wait('landed', value=False)

23
tools/log.py Executable file
View File

@ -0,0 +1,23 @@
#!/usr/bin/env python3
# Download flight log remotely and save to file
import os
import datetime
from pyflix import Flix
DIR = os.path.dirname(os.path.realpath(__file__))
flix = Flix()
print('Downloading log...')
lines = flix.cli('log').splitlines()
# sort by timestamp
header = lines.pop(0)
lines.sort(key=lambda line: float(line.split(',')[0]))
log = open(f'{DIR}/log/{datetime.datetime.now().isoformat()}.csv', 'wb')
content = header.encode() + b'\n' + b'\n'.join(line.encode() for line in lines)
log.write(content)
print(f'Written {os.path.relpath(log.name, os.curdir)}')

226
tools/pyflix/README.md Normal file
View File

@ -0,0 +1,226 @@
# Flix Python library
The Flix Python library allows you to remotely connect to a Flix quadcopter. It provides access to telemetry data, supports executing CLI commands, and controlling the drone's flight.
To use the library, connect to the drone's Wi-Fi. To use it with the simulator, ensure the script runs on the same local network as the simulator.
## Installation
If you have cloned the [repo](https://github.com/okalachev/flix), install the library from the repo:
```bash
cd /path/to/flix/repo
pip install -e tools
```
Alternatively, install from pip:
```bash
pip install pyflix
```
## Usage
The API is accessed through the `Flix` class:
```python
from flix import Flix
flix = Flix() # create a Flix object and wait for connection
```
### Telemetry
Basic telemetry is available through object properties. The properties names generally match the corresponding variables in the firmware itself:
```python
print(flix.connected) # True if connected to the drone
print(flix.mode) # current flight mode (str)
print(flix.armed) # True if the drone is armed
print(flix.landed) # True if the drone is landed
print(flix.attitude) # attitude quaternion [w, x, y, z]
print(flix.attitude_euler) # attitude as Euler angles [roll, pitch, yaw]
print(flix.rates) # angular rates [roll_rate, pitch_rate, yaw_rate]
print(flix.channels) # raw RC channels (list)
print(flix.motors) # motors outputs (list)
print(flix.acc) # accelerometer output (list)
print(flix.gyro) # gyroscope output (list)
```
> [!NOTE]
> The library uses the Front-Left-Up coordinate system — the same as in the firmware. All angles are in radians.
### Events
The Flix object implements the *Observable* pattern, allowing to listen for events. You can subscribe to events using `on` method:
```python
flix.on('connected', lambda: print('Connected to Flix'))
flix.on('disconnected', lambda: print('Disconnected from Flix'))
flix.on('print', lambda text: print(f'Flix says: {text}'))
```
You can also wait for specific events using `wait` method. This method returns the data associated with the event:
```python
gyro = flix.wait('gyro') # wait for gyroscope update
attitude = flix.wait('attitude', timeout=3) # wait for attitude update, raise TimeoutError after 3 seconds
```
The `value` argument specifies a condition for filtering events. It can be either an expected value or a callable:
```python
flix.wait('armed', value=True) # wait until armed
flix.wait('armed', value=False) # wait until disarmed
flix.wait('motors', value=lambda motors: not any(motors)) # wait until all motors stop
flix.wait('attitude_euler', value=lambda att: att[0] > 0) # wait until roll angle is positive
```
Full list of events:
|Event|Description|Associated data|
|-----|-----------|----------------|
|`connected`|Connected to the drone||
|`disconnected`|Connection is lost||
|`armed`|Armed state update|Armed state (*bool*)|
|`mode`|Flight mode update|Flight mode (*str*)|
|`landed`|Landed state update|Landed state (*bool*)|
|`print`|The drone sends text to the console|Text|
|`attitude`|Attitude update|Attitude quaternion (*list*)|
|`attitude_euler`|Attitude update|Euler angles (*list*)|
|`rates`|Angular rates update|Angular rates (*list*)|
|`channels`|Raw RC channels update|Raw RC channels (*list*)|
|`motors`|Motors outputs update|Motors outputs (*list*)|
|`acc`|Accelerometer update|Accelerometer output (*list*)|
|`gyro`|Gyroscope update|Gyroscope output (*list*)|
|`mavlink`|Received MAVLink message|Message object|
|`mavlink.<message_name>`|Received specific MAVLink message|Message object|
|`mavlink.<message_id>`|Received specific MAVLink message|Message object|
|`value`|Named value update (see below)|Name, value|
|`value.<name>`|Specific named value update (see bellow)|Value|
> [!NOTE]
> Update events trigger on every new data from the drone, and do not mean the value is changed.
### Common methods
Get and set firmware parameters using `get_param` and `set_param` methods:
```python
pitch_p = flix.get_param('PITCH_P') # get parameter value
flix.set_param('PITCH_P', 5) # set parameter value
```
Execute CLI commands using `cli` method. This method returns command response:
```python
imu = flix.cli('imu') # get detailed IMU data
time = flix.cli('time') # get detailed time data
flix.cli('reboot') # reboot the drone
```
> [!TIP]
> Use `help` command to get the list of available commands.
### Automatic flight
The flight control feature is in development. List of methods intended for automatic flight control:
* `set_position`
* `set_velocity`
* `set_attitude`
* `set_rates`
* `set_motors`
* `set_controls`
* `set_mode`
## Usage alongside QGroundControl
You can use the Flix library alongside the QGroundControl app, using a proxy mode. To do that:
1. Run proxy for `pyflix` and QGroundControl in background:
```bash
flix-proxy
```
2. Go to QGroundControl settings ⇒ *Comm Links*.
3. Add new link with the following settings:
* *Name*: Proxy
* *Automatically Connect on Start*: ✓
* *Type*: UDP
* *Port*: 14560
4. Restart QGroundControl.
Now you can run `pyflix` scripts and QGroundControl simultaneously.
## Tools
The following scripts demonstrate how to use the library:
* [`cli.py`](../cli.py) — remote access to the drone's command line interface.
* [`log.py`](../log.py) — download flight logs from the drone.
* [`example.py`](../example.py) — a simple example, prints telemetry data and waits for events.
## Advanced usage
### MAVLink
You can access the most recently received messages using `messages` property:
```python
print(flix.messages.get('HEARTBEAT')) # print the latest HEARTBEAT message
```
You can wait for a specific message using `wait` method:
```python
heartbeat = flix.wait('mavlink.HEARTBEAT')
```
You can send raw messages using `mavlink` property:
```python
from pymavlink.dialects.v20 import common as mavlink
flix.mavlink.heartbeat_send(mavlink.MAV_TYPE_GCS, mavlink.MAV_AUTOPILOT_INVALID,
mavlink.MAV_MODE_FLAG_CUSTOM_MODE_ENABLED, 0, 0)
```
### Named values
You can pass arbitrary named values from the firmware to the Python script using `NAMED_VALUE_FLOAT`, `NAMED_VALUE_INT`, `DEBUG`, `DEBUG_VECT`, and `DEBUG_FLOAT_ARRAY` MAVLink messages.
All these named values will appear in the `values` dictionary:
```python
print(flix.values['some_value'])
print(flix.values['some_vector'])
```
You can send values from the firmware like this (`mavlink.ino`):
```cpp
// Send float named value
mavlink_msg_named_value_float_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, t, "some_value", loopRate);
sendMessage(&msg);
// Send vector named value
mavlink_msg_debug_vect_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, "some_vector", t, gyroBias.x, gyroBias.y, gyroBias.z);
sendMessage(&msg);
```
### Logging
You can control Flix library verbosity using Python's `logging` module:
```python
import logging
logger = logging.getLogger('flix')
logger.setLevel(logging.DEBUG) # be more verbose
logger.setLevel(logging.WARNING) # be less verbose
```
## Stability
The library is in development stage. The API is not stable.

1
tools/pyflix/__init__.py Normal file
View File

@ -0,0 +1 @@
from .flix import Flix

327
tools/pyflix/flix.py Normal file
View File

@ -0,0 +1,327 @@
# Copyright (c) 2025 Oleg Kalachev <okalachev@gmail.com>
# Repository: https://github.com/okalachev/flix
"""Python API for Flix drone."""
import os
import time
from queue import Queue, Empty
from typing import Literal, Optional, Callable, List, Dict, Any, Union
import logging
import errno
from threading import Thread, Timer
from pymavlink import mavutil
from pymavlink.quaternion import Quaternion
from pymavlink.dialects.v20 import common as mavlink
logger = logging.getLogger('flix')
if not logger.hasHandlers():
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(name)s - %(levelname)s - %(message)s'))
logger.addHandler(handler)
logger.setLevel(logging.INFO)
class Flix:
connected: bool = False
mode: str = ''
armed: bool = False
landed: bool = False
attitude: List[float]
attitude_euler: List[float] # roll, pitch, yaw
rates: List[float]
channels: List[int]
motors: List[float]
acc: List[float]
gyro: List[float]
system_id: int
messages: Dict[str, Dict[str, Any]] # MAVLink messages storage
values: Dict[Union[str, int], Union[float, List[float]]] = {} # named values
_connection_timeout = 3
_print_buffer: str = ''
def __init__(self, system_id: int=1, wait_connection: bool=True):
if not (0 <= system_id < 256):
raise ValueError('system_id must be in range [0, 255]')
self._setup_mavlink()
self.system_id = system_id
self._init_state()
try:
# Direct connection
logger.debug('Listening on port 14550')
self.connection: mavutil.mavfile = mavutil.mavlink_connection('udpin:0.0.0.0:14550', source_system=255) # type: ignore
except OSError as e:
if e.errno != errno.EADDRINUSE:
raise
# Port busy - using proxy
logger.debug('Listening on port 14560 (proxy)')
self.connection: mavutil.mavfile = mavutil.mavlink_connection('udpin:0.0.0.0:14555', source_system=254) # type: ignore
self.connection.target_system = system_id
self.mavlink: mavlink.MAVLink = self.connection.mav
self._event_listeners: Dict[str, List[Callable[..., Any]]] = {}
self.messages = {}
self._disconnected_timer = Timer(0, self._disconnected)
self._reader_thread = Thread(target=self._read_mavlink, daemon=True)
self._reader_thread.start()
self._heartbeat_thread = Thread(target=self._send_heartbeat, daemon=True)
self._heartbeat_thread.start()
if wait_connection:
self.wait('mavlink.HEARTBEAT')
time.sleep(0.2) # give some time to receive initial state
def _init_state(self):
self.attitude = [1, 0, 0, 0]
self.attitude_euler = [0, 0, 0]
self.rates = [0, 0, 0]
self.channels = [0, 0, 0, 0, 0, 0, 0, 0]
self.motors = [0, 0, 0, 0]
self.acc = [0, 0, 0]
self.gyro = [0, 0, 0]
def on(self, event: str, callback: Callable):
event = event.lower()
if event not in self._event_listeners:
self._event_listeners[event] = []
self._event_listeners[event].append(callback)
def off(self, callback: Callable):
for event in self._event_listeners:
if callback in self._event_listeners[event]:
self._event_listeners[event].remove(callback)
def _trigger(self, event: str, *args):
event = event.lower()
for callback in self._event_listeners.get(event, []):
try:
callback(*args)
except Exception as e:
logger.error(f'Error in event listener for event {event}: {e}')
def wait(self, event: str, value: Union[Any, Callable[..., bool]] = lambda *args: True, timeout=None) -> Any:
"""Wait for an event"""
event = event.lower()
q = Queue()
def callback(*args):
if len(args) == 0:
result = None
elif len(args) == 1:
result = args[0]
else:
result = args
if callable(value) and value(*args):
q.put_nowait(result)
elif value == result:
q.put_nowait(result)
self.on(event, callback)
try:
return q.get(timeout=timeout)
except Empty:
raise TimeoutError
finally:
self.off(callback)
@staticmethod
def _setup_mavlink():
# otherwise it will use MAVLink 1.0 until connected
os.environ['MAVLINK20'] = '1'
mavutil.set_dialect('common')
def _read_mavlink(self):
while True:
try:
msg: Optional[mavlink.MAVLink_message] = self.connection.recv_match(blocking=True)
if msg is None:
continue
self._connected()
msg_dict = msg.to_dict()
msg_dict['_timestamp'] = time.time() # add timestamp
self.messages[msg.get_type()] = msg_dict
self._trigger('mavlink', msg)
self._trigger(f'mavlink.{msg.get_type()}', msg) # trigger mavlink.<message_type>
self._trigger(f'mavlink.{msg.get_msgId()}', msg) # trigger mavlink.<message_id>
self._handle_mavlink_message(msg)
except Exception as e:
logger.error(f'Error reading MAVLink message: {e}')
def _handle_mavlink_message(self, msg: mavlink.MAVLink_message):
if isinstance(msg, mavlink.MAVLink_heartbeat_message):
self.mode = ['MANUAL', 'ACRO', 'STAB', 'USER'][msg.custom_mode]
self.armed = msg.base_mode & mavlink.MAV_MODE_FLAG_SAFETY_ARMED != 0
self._trigger('mode', self.mode)
self._trigger('armed', self.armed)
if isinstance(msg, mavlink.MAVLink_extended_sys_state_message):
self.landed = msg.landed_state == mavlink.MAV_LANDED_STATE_ON_GROUND
self._trigger('landed', self.landed)
if isinstance(msg, mavlink.MAVLink_attitude_quaternion_message):
self.attitude = self._mavlink_to_flu([msg.q1, msg.q2, msg.q3, msg.q4])
self.rates = self._mavlink_to_flu([msg.rollspeed, msg.pitchspeed, msg.yawspeed])
self.attitude_euler = list(Quaternion(self.attitude).euler) # type: ignore
self._trigger('attitude', self.attitude)
self._trigger('attitude_euler', self.attitude_euler)
if isinstance(msg, mavlink.MAVLink_rc_channels_raw_message):
self.channels = [msg.chan1_raw, msg.chan2_raw, msg.chan3_raw, msg.chan4_raw,
msg.chan5_raw, msg.chan6_raw, msg.chan7_raw, msg.chan8_raw]
self._trigger('channels', self.channels)
if isinstance(msg, mavlink.MAVLink_actuator_output_status_message):
self.motors = msg.actuator[:4] # type: ignore
self._trigger('motors', self.motors)
if isinstance(msg, mavlink.MAVLink_scaled_imu_message):
self.acc = self._mavlink_to_flu([msg.xacc / 1000, msg.yacc / 1000, msg.zacc / 1000])
self.gyro = self._mavlink_to_flu([msg.xgyro / 1000, msg.ygyro / 1000, msg.zgyro / 1000])
self._trigger('acc', self.acc)
self._trigger('gyro', self.gyro)
if isinstance(msg, mavlink.MAVLink_serial_control_message):
# new chunk of data
text = bytes(msg.data)[:msg.count].decode('utf-8', errors='ignore')
logger.debug(f'Console: {repr(text)}')
self._trigger('print', text)
self._print_buffer += text
if msg.flags & mavlink.SERIAL_CONTROL_FLAG_MULTI == 0:
# last chunk
self._trigger('print_full', self._print_buffer)
self._print_buffer = ''
if isinstance(msg, mavlink.MAVLink_statustext_message):
logger.info(f'Flix #{msg.get_srcSystem()}: {msg.text}')
self._trigger('status', msg.text)
if isinstance(msg, (mavlink.MAVLink_named_value_float_message, mavlink.MAVLink_named_value_int_message)):
self.values[msg.name] = msg.value
self._trigger('value', msg.name, msg.value)
self._trigger(f'value.{msg.name}', msg.value)
if isinstance(msg, mavlink.MAVLink_debug_message):
self.values[msg.ind] = msg.value
self._trigger('value', msg.ind, msg.value)
self._trigger(f'value.{msg.ind}', msg.value)
if isinstance(msg, mavlink.MAVLink_debug_vect_message):
self.values[msg.name] = [msg.x, msg.y, msg.z]
self._trigger('value', msg.name, self.values[msg.name])
self._trigger(f'value.{msg.name}', self.values[msg.name])
if isinstance(msg, mavlink.MAVLink_debug_float_array_message):
self.values[msg.name] = list(msg.data)
self._trigger('value', msg.name, self.values[msg.name])
self._trigger(f'value.{msg.name}', self.values[msg.name])
def _send_heartbeat(self):
while True:
self.mavlink.heartbeat_send(mavlink.MAV_TYPE_GCS, mavlink.MAV_AUTOPILOT_INVALID, 0, 0, 0)
time.sleep(1)
@staticmethod
def _mavlink_to_flu(v: List[float]) -> List[float]:
if len(v) == 3: # vector
return [v[0], -v[1], -v[2]]
elif len(v) == 4: # quaternion
return [v[0], v[1], -v[2], -v[3]]
else:
raise ValueError(f'List must have 3 (vector) or 4 (quaternion) elements')
@staticmethod
def _flu_to_mavlink(v: List[float]) -> List[float]:
return Flix._mavlink_to_flu(v)
def _connected(self):
# Reset disconnection timer
self._disconnected_timer.cancel()
self._disconnected_timer = Timer(self._connection_timeout, self._disconnected)
self._disconnected_timer.start()
if not self.connected:
logger.info('Connection is established')
self.connected = True
self._trigger('connected')
def _disconnected(self):
logger.info('Connection is lost')
self.connected = False
self._trigger('disconnected')
def get_param(self, name: str) -> float:
if len(name.encode('ascii')) > 16:
raise ValueError('Parameter name must be 16 characters or less')
for attempt in range(3):
try:
logger.debug(f'Get param {name} (attempt #{attempt + 1})')
self.mavlink.param_request_read_send(self.system_id, 0, name.encode('ascii'), -1)
msg: mavlink.MAVLink_param_value_message = \
self.wait('mavlink.PARAM_VALUE', value=lambda msg: msg.param_id == name, timeout=0.1)
return msg.param_value
except TimeoutError:
continue
raise RuntimeError(f'Failed to get parameter {name} after 3 attempts')
def set_param(self, name: str, value: float):
if len(name.encode('ascii')) > 16:
raise ValueError('Parameter name must be 16 characters or less')
for attempt in range(3):
try:
logger.debug(f'Set param {name} to {value} (attempt #{attempt + 1})')
self.mavlink.param_set_send(self.system_id, 0, name.encode('ascii'), value, mavlink.MAV_PARAM_TYPE_REAL32)
self.wait('mavlink.PARAM_VALUE', value=lambda msg: msg.param_id == name, timeout=0.1)
return
except TimeoutError:
# on timeout try again
continue
raise RuntimeError(f'Failed to set parameter {name} to {value} after 3 attempts')
def set_position(self, position: List[float], yaw: Optional[float] = None, wait: bool = False, tolerance: float = 0.1):
raise NotImplementedError('Position control is not implemented yet')
def set_velocity(self, velocity: List[float], yaw: Optional[float] = None):
raise NotImplementedError('Velocity control is not implemented yet')
def set_attitude(self, attitude: List[float], thrust: float):
raise NotImplementedError('Automatic flight is not implemented yet')
def set_rates(self, rates: List[float], thrust: float):
raise NotImplementedError('Automatic flight is not implemented yet')
def set_motors(self, motors: List[float]):
if len(motors) != 4:
raise ValueError('motors must have 4 values')
if not all(0 <= m <= 1 for m in motors):
raise ValueError('motors must be in range [0, 1]')
raise NotImplementedError
def set_controls(self, roll: float, pitch: float, yaw: float, throttle: float):
"""Send pilot's controls. Warning: not intended for automatic control"""
if not (-1 <= roll <= 1 and -1 <= pitch <= 1 and -1 <= yaw <= 1):
raise ValueError('roll, pitch, yaw must be in range [-1, 1]')
if not 0 <= throttle <= 1:
raise ValueError('throttle must be in range [0, 1]')
self.mavlink.manual_control_send(self.system_id, roll * 1000, pitch * 1000, yaw * 1000, throttle * 1000, 0) # type: ignore
def set_mode(self, mode: Literal['MANUAL', 'ACRO', 'STAB', 'USER']):
raise NotImplementedError('Setting mode is not implemented yet')
def cli(self, cmd: str, wait_response: bool = True) -> str:
cmd = cmd.strip()
if cmd == 'reboot':
wait_response = False # reboot command doesn't respond
cmd_bytes = (cmd + '\n').encode('utf-8')
if len(cmd_bytes) > 70:
raise ValueError(f'Command is too long: {len(cmd_bytes)} > 70')
cmd_bytes = cmd_bytes.ljust(70, b'\0')
response_prefix = f'> {cmd}\n'
for attempt in range(3):
logger.debug(f'Send command {cmd} (attempt #{attempt + 1})')
try:
self.mavlink.serial_control_send(0, 0, 0, 0, len(cmd_bytes), cmd_bytes)
if not wait_response:
return ''
response = self.wait('print_full', timeout=0.1, value=lambda text: text.startswith(response_prefix))
return response[len(response_prefix):].strip()
except TimeoutError:
continue
raise RuntimeError(f'Failed to send command {cmd} after 3 attempts')

37
tools/pyflix/proxy.py Executable file
View File

@ -0,0 +1,37 @@
#!/usr/bin/env python3
"""Proxy for running pyflix library alongside QGroundControl app."""
import socket
LOCAL = ('0.0.0.0', 14550) # from Flix
TARGETS = (
('127.0.0.1', 14560), # to QGroundControl
('127.0.0.1', 14555), # to pyflix
)
def main():
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind(LOCAL)
source_addr = None
packets = 0
print('Proxy started - run QGroundControl')
while True:
data, addr = sock.recvfrom(1024) # read entire UDP packet
if addr in TARGETS: # packet from target
if source_addr is None:
continue
sock.sendto(data, source_addr)
else: # packet from source
source_addr = addr
for target in TARGETS:
sock.sendto(data, target)
packets += 1
print(f'\rPackets: {packets}', end='')
if __name__ == '__main__':
main()

29
tools/pyproject.toml Normal file
View File

@ -0,0 +1,29 @@
[project]
name = "pyflix"
version = "0.5"
description = "Python API for Flix drone"
authors = [{ name="Oleg Kalachev", email="okalachev@gmail.com" }]
license = "MIT"
readme = "pyflix/README.md"
requires-python = ">=3.8"
dependencies = [
"pymavlink",
]
[project.scripts]
flix-proxy = "pyflix.proxy:main"
[build-system]
requires = ["setuptools>=61.0"]
build-backend = "setuptools.build_meta"
[tool.setuptools]
packages = ["pyflix"]
[tool.setuptools.package-data]
pyflix = ["README.md"]
[project.urls]
Homepage = "https://github.com/okalachev/flix/tree/master/tools/pyflix"
Repository = "https://github.com/okalachev/flix"
Issues = "https://github.com/okalachev/flix/issues"