Compare commits
70 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
7e8bd3e834 | ||
|
bb0643e8c6 | ||
|
32f417efae | ||
|
018a6d4fce | ||
|
1f47aa6d62 | ||
|
779fa13e80 | ||
|
5eccb3f0c4 | ||
|
29f1a2b22b | ||
|
1d4ce810a9 | ||
|
32874b92fd | ||
|
6b38070e43 | ||
|
52819e403b | ||
|
449dd44741 | ||
|
e389d717d6 | ||
|
ea8463ed70 | ||
|
85afe405cb | ||
|
fd4bcbeb89 | ||
|
121b50d896 | ||
|
48c7135efb | ||
|
9229b743eb | ||
|
52d31ba7a5 | ||
|
f11ab2dc16 | ||
|
93383cc7f9 | ||
|
389cfb94ab | ||
|
045f2c5ed5 | ||
|
31f5e1efbb | ||
|
2d77317abc | ||
|
963cbe09dd | ||
|
98fc0cf5b4 | ||
|
6b7601c0bd | ||
|
929bdd1f35 | ||
|
660913f8bb | ||
|
25e3056891 | ||
|
be7b6ec0c9 | ||
|
9c8c0e2578 | ||
|
7e5a75a01f | ||
|
2bcab6edb3 | ||
|
df2b10acd4 | ||
|
31d6636754 | ||
|
b143c2f1b3 | ||
|
a491b28201 | ||
|
4a4642bcf6 | ||
|
81037d94ec | ||
|
965813e8f0 | ||
|
94c2d399b3 | ||
|
21dc47c472 | ||
|
4b938e8d89 | ||
|
67efcdd08a | ||
|
d1d10c4c6c | ||
|
4e0a1fcdab | ||
|
5165355abc | ||
|
a268475f7a | ||
|
c14fe7c48b | ||
|
b2736e6a5b | ||
|
962757f46e | ||
|
f03dec4fae | ||
|
fe98a5bf97 | ||
|
253f2fe3dd | ||
|
94dc566643 | ||
|
547f5087ef | ||
|
66a43ab246 | ||
|
117ae42d1b | ||
|
3a61dca102 | ||
|
a8fe1324c3 | ||
|
fc0b805cc2 | ||
|
d68222953d | ||
|
bca1312b46 | ||
|
d5148d12a1 | ||
|
208e50aa15 | ||
|
0a87ccf435 |
9
.github/workflows/build.yml
vendored
@ -15,7 +15,14 @@ jobs:
|
||||
- name: Install Arduino CLI
|
||||
run: curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=/usr/local/bin sh
|
||||
- name: Build firmware
|
||||
env:
|
||||
ARDUINO_SKETCH_ALWAYS_EXPORT_BINARIES: 1
|
||||
run: make
|
||||
- name: Upload binaries
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: firmware-binary
|
||||
path: flix/build
|
||||
- name: Build firmware without Wi-Fi
|
||||
run: sed -i 's/^#define WIFI_ENABLED 1$/#define WIFI_ENABLED 0/' flix/flix.ino && make
|
||||
- name: Check c_cpp_properties.json
|
||||
@ -46,7 +53,7 @@ jobs:
|
||||
run: python3 tools/check_c_cpp_properties.py
|
||||
|
||||
build_simulator:
|
||||
runs-on: ubuntu-20.04
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- name: Install Arduino CLI
|
||||
uses: arduino/setup-arduino-cli@v1.1.1
|
||||
|
15
.github/workflows/tools.yml
vendored
@ -19,6 +19,21 @@ jobs:
|
||||
echo -e "t,x,y,z\n0,1,2,3\n1,4,5,6" > log.csv
|
||||
./csv_to_ulog log.csv
|
||||
test $(stat -c %s log.ulg) -eq 196
|
||||
pyflix:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- name: Install Python build tools
|
||||
run: pip install build
|
||||
- name: Build pyflix
|
||||
run: python3 -m build tools
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: pyflix
|
||||
path: |
|
||||
tools/dist/pyflix-*.tar.gz
|
||||
tools/dist/pyflix-*.whl
|
||||
python_tools:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
|
2
.gitignore
vendored
@ -2,6 +2,8 @@
|
||||
*.elf
|
||||
build/
|
||||
tools/log/
|
||||
tools/dist/
|
||||
*.egg-info/
|
||||
.dependencies
|
||||
.vscode/*
|
||||
!.vscode/settings.json
|
||||
|
@ -34,6 +34,7 @@
|
||||
"MPU-6050",
|
||||
"MPU-9250",
|
||||
"GY-91",
|
||||
"GY-521",
|
||||
"ICM-20948",
|
||||
"Linux",
|
||||
"Windows",
|
||||
|
50
.vscode/c_cpp_properties.json
vendored
@ -5,18 +5,18 @@
|
||||
"includePath": [
|
||||
"${workspaceFolder}/flix",
|
||||
"${workspaceFolder}/gazebo",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
|
||||
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
|
||||
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
|
||||
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
|
||||
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
|
||||
"~/Arduino/libraries/**",
|
||||
"/usr/include/**"
|
||||
],
|
||||
"forcedInclude": [
|
||||
"${workspaceFolder}/.vscode/intellisense.h",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
|
||||
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
|
||||
"${workspaceFolder}/flix/cli.ino",
|
||||
"${workspaceFolder}/flix/control.ino",
|
||||
"${workspaceFolder}/flix/estimate.ino",
|
||||
@ -31,7 +31,7 @@
|
||||
"${workspaceFolder}/flix/wifi.ino",
|
||||
"${workspaceFolder}/flix/parameters.ino"
|
||||
],
|
||||
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
|
||||
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
|
||||
"cStandard": "c11",
|
||||
"cppStandard": "c++17",
|
||||
"defines": [
|
||||
@ -51,19 +51,19 @@
|
||||
"name": "Mac",
|
||||
"includePath": [
|
||||
"${workspaceFolder}/flix",
|
||||
"${workspaceFolder}/gazebo",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
|
||||
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/include/**",
|
||||
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
|
||||
// "${workspaceFolder}/gazebo",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
|
||||
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/include/**",
|
||||
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
|
||||
"~/Documents/Arduino/libraries/**",
|
||||
"/opt/homebrew/include/**"
|
||||
],
|
||||
"forcedInclude": [
|
||||
"${workspaceFolder}/.vscode/intellisense.h",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
|
||||
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
|
||||
"${workspaceFolder}/flix/flix.ino",
|
||||
"${workspaceFolder}/flix/cli.ino",
|
||||
"${workspaceFolder}/flix/control.ino",
|
||||
@ -78,7 +78,7 @@
|
||||
"${workspaceFolder}/flix/wifi.ino",
|
||||
"${workspaceFolder}/flix/parameters.ino"
|
||||
],
|
||||
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
|
||||
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
|
||||
"cStandard": "c11",
|
||||
"cppStandard": "c++17",
|
||||
"defines": [
|
||||
@ -100,17 +100,17 @@
|
||||
"includePath": [
|
||||
"${workspaceFolder}/flix",
|
||||
"${workspaceFolder}/gazebo",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
|
||||
"~/Documents/Arduino/libraries/**"
|
||||
],
|
||||
"forcedInclude": [
|
||||
"${workspaceFolder}/.vscode/intellisense.h",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
|
||||
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
|
||||
"${workspaceFolder}/flix/cli.ino",
|
||||
"${workspaceFolder}/flix/control.ino",
|
||||
"${workspaceFolder}/flix/estimate.ino",
|
||||
@ -125,7 +125,7 @@
|
||||
"${workspaceFolder}/flix/wifi.ino",
|
||||
"${workspaceFolder}/flix/parameters.ino"
|
||||
],
|
||||
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++.exe",
|
||||
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++.exe",
|
||||
"cStandard": "c11",
|
||||
"cppStandard": "c++17",
|
||||
"defines": [
|
||||
|
1
.vscode/extensions.json
vendored
@ -2,7 +2,6 @@
|
||||
// See https://go.microsoft.com/fwlink/?LinkId=827846 to learn about workspace recommendations.
|
||||
"recommendations": [
|
||||
"ms-vscode.cpptools",
|
||||
"twxs.cmake",
|
||||
"ms-vscode.cmake-tools",
|
||||
"ms-python.python"
|
||||
],
|
||||
|
4
Makefile
@ -13,10 +13,10 @@ monitor:
|
||||
|
||||
dependencies .dependencies:
|
||||
arduino-cli core update-index --config-file arduino-cli.yaml
|
||||
arduino-cli core install esp32:esp32@3.1.0 --config-file arduino-cli.yaml
|
||||
arduino-cli core install esp32:esp32@3.2.0 --config-file arduino-cli.yaml
|
||||
arduino-cli lib update-index
|
||||
arduino-cli lib install "FlixPeriph"
|
||||
arduino-cli lib install "MAVLink"@2.0.12
|
||||
arduino-cli lib install "MAVLink"@2.0.16
|
||||
touch .dependencies
|
||||
|
||||
gazebo/build cmake: gazebo/CMakeLists.txt
|
||||
|
70
README.md
@ -15,49 +15,56 @@
|
||||
|
||||
## Features
|
||||
|
||||
* Simple and clean Arduino based source code.
|
||||
* Acro and Stabilized flight using remote control.
|
||||
* Precise simulation using Gazebo.
|
||||
* [In-RAM logging](docs/log.md).
|
||||
* Command line interface through USB port.
|
||||
* Wi-Fi support.
|
||||
* MAVLink support.
|
||||
* Control using mobile phone (with QGroundControl app).
|
||||
* Completely 3D-printed frame.
|
||||
* Textbook for students on writing a flight controller ([in development](https://quadcopter.dev)).
|
||||
* *Position control and autonomous flights using external camera¹*.
|
||||
* [Building and running instructions](docs/build.md).
|
||||
* Dedicated for education and research.
|
||||
* Made from general-purpose components.
|
||||
* Simple and clean source code in Arduino.
|
||||
* Control using remote control or smartphone.
|
||||
* Precise simulation with Gazebo.
|
||||
* Wi-Fi and MAVLink support.
|
||||
* Wireless command line interface and analyzing.
|
||||
* Python library.
|
||||
* Textbook on flight control theory and practice ([in development](https://quadcopter.dev)).
|
||||
* *Position control (using external camera) and autonomous flights¹*.
|
||||
|
||||
*¹ — planned.*
|
||||
|
||||
## It actually flies
|
||||
|
||||
See detailed demo video (for version 0): https://youtu.be/8GzzIQ3C6DQ.
|
||||
See detailed demo video: https://youtu.be/hT46CZ1CgC4.
|
||||
|
||||
<a href="https://youtu.be/hT46CZ1CgC4"><img width=500 src="https://i3.ytimg.com/vi/hT46CZ1CgC4/maxresdefault.jpg"></a>
|
||||
|
||||
Version 0 demo video: https://youtu.be/8GzzIQ3C6DQ.
|
||||
|
||||
<a href="https://youtu.be/8GzzIQ3C6DQ"><img width=500 src="https://i3.ytimg.com/vi/8GzzIQ3C6DQ/maxresdefault.jpg"></a>
|
||||
|
||||
Version 1 test flight: https://t.me/opensourcequadcopter/42.
|
||||
|
||||
<a href="https://t.me/opensourcequadcopter/42"><img width=500 src="docs/img/flight-video.jpg"></a>
|
||||
|
||||
See the [user builds gallery](docs/user.md).
|
||||
|
||||
<img src="docs/img/user/user.jpg" width=400>
|
||||
<a href="docs/user.md"><img src="docs/img/user/user.jpg" width=500></a>
|
||||
|
||||
## Simulation
|
||||
|
||||
The simulator is implemented using Gazebo and runs the original Arduino code:
|
||||
|
||||
<img src="docs/img/simulator.png" width=500 alt="Flix simulator">
|
||||
<img src="docs/img/simulator1.png" width=500 alt="Flix simulator">
|
||||
|
||||
See [instructions on running the simulation](docs/build.md).
|
||||
## Articles
|
||||
|
||||
## Components (version 1)
|
||||
* [Assembly instructions](docs/assembly.md).
|
||||
* [Building and running the code](docs/build.md).
|
||||
* [Troubleshooting](docs/troubleshooting.md).
|
||||
* [Firmware architecture overview](docs/firmware.md).
|
||||
* [Python library tutorial](tools/pyflix/README.md).
|
||||
* [Log analysis](docs/log.md).
|
||||
* [User builds gallery](docs/user.md).
|
||||
|
||||
## Components
|
||||
|
||||
|Type|Part|Image|Quantity|
|
||||
|-|-|:-:|:-:|
|
||||
|Microcontroller board|ESP32 Mini|<img src="docs/img/esp32.jpg" width=100>|1|
|
||||
|IMU (and barometer²) board|GY‑91 (or other MPU‑9250/MPU‑6500 board), ICM‑20948³|<img src="docs/img/gy-91.jpg" width=90 align=center><img src="docs/img/icm-20948.jpg" width=100>|1|
|
||||
|IMU (and barometer²) board|GY‑91, MPU-9265 (or other MPU‑9250/MPU‑6500 board)<br>ICM‑20948³<br>GY-521 (MPU-6050)³⁻¹|<img src="docs/img/gy-91.jpg" width=90 align=center><br><img src="docs/img/icm-20948.jpg" width=100><br><img src="docs/img/gy-521.jpg" width=100>|1|
|
||||
|<span style="background:yellow">(Recommended) Buck-boost converter</span>|To be determined, output 5V or 3.3V, see [user-contributed schematics](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612179508274&cot=14)|<img src="docs/img/buck-boost.jpg" width=100>|1|
|
||||
|Motor|8520 3.7V brushed motor (shaft 0.8mm).<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).|<img src="docs/img/motor.jpeg" width=100>|4|
|
||||
|Propeller|Hubsan 55 mm|<img src="docs/img/prop.jpg" width=100>|4|
|
||||
|MOSFET (transistor)|100N03A or [analog](https://t.me/opensourcequadcopter/33)|<img src="docs/img/100n03a.jpg" width=100>|4|
|
||||
@ -67,16 +74,17 @@ See [instructions on running the simulation](docs/build.md).
|
||||
|Li-Po Battery charger|Any|<img src="docs/img/charger.jpg" width=100>|1|
|
||||
|Screws for IMU board mounting|M3x5|<img src="docs/img/screw-m3.jpg" width=100>|2|
|
||||
|Screws for frame assembly|M1.4x5|<img src="docs/img/screw-m1.4.jpg" height=30 align=center>|4|
|
||||
|Frame bottom part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)|<img src="docs/img/frame1.jpg" width=100>|1|
|
||||
|Frame main part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)<br>Recommended settings: layer 0.2 mm, line 0.4 mm, infill 100%.|<img src="docs/img/frame1.jpg" width=100>|1|
|
||||
|Frame top part|3D printed:<br>[`esp32-holder.stl`](docs/assets/esp32-holder.stl) [`esp32-holder.step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|
||||
|Washer for IMU board mounting|3D printed:<br>[`washer-m3.stl`](docs/assets/washer-m3.stl) [`washer-m3.step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|
||||
|*RC transmitter (optional)*|*KINGKONG TINY X8 or other⁵*|<img src="docs/img/tx.jpg" width=100>|1|
|
||||
|*RC transmitter (optional)*|*KINGKONG TINY X8 (warning: lacks USB support) or other⁵*|<img src="docs/img/tx.jpg" width=100>|1|
|
||||
|*RC receiver (optional)*|*DF500 or other⁵*|<img src="docs/img/rx.jpg" width=100>|1|
|
||||
|Wires|28 AWG recommended|<img src="docs/img/wire-28awg.jpg" width=100>||
|
||||
|Tape, double-sided tape||||
|
||||
|
||||
*² — barometer is not used for now.*<br>
|
||||
*³ — change `MPU9250` to `ICM20948` in `imu.ino` file if using ICM-20948 board.*<br>
|
||||
*³⁻¹ — MPU-6050 supports I²C interface only (not recommended). To use it change IMU declaration to `MPU6050 IMU(Wire)`.*<br>
|
||||
*⁴ — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
|
||||
*⁵ — you may use any transmitter-receiver pair with SBUS interface.*
|
||||
|
||||
@ -90,7 +98,7 @@ Tools required for assembly:
|
||||
|
||||
Feel free to modify the design and or code, and create your own improved versions of Flix! Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
|
||||
|
||||
## Schematics (version 1)
|
||||
## Schematics
|
||||
|
||||
### Simplified connection diagram
|
||||
|
||||
@ -150,10 +158,6 @@ In case of using other IMU orientation, modify the `rotateIMU` function in the `
|
||||
|
||||
See [FlixPeriph documentation](https://github.com/okalachev/flixperiph?tab=readme-ov-file#imu-axes-orientation) to learn axis orientation of other IMU boards.
|
||||
|
||||
## Version 0
|
||||
|
||||
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
|
||||
|
||||
## Materials
|
||||
|
||||
Subscribe to the Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
|
||||
@ -161,3 +165,11 @@ Subscribe to the Telegram channel on developing the drone and the flight control
|
||||
Join the official Telegram chat: https://t.me/opensourcequadcopterchat.
|
||||
|
||||
Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.
|
||||
|
||||
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
|
||||
|
||||
## Disclaimer
|
||||
|
||||
This is a fun DIY project, and I hope you find it interesting and useful. However, it's not easy to assemble and set up, and it's provided "as is" without any warranties. There’s no guarantee that it will work perfectly — or even work at all.
|
||||
|
||||
⚠️ The author is not responsible for any damage, injury, or loss resulting from the use of this project. Use at your own risk!
|
||||
|
@ -1,3 +1,5 @@
|
||||
board_manager:
|
||||
additional_urls:
|
||||
- https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json
|
||||
network:
|
||||
connection_timeout: 1h
|
||||
|
@ -53,6 +53,12 @@ footer a.telegram, footer a.github {
|
||||
border: 1px solid #c9c9c9;
|
||||
}
|
||||
|
||||
@media (max-width: 600px) {
|
||||
.MathJax_Display {
|
||||
overflow-x: auto;
|
||||
}
|
||||
}
|
||||
|
||||
.firmware {
|
||||
position: relative;
|
||||
margin: 20px 0;
|
||||
|
@ -10,7 +10,7 @@ description = "Учебник по разработке полетного ко
|
||||
build-dir = "build"
|
||||
|
||||
[output.html]
|
||||
additional-css = ["book.css", "zoom.css"]
|
||||
additional-css = ["book.css", "zoom.css", "rotation.css"]
|
||||
additional-js = ["zoom.js", "js.js"]
|
||||
edit-url-template = "https://github.com/okalachev/flix/blob/master/docs/{path}?plain=1"
|
||||
mathjax-support = true
|
||||
|
@ -11,6 +11,7 @@
|
||||
* [Светодиод]()
|
||||
* [Моторы]()
|
||||
* [Радиоуправление]()
|
||||
* [Вектор, кватернион](geometry.md)
|
||||
* [Гироскоп](gyro.md)
|
||||
* [Акселерометр]()
|
||||
* [Оценка состояния]()
|
||||
|
@ -10,8 +10,8 @@
|
||||
* `acc` *(Vector)* — данные с акселерометра, *м/с<sup>2</sup>*.
|
||||
* `rates` *(Vector)* — отфильтрованные угловые скорости, *рад/с*.
|
||||
* `attitude` *(Quaternion)* — оценка ориентации (положения) дрона.
|
||||
* `controls` *(float[])* — пользовательские управляющие сигналы с пульта, нормализованные в диапазоне [-1, 1].
|
||||
* `motors` *(float[])* — выходные сигналы на моторы, нормализованные в диапазоне [-1, 1] (возможно вращение в обратную сторону).
|
||||
* `controlRoll`, `controlPitch`, ... *(float[])* — команды управления от пилота, в диапазоне [-1, 1].
|
||||
* `motors` *(float[])* — выходные сигналы на моторы, в диапазоне [0, 1].
|
||||
|
||||
## Исходные файлы
|
||||
|
||||
|
309
docs/book/geometry.md
Normal file
@ -0,0 +1,309 @@
|
||||
# Вектор, кватернион
|
||||
|
||||
В алгоритме управления квадрокоптером широко применяются геометрические (и алгебраические) объекты, такие как **векторы** и **кватернионы**. Они позволяют упростить математические вычисления и улучшить читаемость кода. В этой главе мы рассмотрим именно те геометрические объекты, которые используются в алгоритме управления квадрокоптером Flix, причем акцент будет сделан на практических аспектах их использования.
|
||||
|
||||
## Система координат
|
||||
|
||||
### Оси координат
|
||||
|
||||
Для работы с объектами в трехмерном пространстве необходимо определить *систему координат*. Как известно, система координат задается тремя взаимно перпендикулярными осями, которые обозначаются как *X*, *Y* и *Z*. Порядок обозначения этих осей зависит от того, какую систему координат мы выбрали — *левую* или *правую*:
|
||||
|
||||
|Левая система координат|Правая система координат|
|
||||
|-----------------------|------------------------|
|
||||
|<img src="img/left-axes.svg" alt="Левая система координат" width="200">|<img src="img/right-axes.svg" alt="Правая система координат" width="200">|
|
||||
|
||||
В Flix для всех математических расчетов используется **правая система координат**, что является стандартом в робототехнике и авиации.
|
||||
|
||||
Также необходимо выбрать направление осей — в Flix они выбраны в соответствии со стандартом [REP-103](https://www.ros.org/reps/rep-0103.html). Для величин, заданных в подвижной системе координат, связанной с корпусом дрона, применяется порядок <abbr title="Forward Left Up">FLU</abbr>:
|
||||
|
||||
* ось X — направлена **вперед**;
|
||||
* ось Y — направлена **влево**;
|
||||
* ось Z — направлена **вверх**.
|
||||
|
||||
Для величин, заданных в *мировой* системе координат (относительно фиксированной точки в пространстве) — <abbr title="East North Up">ENU</abbr>:
|
||||
|
||||
* ось X — направлена на **восток** (условный);
|
||||
* ось Y — направлена на **север** (условный);
|
||||
* ось Z — направлена **вверх**.
|
||||
|
||||
> [!NOTE]
|
||||
> Для системы ENU важно только взаимное направление осей. Если доступен магнитометр, то используются реальные восток и север, но если нет — то произвольно выбранные.
|
||||
|
||||
Углы и угловые скорости определяются в соответствии с правилами математики: значения увеличиваются против часовой стрелки, если смотреть в сторону начала координат. Общий вид системы координат:
|
||||
|
||||
<img src="img/axes-rotation.svg" alt="Система координат" width="200">
|
||||
|
||||
> [!TIP]
|
||||
> Оси координат <i>X</i>, <i>Y</i> и <i>Z</i> часто обозначаются красными, зелеными и синими цветами соответственно. Запомнить это можно с помощью сокращения <abbr title="Red Green Blue">RGB</abbr>.
|
||||
|
||||
## Вектор
|
||||
|
||||
<div class="firmware">
|
||||
<strong>Файл прошивки:</strong>
|
||||
<a href="https://github.com/okalachev/flix/blob/master/flix/vector.h"><code>vector.h</code></a>.<br>
|
||||
</div>
|
||||
|
||||
**Вектор** — простой геометрический объект, который содержит три значения, соответствующие координатам *X*, *Y* и *Z*. Эти значения называются *компонентами вектора*. Вектор может описывать точку в пространстве, направление или ось вращения, скорость, ускорение, угловые скорости и другие физические величины. В Flix векторы задаются объектами `Vector` из библиотеки `vector.h`:
|
||||
|
||||
```cpp
|
||||
Vector v(1, 2, 3);
|
||||
v.x = 5;
|
||||
v.y = 10;
|
||||
v.z = 15;
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Не следует путать геометрический вектор — <code>vector</code> и динамический массив в стандартной библиотеке C++ — <code>std::vector</code>.
|
||||
|
||||
В прошивке в виде векторов представлены, например:
|
||||
|
||||
* `acc` собственное ускорение с акселерометра.
|
||||
* `gyro` — угловые скорости с гироскопа.
|
||||
* `rates` — рассчитанная угловая скорость дрона.
|
||||
* `accBias`, `accScale`, `gyroBias` — параметры калибровки IMU.
|
||||
|
||||
### Операции с векторами
|
||||
|
||||
**Длина вектора** рассчитывается при помощи теоремы Пифагора; в прошивке используется метод `norm()`:
|
||||
|
||||
```cpp
|
||||
Vector v(3, 4, 5);
|
||||
float length = v.norm(); // 7.071
|
||||
```
|
||||
|
||||
Любой вектор можно привести к **единичному вектору** (сохранить направление, но сделать длину равной 1) при помощи метода `normalize()`:
|
||||
|
||||
```cpp
|
||||
Vector v(3, 4, 5);
|
||||
v.normalize(); // 0.424, 0.566, 0.707
|
||||
```
|
||||
|
||||
**Сложение и вычитание** векторов реализуется через простое покомпонентное сложение и вычитание. Геометрически сумма векторов представляет собой вектор, который соединяет начало первого вектора с концом второго. Разность векторов представляет собой вектор, который соединяет конец первого вектора с концом второго. Это удобно для расчета относительных позиций, суммарных скоростей и решения других задач. В коде эти операции интуитивно понятны:
|
||||
|
||||
```cpp
|
||||
Vector a(1, 2, 3);
|
||||
Vector b(4, 5, 6);
|
||||
Vector sum = a + b; // 5, 7, 9
|
||||
Vector diff = a - b; // -3, -3, -3
|
||||
```
|
||||
|
||||
Операция **умножения на число** `n` увеличивает (или уменьшает) длину вектора в `n` раз (сохраняя направление):
|
||||
|
||||
```cpp
|
||||
Vector a(1, 2, 3);
|
||||
Vector b = a * 2; // 2, 4, 6
|
||||
```
|
||||
|
||||
В некоторых случаях полезна операция **покомпонентного умножения** (или деления) векторов. Например, для применения коэффициентов калибровки к данным с IMU. В разных библиотеках эта операция обозначается по разному, но в библиотеке `vector.h` используется простые знаки `*` и `/`:
|
||||
|
||||
```cpp
|
||||
acc = acc / accScale;
|
||||
```
|
||||
|
||||
**Угол между векторами** можно найти при помощи статического метода `Vector::angleBetween()`:
|
||||
|
||||
```cpp
|
||||
Vector a(1, 0, 0);
|
||||
Vector b(0, 1, 0);
|
||||
float angle = Vector::angleBetween(a, b); // 1.57 (90 градусов)
|
||||
```
|
||||
|
||||
#### Скалярное произведение
|
||||
|
||||
Скалярное произведение векторов (*dot product*) — это произведение длин двух векторов на косинус угла между ними. В математике оно обозначается знаком `·` или слитным написанием векторов. Интуитивно, результат скалярного произведения показывает, насколько два вектора *сонаправлены*.
|
||||
|
||||
В Flix используется статический метод `Vector::dot()`:
|
||||
|
||||
```cpp
|
||||
Vector a(1, 2, 3);
|
||||
Vector b(4, 5, 6);
|
||||
float dotProduct = Vector::dot(a, b); // 32
|
||||
```
|
||||
|
||||
Операция скалярного произведения может помочь, например, при расчете проекции одного вектора на другой.
|
||||
|
||||
#### Векторное произведение
|
||||
|
||||
Векторное произведение (*cross product*) позволяет найти вектор, перпендикулярный двум другим векторам. В математике оно обозначается знаком `×`, а в прошивке используется статический метод `Vector::cross()`:
|
||||
|
||||
```cpp
|
||||
Vector a(1, 2, 3);
|
||||
Vector b(4, 5, 6);
|
||||
Vector crossProduct = Vector::cross(a, b); // -3, 6, -3
|
||||
```
|
||||
|
||||
## Кватернион
|
||||
|
||||
### Ориентация в трехмерном пространстве
|
||||
|
||||
В отличие от позиции и скорости, у ориентации в трехмерном пространстве нет универсального для всех случаев способа представления. В зависимости от задачи ориентация может быть представлена в виде *углов Эйлера*, *матрицы поворота*, *вектора вращения* или *кватерниона*. Рассмотрим используемые в полетной прошивке способы представления ориентации.
|
||||
|
||||
### Углы Эйлера
|
||||
|
||||
**Углы Эйлера** — *крен*, *тангаж* и *рыскание* — это наиболее «естественный» для человека способ представления ориентации. Они описывают последовательные вращения объекта вокруг трех осей координат.
|
||||
|
||||
В прошивке углы Эйлера сохраняются в обычный объект `Vector` (хоть и, строго говоря, не являются вектором):
|
||||
|
||||
* Угол по крену (*roll*) — `vector.x`.
|
||||
* Угол по тангажу (*pitch*) — `vector.y`.
|
||||
* Угол по рысканию (*yaw*) — `vector.z`.
|
||||
|
||||
Особенности углов Эйлера:
|
||||
|
||||
1. Углы Эйлера зависят от порядка применения вращений, то есть существует 6 типов углов Эйлера. Порядок вращений, принятый в Flix (и в роботехнике в целом) — рыскание, тангаж, крен (ZYX).
|
||||
2. Для некоторых ориентаций углы Эйлера «вырождаются». Так, если объект «смотрит» строго вниз, то угол по рысканию и угол по крену становятся неразличимыми. Эта ситуация называется *gimbal lock* — потеря одной степени свободы.
|
||||
|
||||
Ввиду этих особенности для углов Эйлера не существует общих формул для самых базовых задач с ориентациями, таких как применение одного вращения (ориентации) к другому, расчет разницы между ориентациями и подобных. Поэтому в основном углы Эйлера применяются в пользовательском интерфейсе, но редко используются в математических расчетах.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Для углов Эйлера не существует общих формул для самых базовых операций с ориентациями.
|
||||
|
||||
### Axis-angle
|
||||
|
||||
Помимо углов Эйлера, любую ориентацию в трехмерном пространстве можно представить в виде вращения вокруг некоторой оси на некоторый угол. В геометрии это доказывается, как **теорема вращения Эйлера**. В таком представлении ориентация задается двумя величинами:
|
||||
|
||||
* **Ось вращения** (*axis*) — единичный вектор, определяющий ось вращения.
|
||||
* **Угол поворота** (*angle* или *θ*) — угол, на который нужно повернуть объект вокруг этой оси.
|
||||
|
||||
В Flix ось вращения задается объектом `Vector`, а угол поворота — числом типа `float` в радианах:
|
||||
|
||||
```cpp
|
||||
// Вращение на 45 градусов вокруг оси (1, 2, 3)
|
||||
Vector axis(1, 2, 3);
|
||||
float angle = radians(45);
|
||||
```
|
||||
|
||||
Этот способ более удобен для расчетов, чем углы Эйлера, но все еще не является оптимальным.
|
||||
|
||||
### Вектор вращения
|
||||
|
||||
Если умножить вектор *axis* на угол поворота *θ*, то получится **вектор вращения** (*rotation vector*). Этот вектор играет важную роль в алгоритмах управления ориентацией летательного аппарата.
|
||||
|
||||
Вектор вращения обладает замечательным свойством: если угловые скорости объекта (в собственной системе координат) в каждый момент времени совпадают с компонентами этого вектора, то за единичное время объект придет к заданной этим вектором ориентации. Это свойство позволяет использовать вектор вращения для управления ориентацией объекта посредством управления угловыми скоростями.
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Чтобы за единичное время прийти к заданной ориентации, собственные угловые скорости объекта должны быть равны компонентам вектора вращения.
|
||||
|
||||
Вектора вращения в Flix представляются в виде объектов `Vector`:
|
||||
|
||||
```cpp
|
||||
// Вращение на 45 градусов вокруг оси (1, 2, 3)
|
||||
Vector rotation = radians(45) * Vector(1, 2, 3);
|
||||
```
|
||||
|
||||
### Кватернион
|
||||
|
||||
<div class="firmware">
|
||||
<strong>Файл прошивки:</strong>
|
||||
<a href="https://github.com/okalachev/flix/blob/master/flix/quaternion.h"><code>quaternion.h</code></a>.<br>
|
||||
</div>
|
||||
|
||||
Вектор вращения удобен, но еще удобнее использовать **кватернион**. В Flix кватернионы задаются объектами `Quaternion` из библиотеки `quaternion.h`. Кватернион состоит из четырех значений: *w*, *x*, *y*, *z* и рассчитывается из вектора оси вращения (*axis*) и угла поворота (*θ*) по формуле:
|
||||
|
||||
\\[ q = \left( \begin{array}{c} w \\\\ x \\\\ y \\\\ z \end{array} \right) = \left( \begin{array}{c} \cos\left(\frac{\theta}{2}\right) \\\\ axis\_x \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_y \cdot \sin\left(\frac{\theta}{2}\right) \\\\ axis\_z \cdot \sin\left(\frac{\theta}{2}\right) \end{array} \right) \\]
|
||||
|
||||
На практике оказывается, что **именно такое представление наиболее удобно для математических расчетов**.
|
||||
|
||||
Проиллюстрируем кватернион и описанные выше способы представления ориентации на интерактивной визуализации. Изменяйте угол поворота *θ* с помощью ползунка (ось вращения константна) и изучите, как меняется ориентация объекта, вектор вращения и кватернион:
|
||||
|
||||
<div id="rotation-diagram" class="diagram">
|
||||
<p>
|
||||
<label class="angle" for="angle-range"></label>
|
||||
<input type="range" name="angle" id="angle-range" min="0" max="360" value="0" step="1">
|
||||
</p>
|
||||
<p class="axis"></p>
|
||||
<p class="rotation-vector"></p>
|
||||
<p class="quaternion"></p>
|
||||
<p class="euler"></p>
|
||||
</div>
|
||||
|
||||
<script type="importmap">
|
||||
{
|
||||
"imports": {
|
||||
"three": "https://cdn.jsdelivr.net/npm/three@0.176.0/build/three.module.js",
|
||||
"three/addons/": "https://cdn.jsdelivr.net/npm/three@0.176.0/examples/jsm/"
|
||||
}
|
||||
}
|
||||
</script>
|
||||
<script type="module" src="js/rotation.js"></script>
|
||||
|
||||
> [!IMPORTANT]
|
||||
> В контексте управляющих алгоритмов кватернион — это оптимизированный для расчетов аналог вектора вращения.
|
||||
|
||||
Кватернион это наиболее часто используемый способ представления ориентации в алгоритмах. Кроме этого, у кватерниона есть большое значение в теории чисел и алгебре, как у расширения понятия комплексного числа, но рассмотрение этого аспекта выходит за рамки описания работы с вращениями с практической точки зрения.
|
||||
|
||||
В прошивке в виде кватернионов представлены, например:
|
||||
|
||||
* `attitude` — текущая ориентация квадрокоптера.
|
||||
* `attitudeTarget` — целевая ориентация квадрокоптера.
|
||||
|
||||
### Операции с кватернионами
|
||||
|
||||
Кватернион создается напрямую из четырех его компонент:
|
||||
|
||||
```cpp
|
||||
// Кватернион, представляющий нулевую (исходную) ориентацию
|
||||
Quaternion q(1, 0, 0, 0);
|
||||
```
|
||||
|
||||
Кватернион можно создать из оси вращения и угла поворота, вектора вращения или углов Эйлера:
|
||||
|
||||
```cpp
|
||||
Quaternion q1 = Quaternion::fromAxisAngle(axis, angle);
|
||||
Quaternion q2 = Quaternion::fromRotationVector(rotation);
|
||||
Quaternion q3 = Quaternion::fromEuler(Vector(roll, pitch, yaw));
|
||||
```
|
||||
|
||||
И наоборот:
|
||||
|
||||
```cpp
|
||||
q1.toAxisAngle(axis, angle);
|
||||
Vector rotation = q2.toRotationVector();
|
||||
Vector euler = q3.toEuler();
|
||||
```
|
||||
|
||||
Возможно рассчитать вращение между двумя обычными векторами:
|
||||
|
||||
```cpp
|
||||
Quaternion q = Quaternion::fromBetweenVectors(v1, v2); // в виде кватерниона
|
||||
Vector rotation = Vector::rotationVectorBetween(v1, v2); // в виде вектора вращения
|
||||
```
|
||||
|
||||
Шорткаты для работы с углом Эйлера по рысканью (удобно для алгоритмов управления полетом):
|
||||
|
||||
```cpp
|
||||
float yaw = q.getYaw();
|
||||
q.setYaw(yaw);
|
||||
```
|
||||
|
||||
#### Применения вращений
|
||||
|
||||
Чтобы применить вращение, выраженное в кватернионе, к другому кватерниону, в математике используется операция **умножения кватернионов**. При использовании этой операции, необходимо учитывать, что она не является коммутативной, то есть порядок операндов имеет значение. Формула умножения кватернионов выглядит так:
|
||||
|
||||
\\[ q_1 \times q_2 = \left( \begin{array}{c} w_1 \\\\ x_1 \\\\ y_1 \\\\ z_1 \end{array} \right) \times \left( \begin{array}{c} w_2 \\\\ x_2 \\\\ y_2 \\\\ z_2 \end{array} \right) = \left( \begin{array}{c} w_1 w_2 - x_1 x_2 - y_1 y_2 - z_1 z_2 \\\\ w_1 x_2 + x_1 w_2 + y_1 z_2 - z_1 y_2 \\\\ w_1 y_2 - x_1 z_2 + y_1 w_2 + z_1 x_2 \\\\ w_1 z_2 + x_1 y_2 - y_1 x_2 + z_1 w_2 \end{array} \right) \\]
|
||||
|
||||
В библиотеке `quaternion.h` для этой операции используется статический метод `Quaternion::rotate()`:
|
||||
|
||||
```cpp
|
||||
// Композиция вращений q1 и q2
|
||||
Quaternion result = Quaternion::rotate(q1, q2);
|
||||
```
|
||||
|
||||
Также полезной является операция применения вращения к вектору, которая делается похожим образом:
|
||||
|
||||
```cpp
|
||||
// Вращение вектора v кватернионом q
|
||||
Vector result = Quaternion::rotateVector(v, q);
|
||||
```
|
||||
|
||||
Для расчета разницы между двумя ориентациями используется метод `Quaternion::between()`:
|
||||
|
||||
```cpp
|
||||
// Расчет вращения от q1 к q2
|
||||
Quaternion q = Quaternion::between(q1, q2);
|
||||
```
|
||||
|
||||
## Дополнительные материалы
|
||||
|
||||
* [Интерактивный учебник по кватернионам](https://eater.net/quaternions).
|
||||
* [Визуализация вращения вектора с помощью кватернионов](https://quaternions.online).
|
@ -1,7 +1,7 @@
|
||||
# Гироскоп
|
||||
|
||||
<div class="firmware">
|
||||
<strong>Файл прошивки Flix:</strong>
|
||||
<strong>Файл прошивки:</strong>
|
||||
<a href="https://github.com/okalachev/flix/blob/canonical/flix/imu.ino"><code>imu.ino</code></a> <small>(каноничная версия)</small>.<br>
|
||||
Текущая версия: <a href="https://github.com/okalachev/flix/blob/master/flix/imu.ino"><code>imu.ino</code></a>.
|
||||
</div>
|
||||
@ -100,7 +100,7 @@ void setup() {
|
||||
|
||||
Для однократного считывания данных используется метод `read()`. Затем данные с гироскопа получаются при помощи метода `getGyro(x, y, z)`. Этот метод записывает в переменные `x`, `y` и `z` угловые скорости вокруг соответствующих осей в радианах в секунду.
|
||||
|
||||
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
|
||||
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
|
||||
|
||||
Программа для чтения данных с гироскопа и вывода их в консоль для построения графиков в Serial Plotter выглядит так:
|
||||
|
||||
@ -153,7 +153,7 @@ IMU.setRate(IMU.RATE_1KHZ_APPROX);
|
||||
|
||||
* `RATE_MIN` — минимальная частота сэмплов для конкретного IMU.
|
||||
* `RATE_50HZ_APPROX` — значение, близкое к 50 Гц.
|
||||
* `RATE_1KHZ_APPROX` — значение, близкое к 1 кГц.
|
||||
* `RATE_1KHZ_APPROX` — значение, близкое к 1 кГц.
|
||||
* `RATE_8KHZ_APPROX` — значение, близкое к 8 кГц.
|
||||
* `RATE_MAX` — максимальная частота сэмплов для конкретного IMU.
|
||||
|
||||
|
262
docs/book/js/rotation.js
Normal file
@ -0,0 +1,262 @@
|
||||
import * as THREE from 'three';
|
||||
import { SVGRenderer, SVGObject } from 'three/addons/renderers/SVGRenderer.js';
|
||||
import { OrbitControls } from 'three/addons/controls/OrbitControls.js';
|
||||
|
||||
const diagramEl = document.getElementById('rotation-diagram');
|
||||
|
||||
const scene = new THREE.Scene();
|
||||
scene.background = new THREE.Color(0xffffff);
|
||||
|
||||
const camera = new THREE.OrthographicCamera();
|
||||
|
||||
camera.position.set(9, 26, 20);
|
||||
camera.up.set(0, 0, 1);
|
||||
camera.lookAt(0, 0, 0);
|
||||
|
||||
const renderer = new SVGRenderer();
|
||||
diagramEl.prepend(renderer.domElement);
|
||||
|
||||
const controls = new OrbitControls(camera, renderer.domElement);
|
||||
controls.enableZoom = false;
|
||||
|
||||
const LINE_WIDTH = 4;
|
||||
|
||||
function createLabel(text, x, y, z, min = false) {
|
||||
const label = document.createElementNS('http://www.w3.org/2000/svg', 'text');
|
||||
label.setAttribute('class', 'label' + (min ? ' min' : ''));
|
||||
label.textContent = text;
|
||||
label.setAttribute('y', -15);
|
||||
const object = new SVGObject(label);
|
||||
object.position.x = x;
|
||||
object.position.y = y;
|
||||
object.position.z = z;
|
||||
return object;
|
||||
}
|
||||
|
||||
function createLine(x1, y1, z1, x2, y2, z2, color) {
|
||||
const geometry = new THREE.BufferGeometry().setFromPoints([
|
||||
new THREE.Vector3(x1, y1, z1),
|
||||
new THREE.Vector3(x2, y2, z2)
|
||||
]);
|
||||
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
|
||||
const line = new THREE.Line(geometry, material);
|
||||
scene.add(line);
|
||||
return line;
|
||||
}
|
||||
|
||||
function changeLine(line, x1, y1, z1, x2, y2, z2) {
|
||||
line.geometry.setFromPoints([new THREE.Vector3(x1, y1, z1), new THREE.Vector3(x2, y2, z2)]);
|
||||
return line;
|
||||
}
|
||||
|
||||
function createVector(x1, y1, z1, x2, y2, z2, color, label = '') {
|
||||
const HEAD_LENGTH = 1;
|
||||
const HEAD_WIDTH = 0.2;
|
||||
|
||||
const group = new THREE.Group();
|
||||
const direction = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).normalize();
|
||||
const norm = new THREE.Vector3(x2 - x1, y2 - y1, z2 - z1).length();
|
||||
let end = new THREE.Vector3(x2, y2, z2);
|
||||
|
||||
if (norm > HEAD_LENGTH) {
|
||||
end = new THREE.Vector3(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
|
||||
}
|
||||
|
||||
// create line
|
||||
const geometry = new THREE.BufferGeometry().setFromPoints([new THREE.Vector3(x1, y1, z1), end]);
|
||||
const material = new THREE.LineBasicMaterial({ color: color, linewidth: LINE_WIDTH, transparent: true, opacity: 0.8 });
|
||||
const line = new THREE.Line(geometry, material);
|
||||
group.add(line);
|
||||
|
||||
if (norm > HEAD_LENGTH) {
|
||||
// Create arrow
|
||||
const arrowGeometry = new THREE.ConeGeometry(HEAD_WIDTH, HEAD_LENGTH, 16);
|
||||
const arrowMaterial = new THREE.MeshBasicMaterial({ color: color });
|
||||
const arrow = new THREE.Mesh(arrowGeometry, arrowMaterial);
|
||||
arrow.position.set(x2 - direction.x * HEAD_LENGTH / 2, y2 - direction.y * HEAD_LENGTH / 2, z2 - direction.z * HEAD_LENGTH / 2);
|
||||
arrow.lookAt(new THREE.Vector3(x1, y1, z1));
|
||||
arrow.rotateX(-Math.PI / 2);
|
||||
group.add(arrow);
|
||||
}
|
||||
|
||||
// create label
|
||||
if (label) group.add(createLabel(label, x2, y2, z2));
|
||||
scene.add(group);
|
||||
return group;
|
||||
}
|
||||
|
||||
function changeVector(vector, x1, y1, z1, x2, y2, z2, color, label = '') {
|
||||
vector.removeFromParent();
|
||||
return createVector(x1, y1, z1, x2, y2, z2, color, label);
|
||||
}
|
||||
|
||||
function createDrone(x, y, z) {
|
||||
const group = new THREE.Group();
|
||||
|
||||
// Fuselage and wing triangle (main body)
|
||||
const fuselageGeometry = new THREE.BufferGeometry();
|
||||
const fuselageVertices = new Float32Array([
|
||||
1, 0, 0,
|
||||
-1, 0.6, 0,
|
||||
-1, -0.6, 0
|
||||
]);
|
||||
fuselageGeometry.setAttribute('position', new THREE.BufferAttribute(fuselageVertices, 3));
|
||||
const fuselageMaterial = new THREE.MeshBasicMaterial({ color: 0xb3b3b3, side: THREE.DoubleSide, transparent: true, opacity: 0.8 });
|
||||
const fuselage = new THREE.Mesh(fuselageGeometry, fuselageMaterial);
|
||||
group.add(fuselage);
|
||||
|
||||
// Tail triangle
|
||||
const tailGeometry = new THREE.BufferGeometry();
|
||||
const tailVertices = new Float32Array([
|
||||
-0.2, 0, 0,
|
||||
-1, 0, 0,
|
||||
-1, 0, 0.5,
|
||||
]);
|
||||
tailGeometry.setAttribute('position', new THREE.BufferAttribute(tailVertices, 3));
|
||||
const tailMaterial = new THREE.MeshBasicMaterial({ color: 0xd80100, side: THREE.DoubleSide, transparent: true, opacity: 0.9 });
|
||||
const tail = new THREE.Mesh(tailGeometry, tailMaterial);
|
||||
group.add(tail);
|
||||
|
||||
group.position.set(x, y, z);
|
||||
group.scale.set(2, 2, 2);
|
||||
scene.add(group);
|
||||
return group;
|
||||
}
|
||||
|
||||
// Create axes
|
||||
const AXES_LENGTH = 10;
|
||||
createVector(0, 0, 0, AXES_LENGTH, 0, 0, 0xd80100, 'x');
|
||||
createVector(0, 0, 0, 0, AXES_LENGTH, 0, 0x0076ba, 'y');
|
||||
createVector(0, 0, 0, 0, 0, AXES_LENGTH, 0x57ed00, 'z');
|
||||
|
||||
// Rotation values
|
||||
const rotationAxisSrc = new THREE.Vector3(2, 1, 3);
|
||||
let rotationAngle = 0;
|
||||
let rotationAxis = rotationAxisSrc.clone().normalize();
|
||||
let rotationVector = new THREE.Vector3(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
|
||||
|
||||
let rotationVectorObj = createVector(0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
|
||||
let axisObj = createLine(0, 0, 0, rotationAxis.x * AXES_LENGTH, rotationAxis.y * AXES_LENGTH, rotationAxis.z * AXES_LENGTH, 0xe8e8e8);
|
||||
|
||||
const drone = createDrone(0, 0, 0);
|
||||
|
||||
// UI
|
||||
const angleInput = diagramEl.querySelector('input[name=angle]');
|
||||
const rotationVectorEl = diagramEl.querySelector('.rotation-vector');
|
||||
const angleEl = diagramEl.querySelector('.angle');
|
||||
const quaternionEl = diagramEl.querySelector('.quaternion');
|
||||
const eulerEl = diagramEl.querySelector('.euler');
|
||||
diagramEl.querySelector('.axis').innerHTML = `<b style='color:#b6b6b6'>Ось вращения:</b> (${rotationAxisSrc.x}, ${rotationAxisSrc.y}, ${rotationAxisSrc.z}) ∥ (${rotationAxis.x.toFixed(1)}, ${rotationAxis.y.toFixed(1)}, ${rotationAxis.z.toFixed(1)})`;
|
||||
|
||||
function updateScene() {
|
||||
rotationAngle = parseFloat(angleInput.value) * Math.PI / 180;
|
||||
rotationVector.set(rotationAxis.x * rotationAngle, rotationAxis.y * rotationAngle, rotationAxis.z * rotationAngle);
|
||||
rotationVectorObj = changeVector(rotationVectorObj, 0, 0, 0, rotationVector.x, rotationVector.y, rotationVector.z, 0xff9900);
|
||||
|
||||
// rotate drone
|
||||
drone.rotation.set(0, 0, 0);
|
||||
drone.rotateOnAxis(rotationAxis, rotationAngle);
|
||||
|
||||
// update labels
|
||||
angleEl.innerHTML = `<b>Угол вращения:</b> ${parseFloat(angleInput.value).toFixed(0)}° = ${(rotationAngle).toFixed(2)} рад`;
|
||||
rotationVectorEl.innerHTML = `<b style='color:#e49a44'>Вектор вращения:</b> (${rotationVector.x.toFixed(1)}, ${rotationVector.y.toFixed(1)}, ${rotationVector.z.toFixed(1)}) рад`;
|
||||
|
||||
let quaternion = new THREE.Quaternion();
|
||||
quaternion.setFromAxisAngle(rotationAxis, rotationAngle);
|
||||
|
||||
quaternionEl.innerHTML = `<b>Кватернион:</b>
|
||||
<math xmlns="http://www.w3.org/1998/Math/MathML">
|
||||
<mrow>
|
||||
<mo>(</mo>
|
||||
<mrow>
|
||||
<mi>cos</mi>
|
||||
<mo>(</mo>
|
||||
<mfrac>
|
||||
<mi>${rotationAngle.toFixed(2)}</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>)</mo>
|
||||
</mrow>
|
||||
<mo>, </mo>
|
||||
<mrow>
|
||||
<mi>${rotationAxis.x.toFixed(1)}</mi>
|
||||
<mo>·</mo>
|
||||
<mi>sin</mi>
|
||||
<mo>(</mo>
|
||||
<mfrac>
|
||||
<mi>${rotationAngle.toFixed(2)}</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>)</mo>
|
||||
</mrow>
|
||||
<mo>, </mo>
|
||||
<mrow>
|
||||
<mi>${rotationAxis.y.toFixed(1)}</mi>
|
||||
<mo>·</mo>
|
||||
<mi>sin</mi>
|
||||
<mo>(</mo>
|
||||
<mfrac>
|
||||
<mi>${rotationAngle.toFixed(2)}</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>)</mo>
|
||||
</mrow>
|
||||
<mo>,</mo>
|
||||
<mrow>
|
||||
<mi>${rotationAxis.z.toFixed(1)}</mi>
|
||||
<mo>·</mo>
|
||||
<mi>sin</mi>
|
||||
<mo>(</mo>
|
||||
<mfrac>
|
||||
<mi>${rotationAngle.toFixed(2)}</mi>
|
||||
<mn>2</mn>
|
||||
</mfrac>
|
||||
<mo>)</mo>
|
||||
</mrow>
|
||||
<mo>)</mo>
|
||||
</mrow>
|
||||
</math>
|
||||
= (${quaternion.w.toFixed(1)}, ${(quaternion.x).toFixed(1)}, ${(quaternion.y).toFixed(1)}, ${(quaternion.z).toFixed(1)})`;
|
||||
|
||||
eulerEl.innerHTML = `<b>Углы Эйлера:</b> крен ${(drone.rotation.x * 180 / Math.PI).toFixed(0)}°,
|
||||
тангаж ${(drone.rotation.y * 180 / Math.PI).toFixed(0)}°, рыскание ${(drone.rotation.z * 180 / Math.PI).toFixed(0)}°`;
|
||||
}
|
||||
|
||||
function updateCamera() {
|
||||
const RANGE = 8;
|
||||
const VERT_SHIFT = 2;
|
||||
const HOR_SHIFT = -2;
|
||||
const width = renderer.domElement.clientWidth;
|
||||
const height = renderer.domElement.clientHeight;
|
||||
const ratio = width / height;
|
||||
if (ratio > 1) {
|
||||
camera.left = -RANGE * ratio;
|
||||
camera.right = RANGE * ratio;
|
||||
camera.top = RANGE + VERT_SHIFT;
|
||||
camera.bottom = -RANGE + VERT_SHIFT;
|
||||
} else {
|
||||
camera.left = -RANGE + HOR_SHIFT;
|
||||
camera.right = RANGE + HOR_SHIFT;
|
||||
camera.top = RANGE / ratio + VERT_SHIFT;
|
||||
camera.bottom = -RANGE / ratio + VERT_SHIFT;
|
||||
}
|
||||
camera.updateProjectionMatrix();
|
||||
renderer.setSize(width, height);
|
||||
}
|
||||
|
||||
function update() {
|
||||
// requestAnimationFrame(update);
|
||||
updateCamera();
|
||||
updateScene();
|
||||
controls.update();
|
||||
renderer.render(scene, camera);
|
||||
}
|
||||
update();
|
||||
|
||||
window.addEventListener('resize', update);
|
||||
angleInput.addEventListener('input', update);
|
||||
angleInput.addEventListener('change', update);
|
||||
diagramEl.addEventListener('mousemove', update);
|
||||
diagramEl.addEventListener('touchmove', update);
|
||||
diagramEl.addEventListener('scroll', update);
|
||||
diagramEl.addEventListener('wheel', update);
|
@ -9,9 +9,9 @@ cd flix
|
||||
|
||||
## Simulation
|
||||
|
||||
### Ubuntu 20.04
|
||||
### Ubuntu
|
||||
|
||||
The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you have a newer version, consider using a virtual machine.
|
||||
The latest version of Ubuntu supported by Gazebo 11 simulator is 22.04. If you have a newer version, consider using a virtual machine.
|
||||
|
||||
1. Install Arduino CLI:
|
||||
|
||||
@ -106,10 +106,10 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
|
||||
|
||||
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
|
||||
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
|
||||
3. Install ESP32 core, version 3.1.0 (version 2.x is not supported). See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
|
||||
3. Install ESP32 core, version 3.2.0. See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
|
||||
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
|
||||
* `FlixPeriph`, the latest version.
|
||||
* `MAVLink`, version 2.0.12.
|
||||
* `MAVLink`, version 2.0.16.
|
||||
5. Clone the project using git or [download the source code as a ZIP archive](https://codeload.github.com/okalachev/flix/zip/refs/heads/master).
|
||||
6. Open the downloaded Arduino sketch `flix/flix.ino` in Arduino IDE.
|
||||
7. Connect your ESP32 board to the computer and choose correct board type in Arduino IDE (*WEMOS D1 MINI ESP32* for ESP32 Mini) and the port.
|
||||
@ -160,7 +160,7 @@ Before flight you need to calibrate the accelerometer:
|
||||
|
||||
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
|
||||
2. Power the drone using the battery.
|
||||
3. Connect your smartphone to the appeared `flix` Wi-Fi network.
|
||||
3. Connect your smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
|
||||
4. Open QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
|
||||
5. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
|
||||
6. Use the virtual joystick to fly the drone!
|
||||
@ -180,7 +180,7 @@ If your drone doesn't have RC receiver installed, you can use USB remote control
|
||||
1. Install [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html) app on your computer.
|
||||
2. Connect your USB remote control to the computer.
|
||||
3. Power up the drone.
|
||||
4. Connect your computer to the appeared `flix` Wi-Fi network.
|
||||
4. Connect your computer to the appeared `flix` Wi-Fi network (password: `flixwifi`).
|
||||
5. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
|
||||
6. Go the the QGroundControl menu ⇒ *Vehicle Setup* ⇒ *Joystick*. Calibrate you USB remote control there.
|
||||
7. Use the USB remote control to fly the drone!
|
||||
|
@ -1,5 +1,7 @@
|
||||
# Firmware overview
|
||||
|
||||
The firmware is a regular Arduino sketch, and follows the classic Arduino one-threaded design. The initialization code is in the `setup()` function, and the main loop is in the `loop()` function. The sketch includes multiple files, each responsible for a specific part of the system.
|
||||
|
||||
## Dataflow
|
||||
|
||||
<img src="img/dataflow.svg" width=800 alt="Firmware dataflow diagram">
|
||||
@ -12,8 +14,8 @@ The main loop is running at 1000 Hz. All the dataflow is happening through globa
|
||||
* `acc` *(Vector)* — acceleration data from the accelerometer, *m/s<sup>2</sup>*.
|
||||
* `rates` *(Vector)* — filtered angular rates, *rad/s*.
|
||||
* `attitude` *(Quaternion)* — estimated attitude (orientation) of drone.
|
||||
* `controls` *(float[])* — user control inputs from the RC, normalized to [-1, 1] range.
|
||||
* `motors` *(float[])* — motor outputs, normalized to [-1, 1] range; reverse rotation is possible.
|
||||
* `controlRoll`, `controlPitch`, ... *(float[])* — pilot's control inputs, range [-1, 1].
|
||||
* `motors` *(float[])* — motor outputs, range [0, 1].
|
||||
|
||||
## Source files
|
||||
|
||||
|
94
docs/img/axes-rotation.svg
Normal file
@ -0,0 +1,94 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
|
||||
<defs>
|
||||
<style>
|
||||
.a {
|
||||
font-size: 50px;
|
||||
font-family: Tahoma;
|
||||
}
|
||||
|
||||
.b {
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
.c, .e, .g, .i {
|
||||
fill: none;
|
||||
}
|
||||
|
||||
.c {
|
||||
stroke: #0076ba;
|
||||
}
|
||||
|
||||
.c, .e, .g {
|
||||
stroke-linejoin: bevel;
|
||||
stroke-width: 13px;
|
||||
}
|
||||
|
||||
.d {
|
||||
fill: #0076ba;
|
||||
}
|
||||
|
||||
.e {
|
||||
stroke: #d80100;
|
||||
}
|
||||
|
||||
.f {
|
||||
fill: #d80100;
|
||||
}
|
||||
|
||||
.g {
|
||||
stroke: #57ed00;
|
||||
}
|
||||
|
||||
.h {
|
||||
fill: #57ed00;
|
||||
}
|
||||
|
||||
.i {
|
||||
stroke: #000;
|
||||
stroke-miterlimit: 10;
|
||||
stroke-width: 10px;
|
||||
}
|
||||
</style>
|
||||
</defs>
|
||||
<g>
|
||||
<text class="a" transform="translate(58.62 636.12)">x</text>
|
||||
<text class="a" transform="translate(505.06 562.18)">y</text>
|
||||
<text class="a" transform="translate(370.06 43.18)">z</text>
|
||||
<g class="b">
|
||||
<g>
|
||||
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
|
||||
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="b">
|
||||
<g>
|
||||
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
|
||||
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="b">
|
||||
<g>
|
||||
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
|
||||
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="b">
|
||||
<g>
|
||||
<path class="i" d="M103.19,617.68a52.66,52.66,0,1,0-55.51-89.19"/>
|
||||
<polygon points="41.63 516.97 34.76 541.97 59.85 535.42 41.63 516.97"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="b">
|
||||
<g>
|
||||
<path class="i" d="M295.58,87.51a52.66,52.66,0,1,0,103.78,16.31"/>
|
||||
<polygon points="412.03 106.78 397.6 85.24 386.16 108.51 412.03 106.78"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="b">
|
||||
<g>
|
||||
<path class="i" d="M505,452.58a52.66,52.66,0,1,0-76,72.53"/>
|
||||
<polygon points="418.96 533.38 444.84 535 433.31 511.78 418.96 533.38"/>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 2.1 KiB |
BIN
docs/img/buck-boost.jpg
Normal file
After Width: | Height: | Size: 33 KiB |
BIN
docs/img/gy-521.jpg
Normal file
After Width: | Height: | Size: 30 KiB |
67
docs/img/left-axes.svg
Normal file
@ -0,0 +1,67 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.68">
|
||||
<defs>
|
||||
<style>
|
||||
.a {
|
||||
font-size: 50px;
|
||||
font-family: Tahoma;
|
||||
}
|
||||
|
||||
.b {
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
.c, .e, .g {
|
||||
fill: none;
|
||||
stroke-linejoin: bevel;
|
||||
stroke-width: 13px;
|
||||
}
|
||||
|
||||
.c {
|
||||
stroke: #0076ba;
|
||||
}
|
||||
|
||||
.d {
|
||||
fill: #0076ba;
|
||||
}
|
||||
|
||||
.e {
|
||||
stroke: #57ed00;
|
||||
}
|
||||
|
||||
.f {
|
||||
fill: #57ed00;
|
||||
}
|
||||
|
||||
.g {
|
||||
stroke: #d80100;
|
||||
}
|
||||
|
||||
.h {
|
||||
fill: #d80100;
|
||||
}
|
||||
</style>
|
||||
</defs>
|
||||
<g>
|
||||
<text class="a" transform="translate(500.62 556.12)">x</text>
|
||||
<text class="a" transform="translate(370.06 43.18)">z</text>
|
||||
<g class="b">
|
||||
<g>
|
||||
<line class="c" x1="347" y1="420.2" x2="347" y2="61.78"/>
|
||||
<polygon class="d" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="b">
|
||||
<g>
|
||||
<line class="e" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
|
||||
<polygon class="f" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="b">
|
||||
<g>
|
||||
<line class="g" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
|
||||
<polygon class="h" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
|
||||
</g>
|
||||
</g>
|
||||
<text class="a" transform="translate(58.06 635.89)">y</text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.4 KiB |
67
docs/img/right-axes.svg
Normal file
@ -0,0 +1,67 @@
|
||||
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 533 646.91">
|
||||
<defs>
|
||||
<style>
|
||||
.a {
|
||||
opacity: 0.8;
|
||||
}
|
||||
|
||||
.b, .d, .f {
|
||||
fill: none;
|
||||
stroke-linejoin: bevel;
|
||||
stroke-width: 13px;
|
||||
}
|
||||
|
||||
.b {
|
||||
stroke: #57ed00;
|
||||
}
|
||||
|
||||
.c {
|
||||
fill: #57ed00;
|
||||
}
|
||||
|
||||
.d {
|
||||
stroke: #d80100;
|
||||
}
|
||||
|
||||
.e {
|
||||
fill: #d80100;
|
||||
}
|
||||
|
||||
.f {
|
||||
stroke: #0076ba;
|
||||
}
|
||||
|
||||
.g {
|
||||
fill: #0076ba;
|
||||
}
|
||||
|
||||
.h {
|
||||
font-size: 50px;
|
||||
font-family: Tahoma;
|
||||
}
|
||||
</style>
|
||||
</defs>
|
||||
<g>
|
||||
<g class="a">
|
||||
<g>
|
||||
<line class="b" x1="347" y1="420.2" x2="503.22" y2="501.67"/>
|
||||
<polygon class="c" points="486.38 519.2 533 517.2 507.96 477.82 486.38 519.2"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="a">
|
||||
<g>
|
||||
<line class="d" x1="347" y1="420.2" x2="29.31" y2="597.81"/>
|
||||
<polygon class="e" points="23.89 574.11 0 614.2 46.66 614.84 23.89 574.11"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="a">
|
||||
<g>
|
||||
<line class="f" x1="347" y1="420.2" x2="347" y2="61.78"/>
|
||||
<polygon class="g" points="370.34 68.61 347 28.2 323.66 68.61 370.34 68.61"/>
|
||||
</g>
|
||||
</g>
|
||||
<text class="h" transform="translate(58.62 636.12)">x</text>
|
||||
<text class="h" transform="translate(505.06 562.18)">y</text>
|
||||
<text class="h" transform="translate(370.06 43.18)">z</text>
|
||||
</g>
|
||||
</svg>
|
After Width: | Height: | Size: 1.4 KiB |
BIN
docs/img/simulator1.png
Normal file
After Width: | Height: | Size: 326 KiB |
BIN
docs/img/user/chkroko-bldc/1.jpg
Normal file
After Width: | Height: | Size: 54 KiB |
BIN
docs/img/user/chkroko-bldc/2.jpg
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
docs/img/user/chkroko-bldc/3.jpg
Normal file
After Width: | Height: | Size: 76 KiB |
BIN
docs/img/user/chkroko-bldc/video.jpg
Normal file
After Width: | Height: | Size: 29 KiB |
BIN
docs/img/user/chkroko/1.jpg
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
docs/img/user/chkroko/2.jpg
Normal file
After Width: | Height: | Size: 40 KiB |
BIN
docs/img/user/chkroko/video.jpg
Normal file
After Width: | Height: | Size: 49 KiB |
BIN
docs/img/user/cryptokobans/1.jpg
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
docs/img/user/cryptokobans/2.jpg
Normal file
After Width: | Height: | Size: 36 KiB |
BIN
docs/img/user/cryptokobans/video.jpg
Normal file
After Width: | Height: | Size: 43 KiB |
Before Width: | Height: | Size: 54 KiB After Width: | Height: | Size: 87 KiB |
29
docs/rotation.css
Normal file
@ -0,0 +1,29 @@
|
||||
.diagram svg {
|
||||
display: block;
|
||||
width: 100%;
|
||||
height: 400px;
|
||||
}
|
||||
.diagram .label {
|
||||
font-family: Arial, sans-serif;
|
||||
font-size: 20px;
|
||||
pointer-events: none;
|
||||
color: black;
|
||||
opacity: 0.8;
|
||||
user-select: none;
|
||||
}
|
||||
.diagram label {
|
||||
display: block;
|
||||
}
|
||||
@media (min-width: 800px) {
|
||||
.diagram b {
|
||||
width: 200px;
|
||||
display: inline-block;
|
||||
}
|
||||
}
|
||||
.diagram p.quaternion {
|
||||
overflow-x: auto;
|
||||
}
|
||||
.diagram input {
|
||||
text-align: center;
|
||||
width: 100%;
|
||||
}
|
2
docs/theme/index.hbs
vendored
@ -118,7 +118,7 @@
|
||||
<a href="https://t.me/opensourcequadcopter" class="telegram">Telegram-канал</a>
|
||||
💰 Поддержать проект:
|
||||
<iframe style="margin-top: 0.4em;" src="https://yoomoney.ru/quickpay/fundraise/button?billNumber=16U9OH2S4IT.241205&" width="330" height="50" frameborder="0" allowtransparency="true" scrolling="no"></iframe>
|
||||
© 2024 Олег Калачев
|
||||
© 2025 Олег Калачев
|
||||
</footer>
|
||||
</mdbook-sidebar-scrollbox>
|
||||
<noscript>
|
||||
|
@ -13,10 +13,11 @@ Do the following:
|
||||
|
||||
* **Check the battery voltage**. Use a multimeter to measure the battery voltage. It should be in range of 3.7-4.2 V.
|
||||
* **Check if there are some startup errors**. Connect the ESP32 to the computer and check the Serial Monitor output. Use the Reset button to make sure you see the whole ESP32 output.
|
||||
* **Check the baudrate is correct**. If you see garbage characters in the Serial Monitor, make sure the baudrate is set to 115200.
|
||||
* **Make sure correct IMU model is chosen**. If using ICM-20948 board, change `MPU9250` to `ICM20948` everywhere in the `imu.ino` file.
|
||||
* **Check if the CLI is working**. Perform `help` command in Serial Monitor. You should see the list of available commands. You can also access the CLI using QGroundControl (*Vehicle Setup* ⇒ *Analyze Tools* ⇒ *MAVLink Console*).
|
||||
* **Configure QGroundControl correctly before connecting to the drone** if you use it to control the drone. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
|
||||
* **Make sure you're not moving the drone several seconds after the power on**. The drone calibrates its gyroscope on the start so it should stay still for a while.
|
||||
* **If QGroundControl doesn't connect**, you might need to disable the firewall and/or VPN on your computer.
|
||||
* **Check the IMU is working**. Perform `imu` command and check its output:
|
||||
* The `status` field should be `OK`.
|
||||
* The `rate` field should be about 1000 (Hz).
|
||||
|
102
docs/user.md
@ -4,6 +4,43 @@ This page contains user-built drones based on the Flix project. Publish your pro
|
||||
|
||||
---
|
||||
|
||||
Author: chkroko.<br>
|
||||
Description: the first Flix drone built with **brushless motors** (DShot interface).<br>
|
||||
Features: SpeedyBee BLS 35A Mini V2 ESC, ESP32-S3 board, EMAX ECO 2 2207 1700kv motors, ICM20948V2 IMU, INA226 power monitor and Bluetooth gamepad for control.<br>
|
||||
Patch for DShot ESC: https://github.com/Krokodilushka/flix/commit/568345a45ca7ed5b458a11a9d0a9f4c8a91e70ac.
|
||||
|
||||
**Flight video:**
|
||||
|
||||
<a href="https://drive.google.com/file/d/1GFRanASxKmXINi70fxS5RuzV3LJp7f3m/view?usp=share_link"><img height=300 src="img/user/chkroko-bldc/video.jpg"></a>
|
||||
|
||||
<img src="img/user/chkroko-bldc/1.jpg" height=150> <img src="img/user/chkroko-bldc/2.jpg" height=150> <img src="img/user/chkroko-bldc/3.jpg" height=150>
|
||||
|
||||
---
|
||||
|
||||
Author: chkroko.<br>
|
||||
Modification: Control using Bluetooth with **Flydigi Vader 3** gamepad. Source code: https://github.com/Krokodilushka/flix/tree/dev.<br>
|
||||
Features: ESP32-C3 SuperMini, BMP580 barometer, INA226 power monitor, IRLZ44N MOSFETs.<br>
|
||||
Full description: https://telegra.ph/Flix-dron-06-13.
|
||||
|
||||
**Flight video:**
|
||||
|
||||
<a href="https://drive.google.com/file/d/1orVKA_-gsezDTns2Xt8xW1BCWPcyPitR/view?usp=sharing"><img height=300 src="img/user/chkroko/video.jpg"></a>
|
||||
|
||||
<img src="img/user/chkroko/1.jpg" height=150> <img src="img/user/chkroko/2.jpg" height=150>
|
||||
|
||||
---
|
||||
|
||||
Author: chkroko.<br>
|
||||
Features: ESP32-C3 SuperMini board, INA226 power monitor, IRLZ44N MOSFETs, MPU-6500 IMU.
|
||||
|
||||
**Flight video:**
|
||||
|
||||
<a href="https://drive.google.com/file/d/1-4ciDsj8slTEaxxRl1-QAkx0cUDkb8iy/view?usp=sharing"><img height=300 src="img/user/cryptokobans/video.jpg"></a>
|
||||
|
||||
<img src="img/user/cryptokobans/1.jpg" height=150> <img src="img/user/cryptokobans/2.jpg" height=150>
|
||||
|
||||
---
|
||||
|
||||
Author: [@jeka_chex](https://t.me/jeka_chex).<br>
|
||||
Features: custom frame, FPV camera, 3-blade 31 mm propellers.<br>
|
||||
Motor drivers: AON7410 MOSFET + capacitors.<br>
|
||||
@ -17,27 +54,14 @@ Custom frame files: https://drive.google.com/drive/folders/1QCIc-_YYFxJN4cMhVLjL
|
||||
|
||||
<a href="https://drive.google.com/file/d/1RSU6VWs9omsge4hGloH5NQqnxvLyhMKB/view?usp=sharing"><img height=300 src="img/user/jeka_chex/video-fpv.jpg"></a>
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/jeka_chex/1.jpg" height=150></td>
|
||||
<td><img src="img/user/jeka_chex/2.jpg" height=150></td>
|
||||
<td><img src="img/user/jeka_chex/3.jpg" height=150></td>
|
||||
<td><img src="img/user/jeka_chex/4.jpg" height=150></td>
|
||||
<td><img src="img/user/jeka_chex/5.jpg" height=150></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/jeka_chex/1.jpg" height=150> <img src="img/user/jeka_chex/2.jpg" height=150> <img src="img/user/jeka_chex/3.jpg" height=150> <img src="img/user/jeka_chex/4.jpg" height=150> <img src="img/user/jeka_chex/5.jpg" height=150>
|
||||
|
||||
---
|
||||
|
||||
Author: [@fisheyeu](https://t.me/fisheyeu).<br>
|
||||
[Video](https://drive.google.com/file/d/1IT4eMmWPZpmaZR_qsIRmNJ52hYkFB_0q/view?usp=share_link).
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/fisheyeu/1.jpg" height=300></td>
|
||||
<td><img src="img/user/fisheyeu/2.jpg" height=300></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/fisheyeu/1.jpg" height=300> <img src="img/user/fisheyeu/2.jpg" height=300>
|
||||
|
||||
---
|
||||
|
||||
@ -46,13 +70,7 @@ Custom propellers guard 3D-model: https://drive.google.com/file/d/1TKnzwvrZYzYuR
|
||||
Features: ESP32-C3 microcontroller is used.<br>
|
||||
[Video](https://drive.google.com/file/d/1B0NMcsk0fgwUgNr9XuLOdR2yYCuaj008/view?usp=share_link).
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/p_kabakov/1.jpg" width=150></td>
|
||||
<td><img src="img/user/p_kabakov/2.jpg" width=150></td>
|
||||
<td><img src="img/user/p_kabakov/3.jpg" width=150></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/p_kabakov/1.jpg" width=150> <img src="img/user/p_kabakov/2.jpg" width=150> <img src="img/user/p_kabakov/3.jpg" width=150>
|
||||
|
||||
**Custom Wi-Fi RC control:**
|
||||
|
||||
@ -65,12 +83,7 @@ See source and description (in Russian): https://github.com/pavelkabakov/flix/tr
|
||||
Author: [@yi_lun](https://t.me/yi_lun).<br>
|
||||
[Video](https://drive.google.com/file/d/1TkSuvHQ_0qQPFUpY5XjJzmhnpX_07cTg/view?usp=share_link).
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/yi_lun/1.jpg" width=300></td>
|
||||
<td><img src="img/user/yi_lun/2.jpg" width=300></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/yi_lun/1.jpg" width=300> <img src="img/user/yi_lun/2.jpg" width=300>
|
||||
|
||||
---
|
||||
|
||||
@ -81,12 +94,7 @@ Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=34587646121795
|
||||
|
||||
<a href="https://www.youtube.com/watch?v=wi4w_hOmKcQ"><img width=500 src="img/user/peter_ukhov-2/video.jpg"></a>
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/peter_ukhov-2/1.jpg" width=300></td>
|
||||
<td><img src="img/user/peter_ukhov-2/2.jpg" width=300></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/peter_ukhov-2/1.jpg" width=300> <img src="img/user/peter_ukhov-2/2.jpg" width=300>
|
||||
|
||||
---
|
||||
|
||||
@ -95,15 +103,7 @@ Files for 3D printing of the custom frame: https://drive.google.com/file/d/1tkNm
|
||||
|
||||
<a href="https://t.me/opensourcequadcopter/61"><img width=500 src="img/user/alexey_karakash/video.jpg"></a>
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/alexey_karakash/1.jpg" height=150></td>
|
||||
<td><img src="img/user/alexey_karakash/2.jpg" height=150></td>
|
||||
<td><img src="img/user/alexey_karakash/3.jpg" height=150></td>
|
||||
<td><img src="img/user/alexey_karakash/4.jpg" height=150></td>
|
||||
<td><img src="img/user/alexey_karakash/5.jpg" height=150></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/alexey_karakash/1.jpg" height=150> <img src="img/user/alexey_karakash/2.jpg" height=150> <img src="img/user/alexey_karakash/3.jpg" height=150> <img src="img/user/alexey_karakash/4.jpg" height=150> <img src="img/user/alexey_karakash/5.jpg" height=150>
|
||||
|
||||
---
|
||||
|
||||
@ -111,13 +111,7 @@ Author: [@rudpa](https://t.me/rudpa).<br>
|
||||
|
||||
<a href="https://t.me/opensourcequadcopter/46"><img width=500 src="img/user/rudpa/video.jpg"></a>
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/rudpa/1.jpg" height=150></td>
|
||||
<td><img src="img/user/rudpa/2.jpg" height=150></td>
|
||||
<td><img src="img/user/rudpa/3.jpg" height=150></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/rudpa/1.jpg" height=150> <img src="img/user/rudpa/2.jpg" height=150> <img src="img/user/rudpa/3.jpg" height=150>
|
||||
|
||||
---
|
||||
|
||||
@ -126,10 +120,4 @@ Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=34587646123382
|
||||
|
||||
<a href="https://t.me/opensourcequadcopter/24"><img width=500 src="img/user/peter_ukhov/video.jpg"></a>
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><img src="img/user/peter_ukhov/1.jpg" height=150></td>
|
||||
<td><img src="img/user/peter_ukhov/2.jpg" height=150></td>
|
||||
<td><img src="img/user/peter_ukhov/3.jpg" height=150></td>
|
||||
</tr>
|
||||
</table>
|
||||
<img src="img/user/peter_ukhov/1.jpg" height=150> <img src="img/user/peter_ukhov/2.jpg" height=150> <img src="img/user/peter_ukhov/3.jpg" height=150>
|
||||
|
59
flix/cli.ino
@ -10,7 +10,8 @@
|
||||
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
|
||||
extern float loopRate, dt;
|
||||
extern double t;
|
||||
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
|
||||
extern uint16_t channels[16];
|
||||
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlArmed, controlMode;
|
||||
|
||||
const char* motd =
|
||||
"\nWelcome to\n"
|
||||
@ -34,9 +35,9 @@ const char* motd =
|
||||
"mot - show motor output\n"
|
||||
"log - dump in-RAM log\n"
|
||||
"cr - calibrate RC\n"
|
||||
"cg - calibrate gyro\n"
|
||||
"ca - calibrate accel\n"
|
||||
"mfr, mfl, mrr, mrl - test motor (remove props)\n"
|
||||
"sys - show system info\n"
|
||||
"reset - reset drone's state\n"
|
||||
"reboot - reboot the drone\n";
|
||||
|
||||
@ -53,7 +54,6 @@ void print(const char* format, ...) {
|
||||
}
|
||||
|
||||
void pause(float duration) {
|
||||
#if ARDUINO
|
||||
double start = t;
|
||||
while (t - start < duration) {
|
||||
step();
|
||||
@ -61,11 +61,8 @@ void pause(float duration) {
|
||||
#if WIFI_ENABLED
|
||||
processMavlink();
|
||||
#endif
|
||||
delay(50);
|
||||
}
|
||||
#else
|
||||
// Code above won't work in the simulation
|
||||
delay(duration * 1000);
|
||||
#endif
|
||||
}
|
||||
|
||||
void doCommand(String str, bool echo = false) {
|
||||
@ -78,6 +75,8 @@ void doCommand(String str, bool echo = false) {
|
||||
print("> %s\n", str.c_str());
|
||||
}
|
||||
|
||||
command.toLowerCase();
|
||||
|
||||
// execute command
|
||||
if (command == "help" || command == "motd") {
|
||||
print("%s\n", motd);
|
||||
@ -96,10 +95,10 @@ void doCommand(String str, bool echo = false) {
|
||||
resetParameters();
|
||||
} else if (command == "time") {
|
||||
print("Time: %f\n", t);
|
||||
print("Loop rate: %f\n", loopRate);
|
||||
print("Loop rate: %.0f\n", loopRate);
|
||||
print("dt: %f\n", dt);
|
||||
} else if (command == "ps") {
|
||||
Vector a = attitude.toEulerZYX();
|
||||
Vector a = attitude.toEuler();
|
||||
print("roll: %f pitch: %f yaw: %f\n", degrees(a.x), degrees(a.y), degrees(a.z));
|
||||
} else if (command == "psq") {
|
||||
print("qx: %f qy: %f qz: %f qw: %f\n", attitude.x, attitude.y, attitude.z, attitude.w);
|
||||
@ -107,25 +106,24 @@ void doCommand(String str, bool echo = false) {
|
||||
printIMUInfo();
|
||||
print("gyro: %f %f %f\n", rates.x, rates.y, rates.z);
|
||||
print("acc: %f %f %f\n", acc.x, acc.y, acc.z);
|
||||
printIMUCal();
|
||||
print("rate: %f\n", loopRate);
|
||||
printIMUCalibration();
|
||||
print("rate: %.0f\n", loopRate);
|
||||
print("landed: %d\n", landed);
|
||||
} else if (command == "rc") {
|
||||
print("Raw: throttle %d yaw %d pitch %d roll %d armed %d mode %d\n",
|
||||
channels[throttleChannel], channels[yawChannel], channels[pitchChannel],
|
||||
channels[rollChannel], channels[armedChannel], channels[modeChannel]);
|
||||
print("Control: throttle %g yaw %g pitch %g roll %g armed %g mode %g\n",
|
||||
controls[throttleChannel], controls[yawChannel], controls[pitchChannel],
|
||||
controls[rollChannel], controls[armedChannel], controls[modeChannel]);
|
||||
print("Mode: %s\n", getModeName());
|
||||
print("channels: ");
|
||||
for (int i = 0; i < 16; i++) {
|
||||
print("%u ", channels[i]);
|
||||
}
|
||||
print("\nroll: %g pitch: %g yaw: %g throttle: %g armed: %g mode: %g\n",
|
||||
controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode);
|
||||
print("mode: %s\n", getModeName());
|
||||
} else if (command == "mot") {
|
||||
print("Motors: front-right %g front-left %g rear-right %g rear-left %g\n",
|
||||
print("front-right %g front-left %g rear-right %g rear-left %g\n",
|
||||
motors[MOTOR_FRONT_RIGHT], motors[MOTOR_FRONT_LEFT], motors[MOTOR_REAR_RIGHT], motors[MOTOR_REAR_LEFT]);
|
||||
} else if (command == "log") {
|
||||
dumpLog();
|
||||
} else if (command == "cr") {
|
||||
calibrateRC();
|
||||
} else if (command == "cg") {
|
||||
calibrateGyro();
|
||||
} else if (command == "ca") {
|
||||
calibrateAccel();
|
||||
} else if (command == "mfr") {
|
||||
@ -136,6 +134,25 @@ void doCommand(String str, bool echo = false) {
|
||||
testMotor(MOTOR_REAR_RIGHT);
|
||||
} else if (command == "mrl") {
|
||||
testMotor(MOTOR_REAR_LEFT);
|
||||
} else if (command == "sys") {
|
||||
#ifdef ESP32
|
||||
print("Chip: %s\n", ESP.getChipModel());
|
||||
print("Temperature: %.1f °C\n", temperatureRead());
|
||||
print("Free heap: %d\n", ESP.getFreeHeap());
|
||||
// Print tasks table
|
||||
print("Num Task Stack Prio Core CPU%%\n");
|
||||
int taskCount = uxTaskGetNumberOfTasks();
|
||||
TaskStatus_t *systemState = new TaskStatus_t[taskCount];
|
||||
uint32_t totalRunTime;
|
||||
uxTaskGetSystemState(systemState, taskCount, &totalRunTime);
|
||||
for (int i = 0; i < taskCount; i++) {
|
||||
String core = systemState[i].xCoreID == tskNO_AFFINITY ? "*" : String(systemState[i].xCoreID);
|
||||
int cpuPercentage = systemState[i].ulRunTimeCounter / (totalRunTime / 100);
|
||||
print("%-5d%-20s%-7d%-6d%-6s%d\n",systemState[i].xTaskNumber, systemState[i].pcTaskName,
|
||||
systemState[i].usStackHighWaterMark, systemState[i].uxCurrentPriority, core, cpuPercentage);
|
||||
}
|
||||
delete[] systemState;
|
||||
#endif
|
||||
} else if (command == "reset") {
|
||||
attitude = Quaternion();
|
||||
} else if (command == "reboot") {
|
||||
|
@ -21,7 +21,7 @@
|
||||
#define YAWRATE_I 0.0
|
||||
#define YAWRATE_D 0.0
|
||||
#define YAWRATE_I_LIM 0.3
|
||||
#define ROLL_P 4.5
|
||||
#define ROLL_P 6
|
||||
#define ROLL_I 0
|
||||
#define ROLL_D 0
|
||||
#define PITCH_P ROLL_P
|
||||
@ -32,7 +32,6 @@
|
||||
#define ROLLRATE_MAX radians(360)
|
||||
#define YAWRATE_MAX radians(300)
|
||||
#define TILT_MAX radians(30)
|
||||
|
||||
#define RATES_D_LPF_ALPHA 0.2 // cutoff frequency ~ 40 Hz
|
||||
|
||||
enum { MANUAL, ACRO, STAB, USER } mode = STAB;
|
||||
@ -54,7 +53,7 @@ Vector torqueTarget;
|
||||
float thrustTarget;
|
||||
|
||||
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
|
||||
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
|
||||
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlArmed, controlMode;
|
||||
|
||||
void control() {
|
||||
interpretRC();
|
||||
@ -72,39 +71,38 @@ void control() {
|
||||
}
|
||||
|
||||
void interpretRC() {
|
||||
armed = controls[throttleChannel] >= 0.05 &&
|
||||
(controls[armedChannel] >= 0.5 || isnan(controls[armedChannel])); // assume armed if armed channel is not defined
|
||||
armed = controlThrottle >= 0.05 && controlArmed >= 0.5;
|
||||
|
||||
// NOTE: put ACRO or MANUAL modes there if you want to use them
|
||||
if (controls[modeChannel] < 0.25) {
|
||||
if (controlMode < 0.25) {
|
||||
mode = STAB;
|
||||
} else if (controls[modeChannel] < 0.75) {
|
||||
} else if (controlMode < 0.75) {
|
||||
mode = STAB;
|
||||
} else {
|
||||
mode = STAB;
|
||||
}
|
||||
|
||||
thrustTarget = controls[throttleChannel];
|
||||
thrustTarget = controlThrottle;
|
||||
|
||||
if (mode == ACRO) {
|
||||
yawMode = YAW_RATE;
|
||||
ratesTarget.x = controls[rollChannel] * maxRate.x;
|
||||
ratesTarget.y = controls[pitchChannel] * maxRate.y;
|
||||
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
|
||||
ratesTarget.x = controlRoll * maxRate.x;
|
||||
ratesTarget.y = controlPitch* maxRate.y;
|
||||
ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU
|
||||
|
||||
} else if (mode == STAB) {
|
||||
yawMode = controls[yawChannel] == 0 ? YAW : YAW_RATE;
|
||||
yawMode = controlYaw == 0 ? YAW : YAW_RATE;
|
||||
|
||||
attitudeTarget = Quaternion::fromEulerZYX(Vector(
|
||||
controls[rollChannel] * tiltMax,
|
||||
controls[pitchChannel] * tiltMax,
|
||||
attitudeTarget = Quaternion::fromEuler(Vector(
|
||||
controlRoll * tiltMax,
|
||||
controlPitch * tiltMax,
|
||||
attitudeTarget.getYaw()));
|
||||
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
|
||||
ratesTarget.z = -controlYaw * maxRate.z; // positive yaw stick means clockwise rotation in FLU
|
||||
|
||||
} else if (mode == MANUAL) {
|
||||
// passthrough mode
|
||||
yawMode = YAW_RATE;
|
||||
torqueTarget = Vector(controls[rollChannel], controls[pitchChannel], -controls[yawChannel]) * 0.01;
|
||||
torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.01;
|
||||
}
|
||||
|
||||
if (yawMode == YAW_RATE || !motorsActive()) {
|
||||
@ -122,10 +120,10 @@ void controlAttitude() {
|
||||
}
|
||||
|
||||
const Vector up(0, 0, 1);
|
||||
Vector upActual = attitude.rotateVector(up);
|
||||
Vector upTarget = attitudeTarget.rotateVector(up);
|
||||
Vector upActual = Quaternion::rotateVector(up, attitude);
|
||||
Vector upTarget = Quaternion::rotateVector(up, attitudeTarget);
|
||||
|
||||
Vector error = Vector::angularRatesBetweenVectors(upTarget, upActual);
|
||||
Vector error = Vector::rotationVectorBetween(upTarget, upActual);
|
||||
|
||||
ratesTarget.x = rollPID.update(error.x, dt);
|
||||
ratesTarget.y = pitchPID.update(error.y, dt);
|
||||
|
@ -23,20 +23,20 @@ void applyGyro() {
|
||||
rates = ratesFilter.update(gyro);
|
||||
|
||||
// apply rates to attitude
|
||||
attitude = attitude.rotate(Quaternion::fromAngularRates(rates * dt));
|
||||
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(rates * dt));
|
||||
}
|
||||
|
||||
void applyAcc() {
|
||||
// test should we apply accelerometer gravity correction
|
||||
float accNorm = acc.norm();
|
||||
bool landed = !motorsActive() && abs(accNorm - ONE_G) < ONE_G * 0.1f;
|
||||
landed = !motorsActive() && abs(accNorm - ONE_G) < ONE_G * 0.1f;
|
||||
|
||||
if (!landed) return;
|
||||
|
||||
// calculate accelerometer correction
|
||||
Vector up = attitude.rotateVector(Vector(0, 0, 1));
|
||||
Vector correction = Vector::angularRatesBetweenVectors(acc, up) * WEIGHT_ACC;
|
||||
Vector up = Quaternion::rotateVector(Vector(0, 0, 1), attitude);
|
||||
Vector correction = Vector::rotationVectorBetween(acc, up) * WEIGHT_ACC;
|
||||
|
||||
// apply correction
|
||||
attitude = attitude.rotate(Quaternion::fromAngularRates(correction));
|
||||
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(correction));
|
||||
}
|
||||
|
@ -6,8 +6,8 @@
|
||||
#define RC_LOSS_TIMEOUT 0.2
|
||||
#define DESCEND_TIME 3.0 // time to descend from full throttle to zero
|
||||
|
||||
extern double controlsTime;
|
||||
extern int rollChannel, pitchChannel, throttleChannel, yawChannel;
|
||||
extern double controlTime;
|
||||
extern float controlRoll, controlPitch, controlThrottle, controlYaw;
|
||||
|
||||
void failsafe() {
|
||||
armingFailsafe();
|
||||
@ -19,13 +19,13 @@ void armingFailsafe() {
|
||||
static double zeroThrottleTime;
|
||||
static double armingTime;
|
||||
if (!armed) armingTime = t; // stores the last time when the drone was disarmed, therefore contains arming time
|
||||
if (controlsTime > 0 && controls[throttleChannel] < 0.05) zeroThrottleTime = controlsTime;
|
||||
if (controlTime > 0 && controlThrottle < 0.05) zeroThrottleTime = controlTime;
|
||||
if (armingTime - zeroThrottleTime > 0.1) armed = false; // prevent arming if there was no zero throttle for 0.1 sec
|
||||
}
|
||||
|
||||
// RC loss failsafe
|
||||
void rcLossFailsafe() {
|
||||
if (t - controlsTime > RC_LOSS_TIMEOUT) {
|
||||
if (t - controlTime > RC_LOSS_TIMEOUT) {
|
||||
descend();
|
||||
}
|
||||
}
|
||||
@ -33,9 +33,9 @@ void rcLossFailsafe() {
|
||||
// Smooth descend on RC lost
|
||||
void descend() {
|
||||
mode = STAB;
|
||||
controls[rollChannel] = 0;
|
||||
controls[pitchChannel] = 0;
|
||||
controls[yawChannel] = 0;
|
||||
controls[throttleChannel] -= dt / DESCEND_TIME;
|
||||
if (controls[throttleChannel] < 0) controls[throttleChannel] = 0;
|
||||
controlRoll = 0;
|
||||
controlPitch = 0;
|
||||
controlYaw = 0;
|
||||
controlThrottle -= dt / DESCEND_TIME;
|
||||
if (controlThrottle < 0) controlThrottle = 0;
|
||||
}
|
||||
|
@ -12,17 +12,17 @@
|
||||
|
||||
double t = NAN; // current step time, s
|
||||
float dt; // time delta from previous step, s
|
||||
int16_t channels[16]; // raw rc channels
|
||||
float controls[16]; // normalized controls in range [-1..1] ([0..1] for throttle)
|
||||
float controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode; // pilot's inputs, range [-1, 1]
|
||||
Vector gyro; // gyroscope data
|
||||
Vector acc; // accelerometer data, m/s/s
|
||||
Vector rates; // filtered angular rates, rad/s
|
||||
Quaternion attitude; // estimated attitude
|
||||
float motors[4]; // normalized motors thrust in range [-1..1]
|
||||
bool landed; // are we landed and stationary
|
||||
float motors[4]; // normalized motors thrust in range [0..1]
|
||||
|
||||
void setup() {
|
||||
Serial.begin(SERIAL_BAUDRATE);
|
||||
print("Initializing flix");
|
||||
print("Initializing flix\n");
|
||||
disableBrownOut();
|
||||
setupParameters();
|
||||
setupLED();
|
||||
@ -34,7 +34,7 @@ void setup() {
|
||||
setupIMU();
|
||||
setupRC();
|
||||
setLED(false);
|
||||
print("Initializing complete");
|
||||
print("Initializing complete\n");
|
||||
}
|
||||
|
||||
void loop() {
|
||||
|
47
flix/imu.ino
@ -5,20 +5,19 @@
|
||||
|
||||
#include <SPI.h>
|
||||
#include <MPU9250.h>
|
||||
#include "lpf.h"
|
||||
#include "util.h"
|
||||
|
||||
MPU9250 IMU(SPI);
|
||||
|
||||
Vector accBias;
|
||||
Vector gyroBias;
|
||||
Vector accScale(1, 1, 1);
|
||||
Vector gyroBias;
|
||||
|
||||
void setupIMU() {
|
||||
print("Setup IMU\n");
|
||||
IMU.begin();
|
||||
configureIMU();
|
||||
delay(500); // wait a bit before calibrating
|
||||
calibrateGyro();
|
||||
}
|
||||
|
||||
void configureIMU() {
|
||||
@ -26,12 +25,14 @@ void configureIMU() {
|
||||
IMU.setGyroRange(IMU.GYRO_RANGE_2000DPS);
|
||||
IMU.setDLPF(IMU.DLPF_MAX);
|
||||
IMU.setRate(IMU.RATE_1KHZ_APPROX);
|
||||
IMU.setupInterrupt();
|
||||
}
|
||||
|
||||
void readIMU() {
|
||||
IMU.waitForData();
|
||||
IMU.getGyro(gyro.x, gyro.y, gyro.z);
|
||||
IMU.getAccel(acc.x, acc.y, acc.z);
|
||||
calibrateGyroOnce();
|
||||
// apply scale and bias
|
||||
acc = (acc - accBias) / accScale;
|
||||
gyro = gyro - gyroBias;
|
||||
@ -47,47 +48,40 @@ void rotateIMU(Vector& data) {
|
||||
// Axes orientation for various boards: https://github.com/okalachev/flixperiph#imu-axes-orientation
|
||||
}
|
||||
|
||||
void calibrateGyro() {
|
||||
const int samples = 1000;
|
||||
print("Calibrating gyro, stand still\n");
|
||||
IMU.setGyroRange(IMU.GYRO_RANGE_250DPS); // the most sensitive mode
|
||||
void calibrateGyroOnce() {
|
||||
static float landedTime = 0;
|
||||
landedTime = landed ? landedTime + dt : 0;
|
||||
if (landedTime < 2) return; // calibrate only if definitely stationary
|
||||
|
||||
gyroBias = Vector(0, 0, 0);
|
||||
for (int i = 0; i < samples; i++) {
|
||||
IMU.waitForData();
|
||||
IMU.getGyro(gyro.x, gyro.y, gyro.z);
|
||||
gyroBias = gyroBias + gyro;
|
||||
}
|
||||
gyroBias = gyroBias / samples;
|
||||
|
||||
printIMUCal();
|
||||
configureIMU();
|
||||
static LowPassFilter<Vector> gyroCalibrationFilter(0.001);
|
||||
gyroBias = gyroCalibrationFilter.update(gyro);
|
||||
}
|
||||
|
||||
void calibrateAccel() {
|
||||
print("Calibrating accelerometer\n");
|
||||
IMU.setAccelRange(IMU.ACCEL_RANGE_2G); // the most sensitive mode
|
||||
|
||||
print("Place level [8 sec]\n");
|
||||
print("1/6 Place level [8 sec]\n");
|
||||
pause(8);
|
||||
calibrateAccelOnce();
|
||||
print("Place nose up [8 sec]\n");
|
||||
print("2/6 Place nose up [8 sec]\n");
|
||||
pause(8);
|
||||
calibrateAccelOnce();
|
||||
print("Place nose down [8 sec]\n");
|
||||
print("3/6 Place nose down [8 sec]\n");
|
||||
pause(8);
|
||||
calibrateAccelOnce();
|
||||
print("Place on right side [8 sec]\n");
|
||||
print("4/6 Place on right side [8 sec]\n");
|
||||
pause(8);
|
||||
calibrateAccelOnce();
|
||||
print("Place on left side [8 sec]\n");
|
||||
print("5/6 Place on left side [8 sec]\n");
|
||||
pause(8);
|
||||
calibrateAccelOnce();
|
||||
print("Place upside down [8 sec]\n");
|
||||
print("6/6 Place upside down [8 sec]\n");
|
||||
pause(8);
|
||||
calibrateAccelOnce();
|
||||
|
||||
printIMUCal();
|
||||
printIMUCalibration();
|
||||
print("✓ Calibration done!\n");
|
||||
configureIMU();
|
||||
}
|
||||
|
||||
@ -113,15 +107,12 @@ void calibrateAccelOnce() {
|
||||
if (acc.x < accMin.x) accMin.x = acc.x;
|
||||
if (acc.y < accMin.y) accMin.y = acc.y;
|
||||
if (acc.z < accMin.z) accMin.z = acc.z;
|
||||
print("acc %f %f %f\n", acc.x, acc.y, acc.z);
|
||||
print("max %f %f %f\n", accMax.x, accMax.y, accMax.z);
|
||||
print("min %f %f %f\n", accMin.x, accMin.y, accMin.z);
|
||||
// Compute scale and bias
|
||||
accScale = (accMax - accMin) / 2 / ONE_G;
|
||||
accBias = (accMax + accMin) / 2;
|
||||
}
|
||||
|
||||
void printIMUCal() {
|
||||
void printIMUCalibration() {
|
||||
print("gyro bias: %f %f %f\n", gyroBias.x, gyroBias.y, gyroBias.z);
|
||||
print("accel bias: %f %f %f\n", accBias.x, accBias.y, accBias.z);
|
||||
print("accel scale: %f %f %f\n", accScale.x, accScale.y, accScale.z);
|
||||
|
@ -41,8 +41,8 @@ float logBuffer[LOG_SIZE][logColumns];
|
||||
|
||||
void prepareLogData() {
|
||||
tFloat = t;
|
||||
attitudeEuler = attitude.toEulerZYX();
|
||||
attitudeTargetEuler = attitudeTarget.toEulerZYX();
|
||||
attitudeEuler = attitude.toEuler();
|
||||
attitudeTargetEuler = attitudeTarget.toEuler();
|
||||
}
|
||||
|
||||
void logData() {
|
||||
|
@ -22,7 +22,8 @@ public:
|
||||
output = input;
|
||||
initialized = true;
|
||||
}
|
||||
return output = output * (1 - alpha) + input * alpha;
|
||||
|
||||
return output += alpha * (input - output);
|
||||
}
|
||||
|
||||
void setCutOffFrequency(float cutOffFreq, float dt) {
|
||||
|
@ -10,13 +10,13 @@
|
||||
#define SYSTEM_ID 1
|
||||
#define PERIOD_SLOW 1.0
|
||||
#define PERIOD_FAST 0.1
|
||||
#define MAVLINK_CONTROL_SCALE 0.7f
|
||||
#define MAVLINK_CONTROL_YAW_DEAD_ZONE 0.1f
|
||||
|
||||
float mavlinkControlScale = 0.7;
|
||||
String mavlinkPrintBuffer;
|
||||
|
||||
extern double controlsTime;
|
||||
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
|
||||
extern double controlTime;
|
||||
extern float controlRoll, controlPitch, controlThrottle, controlYaw, controlArmed, controlMode;
|
||||
|
||||
void processMavlink() {
|
||||
sendMavlink();
|
||||
@ -24,6 +24,8 @@ void processMavlink() {
|
||||
}
|
||||
|
||||
void sendMavlink() {
|
||||
sendMavlinkPrint();
|
||||
|
||||
static double lastSlow = 0;
|
||||
static double lastFast = 0;
|
||||
|
||||
@ -33,9 +35,13 @@ void sendMavlink() {
|
||||
if (t - lastSlow >= PERIOD_SLOW) {
|
||||
lastSlow = t;
|
||||
|
||||
mavlink_msg_heartbeat_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, MAV_TYPE_QUADROTOR,
|
||||
MAV_AUTOPILOT_GENERIC, MAV_MODE_FLAG_MANUAL_INPUT_ENABLED | (armed ? MAV_MODE_FLAG_SAFETY_ARMED : 0),
|
||||
0, MAV_STATE_STANDBY);
|
||||
mavlink_msg_heartbeat_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, MAV_TYPE_QUADROTOR, MAV_AUTOPILOT_GENERIC,
|
||||
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED | (armed * MAV_MODE_FLAG_SAFETY_ARMED) | ((mode == STAB) * MAV_MODE_FLAG_STABILIZE_ENABLED),
|
||||
mode, MAV_STATE_STANDBY);
|
||||
sendMessage(&msg);
|
||||
|
||||
mavlink_msg_extended_sys_state_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
|
||||
MAV_VTOL_STATE_UNDEFINED, landed ? MAV_LANDED_STATE_ON_GROUND : MAV_LANDED_STATE_IN_AIR);
|
||||
sendMessage(&msg);
|
||||
}
|
||||
|
||||
@ -43,16 +49,13 @@ void sendMavlink() {
|
||||
lastFast = t;
|
||||
|
||||
const float zeroQuat[] = {0, 0, 0, 0};
|
||||
Quaternion attitudeFRD = fluToFrd(attitude); // MAVLink uses FRD coordinate system
|
||||
mavlink_msg_attitude_quaternion_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
|
||||
time, attitudeFRD.w, attitudeFRD.x, attitudeFRD.y, attitudeFRD.z, rates.x, rates.y, rates.z, zeroQuat);
|
||||
time, attitude.w, attitude.x, -attitude.y, -attitude.z, rates.x, -rates.y, -rates.z, zeroQuat); // convert to frd
|
||||
sendMessage(&msg);
|
||||
|
||||
mavlink_msg_rc_channels_scaled_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlsTime * 1000, 0,
|
||||
controls[0] * 10000, controls[1] * 10000, controls[2] * 10000,
|
||||
controls[3] * 10000, controls[4] * 10000, controls[5] * 10000,
|
||||
INT16_MAX, INT16_MAX, UINT8_MAX);
|
||||
sendMessage(&msg);
|
||||
mavlink_msg_rc_channels_raw_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlTime * 1000, 0,
|
||||
channels[0], channels[1], channels[2], channels[3], channels[4], channels[5], channels[6], channels[7], UINT8_MAX);
|
||||
if (channels[0] != 0) sendMessage(&msg); // 0 means no RC input
|
||||
|
||||
float actuator[32];
|
||||
memcpy(actuator, motors, sizeof(motors));
|
||||
@ -60,8 +63,8 @@ void sendMavlink() {
|
||||
sendMessage(&msg);
|
||||
|
||||
mavlink_msg_scaled_imu_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time,
|
||||
acc.x * 1000, acc.y * 1000, acc.z * 1000,
|
||||
gyro.x * 1000, gyro.y * 1000, gyro.z * 1000,
|
||||
acc.x * 1000, -acc.y * 1000, -acc.z * 1000, // convert to frd
|
||||
gyro.x * 1000, -gyro.y * 1000, -gyro.z * 1000,
|
||||
0, 0, 0, 0);
|
||||
sendMessage(&msg);
|
||||
}
|
||||
@ -88,22 +91,22 @@ void receiveMavlink() {
|
||||
}
|
||||
|
||||
void handleMavlink(const void *_msg) {
|
||||
const mavlink_message_t &msg = *(mavlink_message_t *)_msg;
|
||||
const mavlink_message_t& msg = *(mavlink_message_t *)_msg;
|
||||
|
||||
if (msg.msgid == MAVLINK_MSG_ID_MANUAL_CONTROL) {
|
||||
mavlink_manual_control_t m;
|
||||
mavlink_msg_manual_control_decode(&msg, &m);
|
||||
if (m.target && m.target != SYSTEM_ID) return; // 0 is broadcast
|
||||
|
||||
controls[throttleChannel] = m.z / 1000.0f;
|
||||
controls[pitchChannel] = m.x / 1000.0f * mavlinkControlScale;
|
||||
controls[rollChannel] = m.y / 1000.0f * mavlinkControlScale;
|
||||
controls[yawChannel] = m.r / 1000.0f * mavlinkControlScale;
|
||||
controls[modeChannel] = 1; // STAB mode
|
||||
controls[armedChannel] = 1; // armed
|
||||
controlsTime = t;
|
||||
controlThrottle = m.z / 1000.0f;
|
||||
controlPitch = m.x / 1000.0f * mavlinkControlScale;
|
||||
controlRoll = m.y / 1000.0f * mavlinkControlScale;
|
||||
controlYaw = m.r / 1000.0f * mavlinkControlScale;
|
||||
controlMode = 1; // STAB mode
|
||||
controlArmed = 1; // armed
|
||||
controlTime = t;
|
||||
|
||||
if (abs(controls[yawChannel]) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controls[yawChannel] = 0;
|
||||
if (abs(controlYaw) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controlYaw = 0;
|
||||
}
|
||||
|
||||
if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_LIST) {
|
||||
@ -194,20 +197,23 @@ void handleMavlink(const void *_msg) {
|
||||
|
||||
// Send shell output to GCS
|
||||
void mavlinkPrint(const char* str) {
|
||||
// Send data in chunks
|
||||
mavlinkPrintBuffer += str;
|
||||
}
|
||||
|
||||
void sendMavlinkPrint() {
|
||||
// Send mavlink print data in chunks
|
||||
const char *str = mavlinkPrintBuffer.c_str();
|
||||
for (int i = 0; i < strlen(str); i += MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN) {
|
||||
char data[MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN + 1];
|
||||
strlcpy(data, str + i, sizeof(data));
|
||||
mavlink_message_t msg;
|
||||
mavlink_msg_serial_control_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
|
||||
SERIAL_CONTROL_DEV_SHELL, 0, 0, 0, strlen(data), (uint8_t *)data, 0, 0);
|
||||
SERIAL_CONTROL_DEV_SHELL,
|
||||
i + MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN < strlen(str) ? SERIAL_CONTROL_FLAG_MULTI : 0, // more chunks to go
|
||||
0, 0, strlen(data), (uint8_t *)data, 0, 0);
|
||||
sendMessage(&msg);
|
||||
}
|
||||
}
|
||||
|
||||
// Convert Forward-Left-Up to Forward-Right-Down quaternion
|
||||
inline Quaternion fluToFrd(const Quaternion &q) {
|
||||
return Quaternion(q.w, q.x, -q.y, -q.z);
|
||||
mavlinkPrintBuffer.clear();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -11,8 +11,8 @@
|
||||
#define MOTOR_2_PIN 14 // front right
|
||||
#define MOTOR_3_PIN 15 // front left
|
||||
|
||||
#define PWM_FREQUENCY 1000
|
||||
#define PWM_RESOLUTION 12
|
||||
#define PWM_FREQUENCY 78000
|
||||
#define PWM_RESOLUTION 10
|
||||
#define PWM_STOP 0
|
||||
#define PWM_MIN 0
|
||||
#define PWM_MAX 1000000 / PWM_FREQUENCY
|
||||
@ -55,7 +55,7 @@ bool motorsActive() {
|
||||
return motors[0] != 0 || motors[1] != 0 || motors[2] != 0 || motors[3] != 0;
|
||||
}
|
||||
|
||||
void testMotor(uint8_t n) {
|
||||
void testMotor(int n) {
|
||||
print("Testing motor %d\n", n);
|
||||
motors[n] = 1;
|
||||
delay(50); // ESP32 may need to wait until the end of the current cycle to change duty https://github.com/espressif/arduino-esp32/issues/5306
|
||||
|
@ -5,14 +5,15 @@
|
||||
|
||||
#include <Preferences.h>
|
||||
|
||||
extern float channelNeutral[16];
|
||||
extern float channelZero[16];
|
||||
extern float channelMax[16];
|
||||
extern float rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
|
||||
extern float mavlinkControlScale;
|
||||
|
||||
Preferences storage;
|
||||
|
||||
struct Parameter {
|
||||
const char *name;
|
||||
const char *name; // max length is 16
|
||||
float *variable;
|
||||
float value; // cache
|
||||
};
|
||||
@ -48,18 +49,15 @@ Parameter parameters[] = {
|
||||
{"ACC_SCALE_X", &accScale.x},
|
||||
{"ACC_SCALE_Y", &accScale.y},
|
||||
{"ACC_SCALE_Z", &accScale.z},
|
||||
{"GYRO_BIAS_X", &gyroBias.x},
|
||||
{"GYRO_BIAS_Y", &gyroBias.y},
|
||||
{"GYRO_BIAS_Z", &gyroBias.z},
|
||||
// rc
|
||||
{"RC_NEUTRAL_0", &channelNeutral[0]},
|
||||
{"RC_NEUTRAL_1", &channelNeutral[1]},
|
||||
{"RC_NEUTRAL_2", &channelNeutral[2]},
|
||||
{"RC_NEUTRAL_3", &channelNeutral[3]},
|
||||
{"RC_NEUTRAL_4", &channelNeutral[4]},
|
||||
{"RC_NEUTRAL_5", &channelNeutral[5]},
|
||||
{"RC_NEUTRAL_6", &channelNeutral[6]},
|
||||
{"RC_NEUTRAL_7", &channelNeutral[7]},
|
||||
{"RC_ZERO_0", &channelZero[0]},
|
||||
{"RC_ZERO_1", &channelZero[1]},
|
||||
{"RC_ZERO_2", &channelZero[2]},
|
||||
{"RC_ZERO_3", &channelZero[3]},
|
||||
{"RC_ZERO_4", &channelZero[4]},
|
||||
{"RC_ZERO_5", &channelZero[5]},
|
||||
{"RC_ZERO_6", &channelZero[6]},
|
||||
{"RC_ZERO_7", &channelZero[7]},
|
||||
{"RC_MAX_0", &channelMax[0]},
|
||||
{"RC_MAX_1", &channelMax[1]},
|
||||
{"RC_MAX_2", &channelMax[2]},
|
||||
@ -68,6 +66,12 @@ Parameter parameters[] = {
|
||||
{"RC_MAX_5", &channelMax[5]},
|
||||
{"RC_MAX_6", &channelMax[6]},
|
||||
{"RC_MAX_7", &channelMax[7]},
|
||||
{"RC_ROLL", &rollChannel},
|
||||
{"RC_PITCH", &pitchChannel},
|
||||
{"RC_THROTTLE", &throttleChannel},
|
||||
{"RC_YAW", &yawChannel},
|
||||
{"RC_ARMED", &armedChannel},
|
||||
{"RC_MODE", &modeChannel},
|
||||
#if WIFI_ENABLED
|
||||
// MAVLink
|
||||
{"MAV_CTRL_SCALE", &mavlinkControlScale},
|
||||
|
@ -15,22 +15,22 @@ public:
|
||||
|
||||
Quaternion(float w, float x, float y, float z): w(w), x(x), y(y), z(z) {};
|
||||
|
||||
static Quaternion fromAxisAngle(float a, float b, float c, float angle) {
|
||||
static Quaternion fromAxisAngle(const Vector& axis, float angle) {
|
||||
float halfAngle = angle * 0.5;
|
||||
float sin2 = sin(halfAngle);
|
||||
float cos2 = cos(halfAngle);
|
||||
float sinNorm = sin2 / sqrt(a * a + b * b + c * c);
|
||||
return Quaternion(cos2, a * sinNorm, b * sinNorm, c * sinNorm);
|
||||
float sinNorm = sin2 / axis.norm();
|
||||
return Quaternion(cos2, axis.x * sinNorm, axis.y * sinNorm, axis.z * sinNorm);
|
||||
}
|
||||
|
||||
static Quaternion fromAngularRates(const Vector& rates) {
|
||||
if (rates.zero()) {
|
||||
static Quaternion fromRotationVector(const Vector& rotation) {
|
||||
if (rotation.zero()) {
|
||||
return Quaternion();
|
||||
}
|
||||
return Quaternion::fromAxisAngle(rates.x, rates.y, rates.z, rates.norm());
|
||||
return Quaternion::fromAxisAngle(rotation, rotation.norm());
|
||||
}
|
||||
|
||||
static Quaternion fromEulerZYX(const Vector& euler) {
|
||||
static Quaternion fromEuler(const Vector& euler) {
|
||||
float cx = cos(euler.x / 2);
|
||||
float cy = cos(euler.y / 2);
|
||||
float cz = cos(euler.z / 2);
|
||||
@ -60,14 +60,38 @@ public:
|
||||
return ret;
|
||||
}
|
||||
|
||||
void toAxisAngle(float& a, float& b, float& c, float& angle) const {
|
||||
angle = acos(w) * 2;
|
||||
a = x / sin(angle / 2);
|
||||
b = y / sin(angle / 2);
|
||||
c = z / sin(angle / 2);
|
||||
bool finite() const {
|
||||
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
|
||||
}
|
||||
|
||||
Vector toEulerZYX() const {
|
||||
float norm() const {
|
||||
return sqrt(w * w + x * x + y * y + z * z);
|
||||
}
|
||||
|
||||
void normalize() {
|
||||
float n = norm();
|
||||
w /= n;
|
||||
x /= n;
|
||||
y /= n;
|
||||
z /= n;
|
||||
}
|
||||
|
||||
void toAxisAngle(Vector& axis, float& angle) const {
|
||||
angle = acos(w) * 2;
|
||||
axis.x = x / sin(angle / 2);
|
||||
axis.y = y / sin(angle / 2);
|
||||
axis.z = z / sin(angle / 2);
|
||||
}
|
||||
|
||||
Vector toRotationVector() const {
|
||||
if (w == 1 && x == 0 && y == 0 && z == 0) return Vector(0, 0, 0); // neutral quaternion
|
||||
float angle;
|
||||
Vector axis;
|
||||
toAxisAngle(axis, angle);
|
||||
return angle * axis;
|
||||
}
|
||||
|
||||
Vector toEuler() const {
|
||||
// https://github.com/ros/geometry2/blob/589caf083cae9d8fae7effdb910454b4681b9ec1/tf2/include/tf2/impl/utils.h#L87
|
||||
Vector euler;
|
||||
float sqx = x * x;
|
||||
@ -112,18 +136,9 @@ public:
|
||||
|
||||
void setYaw(float yaw) {
|
||||
// TODO: optimize?
|
||||
Vector euler = toEulerZYX();
|
||||
Vector euler = toEuler();
|
||||
euler.z = yaw;
|
||||
(*this) = Quaternion::fromEulerZYX(euler);
|
||||
}
|
||||
|
||||
Quaternion& operator *= (const Quaternion& q) {
|
||||
Quaternion ret(
|
||||
w * q.w - x * q.x - y * q.y - z * q.z,
|
||||
w * q.x + x * q.w + y * q.z - z * q.y,
|
||||
w * q.y + y * q.w + z * q.x - x * q.z,
|
||||
w * q.z + z * q.w + x * q.y - y * q.x);
|
||||
return (*this = ret);
|
||||
(*this) = Quaternion::fromEuler(euler);
|
||||
}
|
||||
|
||||
Quaternion operator * (const Quaternion& q) const {
|
||||
@ -134,6 +149,14 @@ public:
|
||||
w * q.z + z * q.w + x * q.y - y * q.x);
|
||||
}
|
||||
|
||||
bool operator == (const Quaternion& q) const {
|
||||
return w == q.w && x == q.x && y == q.y && z == q.z;
|
||||
}
|
||||
|
||||
bool operator != (const Quaternion& q) const {
|
||||
return !(*this == q);
|
||||
}
|
||||
|
||||
Quaternion inversed() const {
|
||||
float normSqInv = 1 / (w * w + x * x + y * y + z * z);
|
||||
return Quaternion(
|
||||
@ -143,18 +166,6 @@ public:
|
||||
-z * normSqInv);
|
||||
}
|
||||
|
||||
float norm() const {
|
||||
return sqrt(w * w + x * x + y * y + z * z);
|
||||
}
|
||||
|
||||
void normalize() {
|
||||
float n = norm();
|
||||
w /= n;
|
||||
x /= n;
|
||||
y /= n;
|
||||
z /= n;
|
||||
}
|
||||
|
||||
Vector conjugate(const Vector& v) const {
|
||||
Quaternion qv(0, v.x, v.y, v.z);
|
||||
Quaternion res = (*this) * qv * inversed();
|
||||
@ -167,22 +178,27 @@ public:
|
||||
return Vector(res.x, res.y, res.z);
|
||||
}
|
||||
|
||||
// Rotate vector by quaternion
|
||||
Vector rotateVector(const Vector& v) const {
|
||||
return conjugateInversed(v);
|
||||
}
|
||||
|
||||
// Rotate quaternion by quaternion
|
||||
Quaternion rotate(const Quaternion& q, const bool normalize = true) const {
|
||||
Quaternion rotated = (*this) * q;
|
||||
static Quaternion rotate(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
|
||||
Quaternion rotated = a * b;
|
||||
if (normalize) {
|
||||
rotated.normalize();
|
||||
}
|
||||
return rotated;
|
||||
}
|
||||
|
||||
bool finite() const {
|
||||
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
|
||||
// Rotate vector by quaternion
|
||||
static Vector rotateVector(const Vector& v, const Quaternion& q) {
|
||||
return q.conjugateInversed(v);
|
||||
}
|
||||
|
||||
// Quaternion between two quaternions a and b
|
||||
static Quaternion between(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
|
||||
Quaternion q = a * b.inversed();
|
||||
if (normalize) {
|
||||
q.normalize();
|
||||
}
|
||||
return q;
|
||||
}
|
||||
|
||||
size_t printTo(Print& p) const {
|
||||
|
100
flix/rc.ino
@ -8,17 +8,13 @@
|
||||
|
||||
SBUS RC(Serial2); // NOTE: Use RC(Serial2, 16, 17) if you use the old UART2 pins
|
||||
|
||||
// RC channels mapping:
|
||||
int rollChannel = 0;
|
||||
int pitchChannel = 1;
|
||||
int throttleChannel = 2;
|
||||
int yawChannel = 3;
|
||||
int armedChannel = 4;
|
||||
int modeChannel = 5;
|
||||
uint16_t channels[16]; // raw rc channels
|
||||
double controlTime; // time of the last controls update
|
||||
float channelZero[16]; // calibration zero values
|
||||
float channelMax[16]; // calibration max values
|
||||
|
||||
double controlsTime; // time of the last controls update
|
||||
float channelNeutral[16] = {NAN}; // first element NAN means not calibrated
|
||||
float channelMax[16];
|
||||
// Channels mapping (using float to store in parameters):
|
||||
float rollChannel = NAN, pitchChannel = NAN, throttleChannel = NAN, yawChannel = NAN, armedChannel = NAN, modeChannel = NAN;
|
||||
|
||||
void setupRC() {
|
||||
print("Setup RC\n");
|
||||
@ -28,42 +24,76 @@ void setupRC() {
|
||||
bool readRC() {
|
||||
if (RC.read()) {
|
||||
SBUSData data = RC.data();
|
||||
memcpy(channels, data.ch, sizeof(channels)); // copy channels data
|
||||
for (int i = 0; i < 16; i++) channels[i] = data.ch[i]; // copy channels data
|
||||
normalizeRC();
|
||||
controlsTime = t;
|
||||
controlTime = t;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void normalizeRC() {
|
||||
if (isnan(channelNeutral[0])) return; // skip if not calibrated
|
||||
for (uint8_t i = 0; i < 16; i++) {
|
||||
controls[i] = mapf(channels[i], channelNeutral[i], channelMax[i], 0, 1);
|
||||
float controls[16];
|
||||
for (int i = 0; i < 16; i++) {
|
||||
controls[i] = mapf(channels[i], channelZero[i], channelMax[i], 0, 1);
|
||||
}
|
||||
// Update control values
|
||||
controlRoll = rollChannel >= 0 ? controls[(int)rollChannel] : NAN;
|
||||
controlPitch = pitchChannel >= 0 ? controls[(int)pitchChannel] : NAN;
|
||||
controlYaw = yawChannel >= 0 ? controls[(int)yawChannel] : NAN;
|
||||
controlThrottle = throttleChannel >= 0 ? controls[(int)throttleChannel] : NAN;
|
||||
controlArmed = armedChannel >= 0 ? controls[(int)armedChannel] : 1; // assume armed by default
|
||||
controlMode = modeChannel >= 0 ? controls[(int)modeChannel] : NAN;
|
||||
}
|
||||
|
||||
void calibrateRC() {
|
||||
print("Calibrate RC: move all sticks to maximum positions [4 sec]\n");
|
||||
print("··o ··o\n··· ···\n··· ···\n");
|
||||
pause(4);
|
||||
while (!readRC());
|
||||
for (int i = 0; i < 16; i++) {
|
||||
channelMax[i] = channels[i];
|
||||
}
|
||||
print("Calibrate RC: move all sticks to neutral positions [4 sec]\n");
|
||||
print("··· ···\n··· ·o·\n·o· ···\n");
|
||||
pause(4);
|
||||
while (!readRC());
|
||||
for (int i = 0; i < 16; i++) {
|
||||
channelNeutral[i] = channels[i];
|
||||
}
|
||||
printRCCal();
|
||||
uint16_t zero[16];
|
||||
uint16_t center[16];
|
||||
uint16_t max[16];
|
||||
print("1/9 Calibrating RC: put all switches to default positions [3 sec]\n");
|
||||
pause(3);
|
||||
calibrateRCChannel(NULL, zero, zero, "2/9 Move sticks [3 sec]\n... ...\n... .o.\n.o. ...\n");
|
||||
calibrateRCChannel(NULL, center, center, "3/9 Move sticks [3 sec]\n... ...\n.o. .o.\n... ...\n");
|
||||
calibrateRCChannel(&throttleChannel, zero, max, "4/9 Move sticks [3 sec]\n.o. ...\n... .o.\n... ...\n");
|
||||
calibrateRCChannel(&yawChannel, center, max, "5/9 Move sticks [3 sec]\n... ...\n..o .o.\n... ...\n");
|
||||
calibrateRCChannel(&pitchChannel, zero, max, "6/9 Move sticks [3 sec]\n... .o.\n... ...\n.o. ...\n");
|
||||
calibrateRCChannel(&rollChannel, zero, max, "7/9 Move sticks [3 sec]\n... ...\n... ..o\n.o. ...\n");
|
||||
calibrateRCChannel(&armedChannel, zero, max, "8/9 Switch to armed [3 sec]\n");
|
||||
calibrateRCChannel(&modeChannel, zero, max, "9/9 Disarm and switch mode to max [3 sec]\n");
|
||||
printRCCalibration();
|
||||
}
|
||||
|
||||
void printRCCal() {
|
||||
for (int i = 0; i < sizeof(channelNeutral) / sizeof(channelNeutral[0]); i++) print("%g ", channelNeutral[i]);
|
||||
print("\n");
|
||||
for (int i = 0; i < sizeof(channelMax) / sizeof(channelMax[0]); i++) print("%g ", channelMax[i]);
|
||||
print("\n");
|
||||
void calibrateRCChannel(float *channel, uint16_t in[16], uint16_t out[16], const char *str) {
|
||||
print("%s", str);
|
||||
pause(3);
|
||||
for (int i = 0; i < 30; i++) readRC(); // try update 30 times max
|
||||
memcpy(out, channels, sizeof(channels));
|
||||
|
||||
if (channel == NULL) return; // no channel to calibrate
|
||||
|
||||
// Find channel that changed the most between in and out
|
||||
int ch = -1, diff = 0;
|
||||
for (int i = 0; i < 16; i++) {
|
||||
if (abs(out[i] - in[i]) > diff) {
|
||||
ch = i;
|
||||
diff = abs(out[i] - in[i]);
|
||||
}
|
||||
}
|
||||
if (ch >= 0 && diff > 10) { // difference threshold is 10
|
||||
*channel = ch;
|
||||
channelZero[ch] = in[ch];
|
||||
channelMax[ch] = out[ch];
|
||||
} else {
|
||||
*channel = NAN;
|
||||
}
|
||||
}
|
||||
|
||||
void printRCCalibration() {
|
||||
print("Control Ch Zero Max\n");
|
||||
print("Roll %-7g%-7g%-7g\n", rollChannel, rollChannel >= 0 ? channelZero[(int)rollChannel] : NAN, rollChannel >= 0 ? channelMax[(int)rollChannel] : NAN);
|
||||
print("Pitch %-7g%-7g%-7g\n", pitchChannel, pitchChannel >= 0 ? channelZero[(int)pitchChannel] : NAN, pitchChannel >= 0 ? channelMax[(int)pitchChannel] : NAN);
|
||||
print("Yaw %-7g%-7g%-7g\n", yawChannel, yawChannel >= 0 ? channelZero[(int)yawChannel] : NAN, yawChannel >= 0 ? channelMax[(int)yawChannel] : NAN);
|
||||
print("Throttle %-7g%-7g%-7g\n", throttleChannel, throttleChannel >= 0 ? channelZero[(int)throttleChannel] : NAN, throttleChannel >= 0 ? channelMax[(int)throttleChannel] : NAN);
|
||||
print("Armed %-7g%-7g%-7g\n", armedChannel, armedChannel >= 0 ? channelZero[(int)armedChannel] : NAN, armedChannel >= 0 ? channelMax[(int)armedChannel] : NAN);
|
||||
print("Mode %-7g%-7g%-7g\n", modeChannel, modeChannel >= 0 ? channelZero[(int)modeChannel] : NAN, modeChannel >= 0 ? channelMax[(int)modeChannel] : NAN);
|
||||
}
|
||||
|
@ -13,14 +13,18 @@ public:
|
||||
|
||||
Vector(float x, float y, float z): x(x), y(y), z(z) {};
|
||||
|
||||
float norm() const {
|
||||
return sqrt(x * x + y * y + z * z);
|
||||
}
|
||||
|
||||
bool zero() const {
|
||||
return x == 0 && y == 0 && z == 0;
|
||||
}
|
||||
|
||||
bool finite() const {
|
||||
return isfinite(x) && isfinite(y) && isfinite(z);
|
||||
}
|
||||
|
||||
float norm() const {
|
||||
return sqrt(x * x + y * y + z * z);
|
||||
}
|
||||
|
||||
void normalize() {
|
||||
float n = norm();
|
||||
x /= n;
|
||||
@ -28,6 +32,10 @@ public:
|
||||
z /= n;
|
||||
}
|
||||
|
||||
Vector operator + (const float b) const {
|
||||
return Vector(x + b, y + b, z + b);
|
||||
}
|
||||
|
||||
Vector operator * (const float b) const {
|
||||
return Vector(x * b, y * b, z * b);
|
||||
}
|
||||
@ -44,6 +52,14 @@ public:
|
||||
return Vector(x - b.x, y - b.y, z - b.z);
|
||||
}
|
||||
|
||||
Vector& operator += (const Vector& b) {
|
||||
return *this = *this + b;
|
||||
}
|
||||
|
||||
Vector& operator -= (const Vector& b) {
|
||||
return *this = *this - b;
|
||||
}
|
||||
|
||||
// Element-wise multiplication
|
||||
Vector operator * (const Vector& b) const {
|
||||
return Vector(x * b.x, y * b.y, z * b.z);
|
||||
@ -62,10 +78,6 @@ public:
|
||||
return !(*this == b);
|
||||
}
|
||||
|
||||
bool finite() const {
|
||||
return isfinite(x) && isfinite(y) && isfinite(z);
|
||||
}
|
||||
|
||||
static float dot(const Vector& a, const Vector& b) {
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||
}
|
||||
@ -74,18 +86,18 @@ public:
|
||||
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
|
||||
}
|
||||
|
||||
static float angleBetweenVectors(const Vector& a, const Vector& b) {
|
||||
static float angleBetween(const Vector& a, const Vector& b) {
|
||||
return acos(constrain(dot(a, b) / (a.norm() * b.norm()), -1, 1));
|
||||
}
|
||||
|
||||
static Vector angularRatesBetweenVectors(const Vector& a, const Vector& b) {
|
||||
static Vector rotationVectorBetween(const Vector& a, const Vector& b) {
|
||||
Vector direction = cross(a, b);
|
||||
if (direction.zero()) {
|
||||
// vectors are opposite, return any perpendicular vector
|
||||
return cross(a, Vector(1, 0, 0));
|
||||
}
|
||||
direction.normalize();
|
||||
float angle = angleBetweenVectors(a, b);
|
||||
float angle = angleBetween(a, b);
|
||||
return direction * angle;
|
||||
}
|
||||
|
||||
@ -96,3 +108,6 @@ public:
|
||||
p.print(z, 15);
|
||||
}
|
||||
};
|
||||
|
||||
Vector operator * (const float a, const Vector& b) { return b * a; }
|
||||
Vector operator + (const float a, const Vector& b) { return b + a; }
|
||||
|
@ -11,8 +11,8 @@
|
||||
|
||||
#define WIFI_SSID "flix"
|
||||
#define WIFI_PASSWORD "flixwifi"
|
||||
#define WIFI_UDP_IP "255.255.255.255"
|
||||
#define WIFI_UDP_PORT 14550
|
||||
#define WIFI_UDP_REMOTE_PORT 14550
|
||||
|
||||
WiFiUDP udp;
|
||||
|
||||
@ -24,7 +24,7 @@ void setupWiFi() {
|
||||
|
||||
void sendWiFi(const uint8_t *buf, int len) {
|
||||
if (WiFi.softAPIP() == IPAddress(0, 0, 0, 0) && WiFi.status() != WL_CONNECTED) return;
|
||||
udp.beginPacket(WIFI_UDP_IP, WIFI_UDP_PORT);
|
||||
udp.beginPacket(WiFi.softAPBroadcastIP(), WIFI_UDP_REMOTE_PORT);
|
||||
udp.write(buf, len);
|
||||
udp.endPacket();
|
||||
}
|
||||
|
@ -11,6 +11,8 @@
|
||||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/poll.h>
|
||||
#include <chrono>
|
||||
#include <thread>
|
||||
|
||||
#define PI 3.1415926535897932384626433832795
|
||||
#define DEG_TO_RAD 0.017453292519943295769236907684886
|
||||
@ -52,6 +54,10 @@ public:
|
||||
this->erase(0, this->find_first_not_of(" \t\n\r"));
|
||||
this->erase(this->find_last_not_of(" \t\n\r") + 1);
|
||||
}
|
||||
void toLowerCase() {
|
||||
std::transform(this->begin(), this->end(), this->begin(),
|
||||
[](unsigned char c) { return std::tolower(c); });
|
||||
}
|
||||
};
|
||||
|
||||
class Print;
|
||||
@ -150,8 +156,11 @@ public:
|
||||
void restart() { Serial.println("Ignore reboot in simulation"); }
|
||||
} ESP;
|
||||
|
||||
unsigned long __delayTime = 0;
|
||||
|
||||
void delay(uint32_t ms) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
||||
__delayTime += ms * 1000;
|
||||
}
|
||||
|
||||
bool ledcAttach(uint8_t pin, uint32_t freq, uint8_t resolution) { return true; }
|
||||
@ -161,5 +170,5 @@ unsigned long __micros;
|
||||
unsigned long __resetTime = 0;
|
||||
|
||||
unsigned long micros() {
|
||||
return __micros + __resetTime; // keep the time monotonic
|
||||
return __micros + __resetTime + __delayTime; // keep the time monotonic
|
||||
}
|
||||
|
@ -14,10 +14,9 @@ private:
|
||||
|
||||
void readFromFile() {
|
||||
std::ifstream file(storagePath);
|
||||
std::string key;
|
||||
float value;
|
||||
std::string key, value;
|
||||
while (file >> key >> value) {
|
||||
storage[key] = value;
|
||||
storage[key] = std::stof(value); // using stof to support NaN and Infinity
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -18,6 +18,9 @@ public:
|
||||
SBUSData data() {
|
||||
SBUSData data;
|
||||
joystickGet(data.ch);
|
||||
for (int i = 0; i < 16; i++) {
|
||||
data.ch[i] = map(data.ch[i], -32768, 32767, 1000, 2000); // convert to pulse width style
|
||||
}
|
||||
return data;
|
||||
};
|
||||
};
|
||||
|
@ -15,12 +15,12 @@
|
||||
double t = NAN;
|
||||
float dt;
|
||||
float motors[4];
|
||||
int16_t channels[16]; // raw rc channels
|
||||
float controls[16];
|
||||
float controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode;
|
||||
Vector acc;
|
||||
Vector gyro;
|
||||
Vector rates;
|
||||
Quaternion attitude;
|
||||
bool landed;
|
||||
|
||||
// declarations
|
||||
void step();
|
||||
@ -35,14 +35,15 @@ void controlTorque();
|
||||
const char* getModeName();
|
||||
void sendMotors();
|
||||
bool motorsActive();
|
||||
void testMotor(uint8_t n);
|
||||
void testMotor(int n);
|
||||
void print(const char* format, ...);
|
||||
void pause(float duration);
|
||||
void doCommand(String str, bool echo);
|
||||
void handleInput();
|
||||
void calibrateRC();
|
||||
void normalizeRC();
|
||||
void printRCCal();
|
||||
void calibrateRC();
|
||||
void calibrateRCChannel(float *channel, uint16_t zero[16], uint16_t max[16], const char *str);
|
||||
void printRCCalibration();
|
||||
void dumpLog();
|
||||
void processMavlink();
|
||||
void sendMavlink();
|
||||
@ -50,6 +51,7 @@ void sendMessage(const void *msg);
|
||||
void receiveMavlink();
|
||||
void handleMavlink(const void *_msg);
|
||||
void mavlinkPrint(const char* str);
|
||||
void sendMavlinkPrint();
|
||||
inline Quaternion fluToFrd(const Quaternion &q);
|
||||
void failsafe();
|
||||
void armingFailsafe();
|
||||
@ -67,6 +69,6 @@ void resetParameters();
|
||||
void setLED(bool on) {};
|
||||
void calibrateGyro() { print("Skip gyro calibrating\n"); };
|
||||
void calibrateAccel() { print("Skip accel calibrating\n"); };
|
||||
void printIMUCal() { print("cal: N/A\n"); };
|
||||
void printIMUCalibration() { print("cal: N/A\n"); };
|
||||
void printIMUInfo() {};
|
||||
Vector accBias, gyroBias, accScale(1, 1, 1);
|
||||
|
@ -1,6 +1,7 @@
|
||||
<?xml version="1.0"?>
|
||||
<sdf version="1.5">
|
||||
<model name="flix">
|
||||
<plugin name="flix" filename="libflix.so"/>
|
||||
<link name="body">
|
||||
<inertial>
|
||||
<mass>0.065</mass>
|
||||
@ -23,38 +24,14 @@
|
||||
<update_rate>1000</update_rate>
|
||||
<imu>
|
||||
<angular_velocity>
|
||||
<x>
|
||||
<noise type="gaussian">
|
||||
<stddev>0.00174533</stddev><!-- 0.1 degrees per second -->
|
||||
</noise>
|
||||
</x>
|
||||
<y>
|
||||
<noise type="gaussian">
|
||||
<stddev>0.00174533</stddev>
|
||||
</noise>
|
||||
</y>
|
||||
<z>
|
||||
<noise type="gaussian">
|
||||
<stddev>0.00174533</stddev>
|
||||
</noise>
|
||||
</z>
|
||||
<x><noise type="gaussian"><stddev>0.00174533</stddev></noise></x><!-- 0.1 degrees per second -->
|
||||
<y><noise type="gaussian"><stddev>0.00174533</stddev></noise></y>
|
||||
<z><noise type="gaussian"><stddev>0.00174533</stddev></noise></z>
|
||||
</angular_velocity>
|
||||
<linear_acceleration>
|
||||
<x>
|
||||
<noise type="gaussian">
|
||||
<stddev>0.0784</stddev><!-- 8 mg -->
|
||||
</noise>
|
||||
</x>
|
||||
<y>
|
||||
<noise type="gaussian">
|
||||
<stddev>0.0784</stddev>
|
||||
</noise>
|
||||
</y>
|
||||
<z>
|
||||
<noise type="gaussian">
|
||||
<stddev>0.0784</stddev>
|
||||
</noise>
|
||||
</z>
|
||||
<x><noise type="gaussian"><stddev>0.0784</stddev></noise></x><!-- 8 mg -->
|
||||
<y><noise type="gaussian"><stddev>0.0784</stddev></noise></y>
|
||||
<z><noise type="gaussian"><stddev>0.0784</stddev></noise></z>
|
||||
</linear_acceleration>
|
||||
</imu>
|
||||
</sensor>
|
||||
@ -90,6 +67,5 @@
|
||||
<material><ambient>1 1 1 0.5</ambient><diffuse>1 1 1 0.5</diffuse></material>
|
||||
</visual>
|
||||
</link>
|
||||
<plugin name="flix" filename="libflix.so"/>
|
||||
</model>
|
||||
</sdf>
|
||||
|
@ -71,11 +71,7 @@ public:
|
||||
gyro = Vector(imu->AngularVelocity().X(), imu->AngularVelocity().Y(), imu->AngularVelocity().Z());
|
||||
acc = this->accFilter.update(Vector(imu->LinearAcceleration().X(), imu->LinearAcceleration().Y(), imu->LinearAcceleration().Z()));
|
||||
|
||||
// read rc
|
||||
readRC();
|
||||
controls[modeChannel] = 1; // 0 acro, 1 stab
|
||||
controls[armedChannel] = 1; // armed
|
||||
|
||||
estimate();
|
||||
|
||||
// correct yaw to the actual yaw
|
||||
|
@ -11,8 +11,8 @@
|
||||
#include <sys/poll.h>
|
||||
#include <gazebo/gazebo.hh>
|
||||
|
||||
#define WIFI_UDP_PORT_LOCAL 14580
|
||||
#define WIFI_UDP_PORT_REMOTE 14550
|
||||
#define WIFI_UDP_PORT 14580
|
||||
#define WIFI_UDP_REMOTE_PORT 14550
|
||||
|
||||
int wifiSocket;
|
||||
|
||||
@ -21,14 +21,14 @@ void setupWiFi() {
|
||||
sockaddr_in addr; // local address
|
||||
addr.sin_family = AF_INET;
|
||||
addr.sin_addr.s_addr = INADDR_ANY;
|
||||
addr.sin_port = htons(WIFI_UDP_PORT_LOCAL);
|
||||
addr.sin_port = htons(WIFI_UDP_PORT);
|
||||
if (bind(wifiSocket, (sockaddr *)&addr, sizeof(addr))) {
|
||||
gzerr << "Failed to bind WiFi UDP socket on port " << WIFI_UDP_PORT_LOCAL << std::endl;
|
||||
gzerr << "Failed to bind WiFi UDP socket on port " << WIFI_UDP_PORT << std::endl;
|
||||
return;
|
||||
}
|
||||
int broadcast = 1;
|
||||
setsockopt(wifiSocket, SOL_SOCKET, SO_BROADCAST, &broadcast, sizeof(broadcast)); // enable broadcast
|
||||
gzmsg << "WiFi UDP socket initialized on port " << WIFI_UDP_PORT_LOCAL << " (remote port " << WIFI_UDP_PORT_REMOTE << ")" << std::endl;
|
||||
gzmsg << "WiFi UDP socket initialized on port " << WIFI_UDP_PORT << " (remote port " << WIFI_UDP_REMOTE_PORT << ")" << std::endl;
|
||||
}
|
||||
|
||||
void sendWiFi(const uint8_t *buf, int len) {
|
||||
@ -36,7 +36,7 @@ void sendWiFi(const uint8_t *buf, int len) {
|
||||
sockaddr_in addr; // remote address
|
||||
addr.sin_family = AF_INET;
|
||||
addr.sin_addr.s_addr = INADDR_BROADCAST; // send UDP broadcast
|
||||
addr.sin_port = htons(WIFI_UDP_PORT_REMOTE);
|
||||
addr.sin_port = htons(WIFI_UDP_REMOTE_PORT);
|
||||
sendto(wifiSocket, buf, len, 0, (sockaddr *)&addr, sizeof(addr));
|
||||
}
|
||||
|
||||
|
13
tools/cli.py
Executable file
@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Remote CLI for Flix
|
||||
|
||||
from pyflix import Flix
|
||||
|
||||
flix = Flix()
|
||||
|
||||
flix.on('print', lambda text: print(text, end=''))
|
||||
|
||||
while True:
|
||||
command = input()
|
||||
flix.cli(command, wait_response=False)
|
39
tools/example.py
Executable file
@ -0,0 +1,39 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import math
|
||||
from pyflix import Flix
|
||||
|
||||
print('=== Connect...')
|
||||
flix = Flix()
|
||||
|
||||
print('Connected:', flix.connected)
|
||||
print('Mode:', flix.mode)
|
||||
print('Armed:', flix.armed)
|
||||
print('Landed:', flix.landed)
|
||||
print('Rates:', *[f'{math.degrees(r):.0f}°/s' for r in flix.rates])
|
||||
print('Attitude:', *[f'{math.degrees(a):.0f}°' for a in flix.attitude_euler])
|
||||
print('Motors:', flix.motors)
|
||||
print('Acc', flix.acc)
|
||||
print('Gyro', flix.gyro)
|
||||
|
||||
print('=== Execute commands...')
|
||||
print('> time')
|
||||
print(flix.cli('time'))
|
||||
print('> imu')
|
||||
print(flix.cli('imu'))
|
||||
|
||||
print('=== Get parameter...')
|
||||
pitch_p = flix.get_param('PITCH_P')
|
||||
print('PITCH_P = ', pitch_p)
|
||||
|
||||
print('=== Set parameter...')
|
||||
flix.set_param('PITCH_P', pitch_p)
|
||||
|
||||
print('=== Wait for gyro update...')
|
||||
print('Gyro: ', flix.wait('gyro'))
|
||||
|
||||
print('=== Wait for HEARTBEAT message...')
|
||||
print(flix.wait('mavlink.HEARTBEAT'))
|
||||
|
||||
print('=== When until landed = False (remove drone from the surface)')
|
||||
flix.wait('landed', value=False)
|
23
tools/log.py
Executable file
@ -0,0 +1,23 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# Download flight log remotely and save to file
|
||||
|
||||
import os
|
||||
import datetime
|
||||
from pyflix import Flix
|
||||
|
||||
DIR = os.path.dirname(os.path.realpath(__file__))
|
||||
|
||||
flix = Flix()
|
||||
|
||||
print('Downloading log...')
|
||||
lines = flix.cli('log').splitlines()
|
||||
|
||||
# sort by timestamp
|
||||
header = lines.pop(0)
|
||||
lines.sort(key=lambda line: float(line.split(',')[0]))
|
||||
|
||||
log = open(f'{DIR}/log/{datetime.datetime.now().isoformat()}.csv', 'wb')
|
||||
content = header.encode() + b'\n' + b'\n'.join(line.encode() for line in lines)
|
||||
log.write(content)
|
||||
print(f'Written {os.path.relpath(log.name, os.curdir)}')
|
226
tools/pyflix/README.md
Normal file
@ -0,0 +1,226 @@
|
||||
# Flix Python library
|
||||
|
||||
The Flix Python library allows you to remotely connect to a Flix quadcopter. It provides access to telemetry data, supports executing CLI commands, and controlling the drone's flight.
|
||||
|
||||
To use the library, connect to the drone's Wi-Fi. To use it with the simulator, ensure the script runs on the same local network as the simulator.
|
||||
|
||||
## Installation
|
||||
|
||||
If you have cloned the [repo](https://github.com/okalachev/flix), install the library from the repo:
|
||||
|
||||
```bash
|
||||
cd /path/to/flix/repo
|
||||
pip install -e tools
|
||||
```
|
||||
|
||||
Alternatively, install from pip:
|
||||
|
||||
```bash
|
||||
pip install pyflix
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
The API is accessed through the `Flix` class:
|
||||
|
||||
```python
|
||||
from flix import Flix
|
||||
flix = Flix() # create a Flix object and wait for connection
|
||||
```
|
||||
|
||||
### Telemetry
|
||||
|
||||
Basic telemetry is available through object properties. The properties names generally match the corresponding variables in the firmware itself:
|
||||
|
||||
```python
|
||||
print(flix.connected) # True if connected to the drone
|
||||
print(flix.mode) # current flight mode (str)
|
||||
print(flix.armed) # True if the drone is armed
|
||||
print(flix.landed) # True if the drone is landed
|
||||
print(flix.attitude) # attitude quaternion [w, x, y, z]
|
||||
print(flix.attitude_euler) # attitude as Euler angles [roll, pitch, yaw]
|
||||
print(flix.rates) # angular rates [roll_rate, pitch_rate, yaw_rate]
|
||||
print(flix.channels) # raw RC channels (list)
|
||||
print(flix.motors) # motors outputs (list)
|
||||
print(flix.acc) # accelerometer output (list)
|
||||
print(flix.gyro) # gyroscope output (list)
|
||||
```
|
||||
|
||||
> [!NOTE]
|
||||
> The library uses the Front-Left-Up coordinate system — the same as in the firmware. All angles are in radians.
|
||||
|
||||
### Events
|
||||
|
||||
The Flix object implements the *Observable* pattern, allowing to listen for events. You can subscribe to events using `on` method:
|
||||
|
||||
```python
|
||||
flix.on('connected', lambda: print('Connected to Flix'))
|
||||
flix.on('disconnected', lambda: print('Disconnected from Flix'))
|
||||
flix.on('print', lambda text: print(f'Flix says: {text}'))
|
||||
```
|
||||
|
||||
You can also wait for specific events using `wait` method. This method returns the data associated with the event:
|
||||
|
||||
```python
|
||||
gyro = flix.wait('gyro') # wait for gyroscope update
|
||||
attitude = flix.wait('attitude', timeout=3) # wait for attitude update, raise TimeoutError after 3 seconds
|
||||
```
|
||||
|
||||
The `value` argument specifies a condition for filtering events. It can be either an expected value or a callable:
|
||||
|
||||
```python
|
||||
flix.wait('armed', value=True) # wait until armed
|
||||
flix.wait('armed', value=False) # wait until disarmed
|
||||
flix.wait('motors', value=lambda motors: not any(motors)) # wait until all motors stop
|
||||
flix.wait('attitude_euler', value=lambda att: att[0] > 0) # wait until roll angle is positive
|
||||
```
|
||||
|
||||
Full list of events:
|
||||
|
||||
|Event|Description|Associated data|
|
||||
|-----|-----------|----------------|
|
||||
|`connected`|Connected to the drone||
|
||||
|`disconnected`|Connection is lost||
|
||||
|`armed`|Armed state update|Armed state (*bool*)|
|
||||
|`mode`|Flight mode update|Flight mode (*str*)|
|
||||
|`landed`|Landed state update|Landed state (*bool*)|
|
||||
|`print`|The drone sends text to the console|Text|
|
||||
|`attitude`|Attitude update|Attitude quaternion (*list*)|
|
||||
|`attitude_euler`|Attitude update|Euler angles (*list*)|
|
||||
|`rates`|Angular rates update|Angular rates (*list*)|
|
||||
|`channels`|Raw RC channels update|Raw RC channels (*list*)|
|
||||
|`motors`|Motors outputs update|Motors outputs (*list*)|
|
||||
|`acc`|Accelerometer update|Accelerometer output (*list*)|
|
||||
|`gyro`|Gyroscope update|Gyroscope output (*list*)|
|
||||
|`mavlink`|Received MAVLink message|Message object|
|
||||
|`mavlink.<message_name>`|Received specific MAVLink message|Message object|
|
||||
|`mavlink.<message_id>`|Received specific MAVLink message|Message object|
|
||||
|`value`|Named value update (see below)|Name, value|
|
||||
|`value.<name>`|Specific named value update (see bellow)|Value|
|
||||
|
||||
> [!NOTE]
|
||||
> Update events trigger on every new data from the drone, and do not mean the value is changed.
|
||||
|
||||
### Common methods
|
||||
|
||||
Get and set firmware parameters using `get_param` and `set_param` methods:
|
||||
|
||||
```python
|
||||
pitch_p = flix.get_param('PITCH_P') # get parameter value
|
||||
flix.set_param('PITCH_P', 5) # set parameter value
|
||||
```
|
||||
|
||||
Execute CLI commands using `cli` method. This method returns command response:
|
||||
|
||||
```python
|
||||
imu = flix.cli('imu') # get detailed IMU data
|
||||
time = flix.cli('time') # get detailed time data
|
||||
flix.cli('reboot') # reboot the drone
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> Use `help` command to get the list of available commands.
|
||||
|
||||
### Automatic flight
|
||||
|
||||
The flight control feature is in development. List of methods intended for automatic flight control:
|
||||
|
||||
* `set_position`
|
||||
* `set_velocity`
|
||||
* `set_attitude`
|
||||
* `set_rates`
|
||||
* `set_motors`
|
||||
* `set_controls`
|
||||
* `set_mode`
|
||||
|
||||
## Usage alongside QGroundControl
|
||||
|
||||
You can use the Flix library alongside the QGroundControl app, using a proxy mode. To do that:
|
||||
|
||||
1. Run proxy for `pyflix` and QGroundControl in background:
|
||||
|
||||
```bash
|
||||
flix-proxy
|
||||
```
|
||||
|
||||
2. Go to QGroundControl settings ⇒ *Comm Links*.
|
||||
3. Add new link with the following settings:
|
||||
* *Name*: Proxy
|
||||
* *Automatically Connect on Start*: ✓
|
||||
* *Type*: UDP
|
||||
* *Port*: 14560
|
||||
4. Restart QGroundControl.
|
||||
|
||||
Now you can run `pyflix` scripts and QGroundControl simultaneously.
|
||||
|
||||
## Tools
|
||||
|
||||
The following scripts demonstrate how to use the library:
|
||||
|
||||
* [`cli.py`](../cli.py) — remote access to the drone's command line interface.
|
||||
* [`log.py`](../log.py) — download flight logs from the drone.
|
||||
* [`example.py`](../example.py) — a simple example, prints telemetry data and waits for events.
|
||||
|
||||
## Advanced usage
|
||||
|
||||
### MAVLink
|
||||
|
||||
You can access the most recently received messages using `messages` property:
|
||||
|
||||
```python
|
||||
print(flix.messages.get('HEARTBEAT')) # print the latest HEARTBEAT message
|
||||
```
|
||||
|
||||
You can wait for a specific message using `wait` method:
|
||||
|
||||
```python
|
||||
heartbeat = flix.wait('mavlink.HEARTBEAT')
|
||||
```
|
||||
|
||||
You can send raw messages using `mavlink` property:
|
||||
|
||||
```python
|
||||
from pymavlink.dialects.v20 import common as mavlink
|
||||
|
||||
flix.mavlink.heartbeat_send(mavlink.MAV_TYPE_GCS, mavlink.MAV_AUTOPILOT_INVALID,
|
||||
mavlink.MAV_MODE_FLAG_CUSTOM_MODE_ENABLED, 0, 0)
|
||||
```
|
||||
|
||||
### Named values
|
||||
|
||||
You can pass arbitrary named values from the firmware to the Python script using `NAMED_VALUE_FLOAT`, `NAMED_VALUE_INT`, `DEBUG`, `DEBUG_VECT`, and `DEBUG_FLOAT_ARRAY` MAVLink messages.
|
||||
|
||||
All these named values will appear in the `values` dictionary:
|
||||
|
||||
```python
|
||||
print(flix.values['some_value'])
|
||||
print(flix.values['some_vector'])
|
||||
```
|
||||
|
||||
You can send values from the firmware like this (`mavlink.ino`):
|
||||
|
||||
```cpp
|
||||
// Send float named value
|
||||
mavlink_msg_named_value_float_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, t, "some_value", loopRate);
|
||||
sendMessage(&msg);
|
||||
|
||||
// Send vector named value
|
||||
mavlink_msg_debug_vect_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, "some_vector", t, gyroBias.x, gyroBias.y, gyroBias.z);
|
||||
sendMessage(&msg);
|
||||
```
|
||||
|
||||
### Logging
|
||||
|
||||
You can control Flix library verbosity using Python's `logging` module:
|
||||
|
||||
```python
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger('flix')
|
||||
logger.setLevel(logging.DEBUG) # be more verbose
|
||||
logger.setLevel(logging.WARNING) # be less verbose
|
||||
```
|
||||
|
||||
## Stability
|
||||
|
||||
The library is in development stage. The API is not stable.
|
1
tools/pyflix/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .flix import Flix
|
327
tools/pyflix/flix.py
Normal file
@ -0,0 +1,327 @@
|
||||
# Copyright (c) 2025 Oleg Kalachev <okalachev@gmail.com>
|
||||
# Repository: https://github.com/okalachev/flix
|
||||
|
||||
"""Python API for Flix drone."""
|
||||
|
||||
import os
|
||||
import time
|
||||
from queue import Queue, Empty
|
||||
from typing import Literal, Optional, Callable, List, Dict, Any, Union
|
||||
import logging
|
||||
import errno
|
||||
from threading import Thread, Timer
|
||||
from pymavlink import mavutil
|
||||
from pymavlink.quaternion import Quaternion
|
||||
from pymavlink.dialects.v20 import common as mavlink
|
||||
|
||||
logger = logging.getLogger('flix')
|
||||
if not logger.hasHandlers():
|
||||
handler = logging.StreamHandler()
|
||||
handler.setFormatter(logging.Formatter('%(name)s - %(levelname)s - %(message)s'))
|
||||
logger.addHandler(handler)
|
||||
logger.setLevel(logging.INFO)
|
||||
|
||||
class Flix:
|
||||
connected: bool = False
|
||||
mode: str = ''
|
||||
armed: bool = False
|
||||
landed: bool = False
|
||||
attitude: List[float]
|
||||
attitude_euler: List[float] # roll, pitch, yaw
|
||||
rates: List[float]
|
||||
channels: List[int]
|
||||
motors: List[float]
|
||||
acc: List[float]
|
||||
gyro: List[float]
|
||||
|
||||
system_id: int
|
||||
messages: Dict[str, Dict[str, Any]] # MAVLink messages storage
|
||||
values: Dict[Union[str, int], Union[float, List[float]]] = {} # named values
|
||||
|
||||
_connection_timeout = 3
|
||||
_print_buffer: str = ''
|
||||
|
||||
def __init__(self, system_id: int=1, wait_connection: bool=True):
|
||||
if not (0 <= system_id < 256):
|
||||
raise ValueError('system_id must be in range [0, 255]')
|
||||
self._setup_mavlink()
|
||||
self.system_id = system_id
|
||||
self._init_state()
|
||||
try:
|
||||
# Direct connection
|
||||
logger.debug('Listening on port 14550')
|
||||
self.connection: mavutil.mavfile = mavutil.mavlink_connection('udpin:0.0.0.0:14550', source_system=255) # type: ignore
|
||||
except OSError as e:
|
||||
if e.errno != errno.EADDRINUSE:
|
||||
raise
|
||||
# Port busy - using proxy
|
||||
logger.debug('Listening on port 14560 (proxy)')
|
||||
self.connection: mavutil.mavfile = mavutil.mavlink_connection('udpin:0.0.0.0:14555', source_system=254) # type: ignore
|
||||
self.connection.target_system = system_id
|
||||
self.mavlink: mavlink.MAVLink = self.connection.mav
|
||||
self._event_listeners: Dict[str, List[Callable[..., Any]]] = {}
|
||||
self.messages = {}
|
||||
self._disconnected_timer = Timer(0, self._disconnected)
|
||||
self._reader_thread = Thread(target=self._read_mavlink, daemon=True)
|
||||
self._reader_thread.start()
|
||||
self._heartbeat_thread = Thread(target=self._send_heartbeat, daemon=True)
|
||||
self._heartbeat_thread.start()
|
||||
if wait_connection:
|
||||
self.wait('mavlink.HEARTBEAT')
|
||||
time.sleep(0.2) # give some time to receive initial state
|
||||
|
||||
def _init_state(self):
|
||||
self.attitude = [1, 0, 0, 0]
|
||||
self.attitude_euler = [0, 0, 0]
|
||||
self.rates = [0, 0, 0]
|
||||
self.channels = [0, 0, 0, 0, 0, 0, 0, 0]
|
||||
self.motors = [0, 0, 0, 0]
|
||||
self.acc = [0, 0, 0]
|
||||
self.gyro = [0, 0, 0]
|
||||
|
||||
def on(self, event: str, callback: Callable):
|
||||
event = event.lower()
|
||||
if event not in self._event_listeners:
|
||||
self._event_listeners[event] = []
|
||||
self._event_listeners[event].append(callback)
|
||||
|
||||
def off(self, callback: Callable):
|
||||
for event in self._event_listeners:
|
||||
if callback in self._event_listeners[event]:
|
||||
self._event_listeners[event].remove(callback)
|
||||
|
||||
def _trigger(self, event: str, *args):
|
||||
event = event.lower()
|
||||
for callback in self._event_listeners.get(event, []):
|
||||
try:
|
||||
callback(*args)
|
||||
except Exception as e:
|
||||
logger.error(f'Error in event listener for event {event}: {e}')
|
||||
|
||||
def wait(self, event: str, value: Union[Any, Callable[..., bool]] = lambda *args: True, timeout=None) -> Any:
|
||||
"""Wait for an event"""
|
||||
event = event.lower()
|
||||
q = Queue()
|
||||
def callback(*args):
|
||||
if len(args) == 0:
|
||||
result = None
|
||||
elif len(args) == 1:
|
||||
result = args[0]
|
||||
else:
|
||||
result = args
|
||||
if callable(value) and value(*args):
|
||||
q.put_nowait(result)
|
||||
elif value == result:
|
||||
q.put_nowait(result)
|
||||
self.on(event, callback)
|
||||
try:
|
||||
return q.get(timeout=timeout)
|
||||
except Empty:
|
||||
raise TimeoutError
|
||||
finally:
|
||||
self.off(callback)
|
||||
|
||||
@staticmethod
|
||||
def _setup_mavlink():
|
||||
# otherwise it will use MAVLink 1.0 until connected
|
||||
os.environ['MAVLINK20'] = '1'
|
||||
mavutil.set_dialect('common')
|
||||
|
||||
def _read_mavlink(self):
|
||||
while True:
|
||||
try:
|
||||
msg: Optional[mavlink.MAVLink_message] = self.connection.recv_match(blocking=True)
|
||||
if msg is None:
|
||||
continue
|
||||
self._connected()
|
||||
msg_dict = msg.to_dict()
|
||||
msg_dict['_timestamp'] = time.time() # add timestamp
|
||||
self.messages[msg.get_type()] = msg_dict
|
||||
self._trigger('mavlink', msg)
|
||||
self._trigger(f'mavlink.{msg.get_type()}', msg) # trigger mavlink.<message_type>
|
||||
self._trigger(f'mavlink.{msg.get_msgId()}', msg) # trigger mavlink.<message_id>
|
||||
self._handle_mavlink_message(msg)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f'Error reading MAVLink message: {e}')
|
||||
|
||||
def _handle_mavlink_message(self, msg: mavlink.MAVLink_message):
|
||||
if isinstance(msg, mavlink.MAVLink_heartbeat_message):
|
||||
self.mode = ['MANUAL', 'ACRO', 'STAB', 'USER'][msg.custom_mode]
|
||||
self.armed = msg.base_mode & mavlink.MAV_MODE_FLAG_SAFETY_ARMED != 0
|
||||
self._trigger('mode', self.mode)
|
||||
self._trigger('armed', self.armed)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_extended_sys_state_message):
|
||||
self.landed = msg.landed_state == mavlink.MAV_LANDED_STATE_ON_GROUND
|
||||
self._trigger('landed', self.landed)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_attitude_quaternion_message):
|
||||
self.attitude = self._mavlink_to_flu([msg.q1, msg.q2, msg.q3, msg.q4])
|
||||
self.rates = self._mavlink_to_flu([msg.rollspeed, msg.pitchspeed, msg.yawspeed])
|
||||
self.attitude_euler = list(Quaternion(self.attitude).euler) # type: ignore
|
||||
self._trigger('attitude', self.attitude)
|
||||
self._trigger('attitude_euler', self.attitude_euler)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_rc_channels_raw_message):
|
||||
self.channels = [msg.chan1_raw, msg.chan2_raw, msg.chan3_raw, msg.chan4_raw,
|
||||
msg.chan5_raw, msg.chan6_raw, msg.chan7_raw, msg.chan8_raw]
|
||||
self._trigger('channels', self.channels)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_actuator_output_status_message):
|
||||
self.motors = msg.actuator[:4] # type: ignore
|
||||
self._trigger('motors', self.motors)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_scaled_imu_message):
|
||||
self.acc = self._mavlink_to_flu([msg.xacc / 1000, msg.yacc / 1000, msg.zacc / 1000])
|
||||
self.gyro = self._mavlink_to_flu([msg.xgyro / 1000, msg.ygyro / 1000, msg.zgyro / 1000])
|
||||
self._trigger('acc', self.acc)
|
||||
self._trigger('gyro', self.gyro)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_serial_control_message):
|
||||
# new chunk of data
|
||||
text = bytes(msg.data)[:msg.count].decode('utf-8', errors='ignore')
|
||||
logger.debug(f'Console: {repr(text)}')
|
||||
self._trigger('print', text)
|
||||
self._print_buffer += text
|
||||
if msg.flags & mavlink.SERIAL_CONTROL_FLAG_MULTI == 0:
|
||||
# last chunk
|
||||
self._trigger('print_full', self._print_buffer)
|
||||
self._print_buffer = ''
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_statustext_message):
|
||||
logger.info(f'Flix #{msg.get_srcSystem()}: {msg.text}')
|
||||
self._trigger('status', msg.text)
|
||||
|
||||
if isinstance(msg, (mavlink.MAVLink_named_value_float_message, mavlink.MAVLink_named_value_int_message)):
|
||||
self.values[msg.name] = msg.value
|
||||
self._trigger('value', msg.name, msg.value)
|
||||
self._trigger(f'value.{msg.name}', msg.value)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_debug_message):
|
||||
self.values[msg.ind] = msg.value
|
||||
self._trigger('value', msg.ind, msg.value)
|
||||
self._trigger(f'value.{msg.ind}', msg.value)
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_debug_vect_message):
|
||||
self.values[msg.name] = [msg.x, msg.y, msg.z]
|
||||
self._trigger('value', msg.name, self.values[msg.name])
|
||||
self._trigger(f'value.{msg.name}', self.values[msg.name])
|
||||
|
||||
if isinstance(msg, mavlink.MAVLink_debug_float_array_message):
|
||||
self.values[msg.name] = list(msg.data)
|
||||
self._trigger('value', msg.name, self.values[msg.name])
|
||||
self._trigger(f'value.{msg.name}', self.values[msg.name])
|
||||
|
||||
def _send_heartbeat(self):
|
||||
while True:
|
||||
self.mavlink.heartbeat_send(mavlink.MAV_TYPE_GCS, mavlink.MAV_AUTOPILOT_INVALID, 0, 0, 0)
|
||||
time.sleep(1)
|
||||
|
||||
@staticmethod
|
||||
def _mavlink_to_flu(v: List[float]) -> List[float]:
|
||||
if len(v) == 3: # vector
|
||||
return [v[0], -v[1], -v[2]]
|
||||
elif len(v) == 4: # quaternion
|
||||
return [v[0], v[1], -v[2], -v[3]]
|
||||
else:
|
||||
raise ValueError(f'List must have 3 (vector) or 4 (quaternion) elements')
|
||||
|
||||
@staticmethod
|
||||
def _flu_to_mavlink(v: List[float]) -> List[float]:
|
||||
return Flix._mavlink_to_flu(v)
|
||||
|
||||
def _connected(self):
|
||||
# Reset disconnection timer
|
||||
self._disconnected_timer.cancel()
|
||||
self._disconnected_timer = Timer(self._connection_timeout, self._disconnected)
|
||||
self._disconnected_timer.start()
|
||||
|
||||
if not self.connected:
|
||||
logger.info('Connection is established')
|
||||
self.connected = True
|
||||
self._trigger('connected')
|
||||
|
||||
def _disconnected(self):
|
||||
logger.info('Connection is lost')
|
||||
self.connected = False
|
||||
self._trigger('disconnected')
|
||||
|
||||
def get_param(self, name: str) -> float:
|
||||
if len(name.encode('ascii')) > 16:
|
||||
raise ValueError('Parameter name must be 16 characters or less')
|
||||
for attempt in range(3):
|
||||
try:
|
||||
logger.debug(f'Get param {name} (attempt #{attempt + 1})')
|
||||
self.mavlink.param_request_read_send(self.system_id, 0, name.encode('ascii'), -1)
|
||||
msg: mavlink.MAVLink_param_value_message = \
|
||||
self.wait('mavlink.PARAM_VALUE', value=lambda msg: msg.param_id == name, timeout=0.1)
|
||||
return msg.param_value
|
||||
except TimeoutError:
|
||||
continue
|
||||
raise RuntimeError(f'Failed to get parameter {name} after 3 attempts')
|
||||
|
||||
def set_param(self, name: str, value: float):
|
||||
if len(name.encode('ascii')) > 16:
|
||||
raise ValueError('Parameter name must be 16 characters or less')
|
||||
for attempt in range(3):
|
||||
try:
|
||||
logger.debug(f'Set param {name} to {value} (attempt #{attempt + 1})')
|
||||
self.mavlink.param_set_send(self.system_id, 0, name.encode('ascii'), value, mavlink.MAV_PARAM_TYPE_REAL32)
|
||||
self.wait('mavlink.PARAM_VALUE', value=lambda msg: msg.param_id == name, timeout=0.1)
|
||||
return
|
||||
except TimeoutError:
|
||||
# on timeout try again
|
||||
continue
|
||||
raise RuntimeError(f'Failed to set parameter {name} to {value} after 3 attempts')
|
||||
|
||||
def set_position(self, position: List[float], yaw: Optional[float] = None, wait: bool = False, tolerance: float = 0.1):
|
||||
raise NotImplementedError('Position control is not implemented yet')
|
||||
|
||||
def set_velocity(self, velocity: List[float], yaw: Optional[float] = None):
|
||||
raise NotImplementedError('Velocity control is not implemented yet')
|
||||
|
||||
def set_attitude(self, attitude: List[float], thrust: float):
|
||||
raise NotImplementedError('Automatic flight is not implemented yet')
|
||||
|
||||
def set_rates(self, rates: List[float], thrust: float):
|
||||
raise NotImplementedError('Automatic flight is not implemented yet')
|
||||
|
||||
def set_motors(self, motors: List[float]):
|
||||
if len(motors) != 4:
|
||||
raise ValueError('motors must have 4 values')
|
||||
if not all(0 <= m <= 1 for m in motors):
|
||||
raise ValueError('motors must be in range [0, 1]')
|
||||
raise NotImplementedError
|
||||
|
||||
def set_controls(self, roll: float, pitch: float, yaw: float, throttle: float):
|
||||
"""Send pilot's controls. Warning: not intended for automatic control"""
|
||||
if not (-1 <= roll <= 1 and -1 <= pitch <= 1 and -1 <= yaw <= 1):
|
||||
raise ValueError('roll, pitch, yaw must be in range [-1, 1]')
|
||||
if not 0 <= throttle <= 1:
|
||||
raise ValueError('throttle must be in range [0, 1]')
|
||||
self.mavlink.manual_control_send(self.system_id, roll * 1000, pitch * 1000, yaw * 1000, throttle * 1000, 0) # type: ignore
|
||||
|
||||
def set_mode(self, mode: Literal['MANUAL', 'ACRO', 'STAB', 'USER']):
|
||||
raise NotImplementedError('Setting mode is not implemented yet')
|
||||
|
||||
def cli(self, cmd: str, wait_response: bool = True) -> str:
|
||||
cmd = cmd.strip()
|
||||
if cmd == 'reboot':
|
||||
wait_response = False # reboot command doesn't respond
|
||||
cmd_bytes = (cmd + '\n').encode('utf-8')
|
||||
if len(cmd_bytes) > 70:
|
||||
raise ValueError(f'Command is too long: {len(cmd_bytes)} > 70')
|
||||
cmd_bytes = cmd_bytes.ljust(70, b'\0')
|
||||
response_prefix = f'> {cmd}\n'
|
||||
for attempt in range(3):
|
||||
logger.debug(f'Send command {cmd} (attempt #{attempt + 1})')
|
||||
try:
|
||||
self.mavlink.serial_control_send(0, 0, 0, 0, len(cmd_bytes), cmd_bytes)
|
||||
if not wait_response:
|
||||
return ''
|
||||
response = self.wait('print_full', timeout=0.1, value=lambda text: text.startswith(response_prefix))
|
||||
return response[len(response_prefix):].strip()
|
||||
except TimeoutError:
|
||||
continue
|
||||
raise RuntimeError(f'Failed to send command {cmd} after 3 attempts')
|
37
tools/pyflix/proxy.py
Executable file
@ -0,0 +1,37 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
"""Proxy for running pyflix library alongside QGroundControl app."""
|
||||
|
||||
import socket
|
||||
|
||||
LOCAL = ('0.0.0.0', 14550) # from Flix
|
||||
TARGETS = (
|
||||
('127.0.0.1', 14560), # to QGroundControl
|
||||
('127.0.0.1', 14555), # to pyflix
|
||||
)
|
||||
|
||||
def main():
|
||||
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
||||
sock.bind(LOCAL)
|
||||
|
||||
source_addr = None
|
||||
packets = 0
|
||||
|
||||
print('Proxy started - run QGroundControl')
|
||||
|
||||
while True:
|
||||
data, addr = sock.recvfrom(1024) # read entire UDP packet
|
||||
if addr in TARGETS: # packet from target
|
||||
if source_addr is None:
|
||||
continue
|
||||
sock.sendto(data, source_addr)
|
||||
else: # packet from source
|
||||
source_addr = addr
|
||||
for target in TARGETS:
|
||||
sock.sendto(data, target)
|
||||
|
||||
packets += 1
|
||||
print(f'\rPackets: {packets}', end='')
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
29
tools/pyproject.toml
Normal file
@ -0,0 +1,29 @@
|
||||
[project]
|
||||
name = "pyflix"
|
||||
version = "0.5"
|
||||
description = "Python API for Flix drone"
|
||||
authors = [{ name="Oleg Kalachev", email="okalachev@gmail.com" }]
|
||||
license = "MIT"
|
||||
readme = "pyflix/README.md"
|
||||
requires-python = ">=3.8"
|
||||
dependencies = [
|
||||
"pymavlink",
|
||||
]
|
||||
|
||||
[project.scripts]
|
||||
flix-proxy = "pyflix.proxy:main"
|
||||
|
||||
[build-system]
|
||||
requires = ["setuptools>=61.0"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.setuptools]
|
||||
packages = ["pyflix"]
|
||||
|
||||
[tool.setuptools.package-data]
|
||||
pyflix = ["README.md"]
|
||||
|
||||
[project.urls]
|
||||
Homepage = "https://github.com/okalachev/flix/tree/master/tools/pyflix"
|
||||
Repository = "https://github.com/okalachev/flix"
|
||||
Issues = "https://github.com/okalachev/flix/issues"
|