73 Commits

Author SHA1 Message Date
Oleg Kalachev
a5504cc550 Fix rates, acc and gyro coordinate frame in mavlink
All of them should be in frd.
Get rid of fluToFrd function - there is no big need for it.
2025-07-20 07:59:00 +03:00
Oleg Kalachev
cfb0f17a9a Minor cli change 2025-07-15 01:29:25 +03:00
Oleg Kalachev
d61948ec9c Rename printIMUCal to printIMUCalibration for consistency with rc 2025-07-15 01:25:10 +03:00
Oleg Kalachev
0c87d4d634 Port changes from commit 52819e4 2025-07-15 01:22:18 +03:00
Oleg Kalachev
4d1f9de872 Remove unnecessary documentation files 2025-07-10 06:14:22 +03:00
Oleg Kalachev
cf3d4d7ced Increase motors pwm frequency to 78Khz
1000 Hz is too low frequency considering the update loop for motors signal is also 1000 Hz.
Decrease resolution as it's required to set larger pwm frequencies.
This change should vastly improve control jitter and remove audible motors noise.
2025-07-10 06:08:37 +03:00
Oleg Kalachev
443e5213f0 Return zero rotation vector when converting neutral quaternion
Previously it would return nans
2025-07-10 06:07:16 +03:00
Oleg Kalachev
f24db96b50 Add missing equals and non-equals operators for quaternion lib 2025-07-10 06:07:08 +03:00
Oleg Kalachev
86305a08f8 Add missing newlines to initialization prints 2025-07-10 06:06:46 +03:00
Oleg Kalachev
21dcb39b7e Improve vector and quaternion libraries
Make the order or basic methods consistent between Vector and Quaternion.
Remove `ZYX` from Euler method names as this is standard for robotics.
Rename angular rates to rotation vector, which is more correct.
Make rotation methods static, to keep the arguments order consistent.
Make `Quaternion::fromAxisAngle` accept Vector for axis.
Minor fixes.
2025-07-10 06:02:38 +03:00
Oleg Kalachev
c08c89f667 Minor code updates 2025-07-10 05:58:50 +03:00
Oleg Kalachev
114d2305de Make wi-fi code more consistent between the firmware and simulation 2025-07-10 05:54:52 +03:00
Oleg Kalachev
a93e046117 Make sending udp packets much faster
Turns out parsing IP address string is very slow
2025-05-07 17:43:43 +03:00
Oleg Kalachev
e6e4db0c4f Update ESP32-Core to 3.2.0 2025-05-07 17:41:48 +03:00
Oleg Kalachev
d8fbc193c1 Make accelerometer calibration more verbose
Print the number of each calibration step
2025-05-07 17:40:31 +03:00
Oleg Kalachev
dcd95176b4 Make low pass filter formula more straightforward 2025-04-30 00:16:16 +03:00
Oleg Kalachev
b7cebbb3d6 Add some missing operator for vector library 2025-04-30 00:16:02 +03:00
Oleg Kalachev
a6ccd236de Fix simulation build in Actions
Switched runner to Ubuntu 22.04 since Gazebo 11 now has binaries for 22.04 (amd64 only).
Changed the building tutorial to reflect that.
2025-04-29 23:02:56 +03:00
Oleg Kalachev
e7a06b9413 Minor code simplifications 2025-04-29 23:01:59 +03:00
Oleg Kalachev
678bc7238e Update MAVLink-Arduino to 2.0.16 2025-04-29 23:01:46 +03:00
Oleg Kalachev
6670b4f358 Simplify and improve acc calibration command output 2025-04-29 23:01:09 +03:00
Oleg Kalachev
7f80a8a58d Remove twxs.cmake from the list of recommended extensions 2025-04-29 22:59:32 +03:00
Oleg Kalachev
2bd74e7f6f Minor code style fix 2025-04-29 22:59:09 +03:00
Oleg Kalachev
d378d01dbc Encode if the mode in stabilized in heartbeat message 2025-04-29 22:58:54 +03:00
Oleg Kalachev
e8341976f6 Cleanup 2025-03-01 00:02:44 +03:00
Oleg Kalachev
f2aae92f1e Cleanups and updates 2025-02-28 23:58:31 +03:00
Oleg Kalachev
0a7ed1039f Rename flu to frd function to match the code style 2025-02-28 23:39:03 +03:00
Oleg Kalachev
d4d1797ffc Update main readme for the minimal version 2025-02-28 23:22:03 +03:00
Oleg Kalachev
209986b9cd Change accel calibration code style a bit 2025-02-28 23:15:02 +03:00
Oleg Kalachev
32cdbba2a1 Remove dt multiplier from acc correction and increase acc weight
More classical complementary filter implementation
Increase effective accelerometer weight for faster convergence
2025-02-28 23:13:44 +03:00
Oleg Kalachev
dd1ea4f604 Cleanup mavlink subsystem code 2025-02-28 23:12:57 +03:00
Oleg Kalachev
5fc30dbd8a Put last control time in RC control mavlink message instead of send time 2025-02-28 23:08:40 +03:00
Oleg Kalachev
51fa5a6cac Simplify and fix code 2025-02-28 23:07:37 +03:00
Oleg Kalachev
75127eb6f8 Remove non-nessesary printArray function 2025-02-28 23:06:12 +03:00
Oleg Kalachev
89c1ada005 Remove command parsing to simplify the code 2025-02-28 23:02:02 +03:00
Oleg Kalachev
6058e8ecab Refactor CLI submodule
Move command parsing to doCommand
Parse command with splitString instead of stringToken
Trim commands
Move cliTestMotor to the bottom
Rename parseInput to handleInput, which is more clear
Move motor test function to motors.ino
Remove parameters table functionality to simplify the code
2025-02-28 22:49:37 +03:00
Oleg Kalachev
67e4a95697 Minor fix in joystick support for simulation
Don't use channels variable as it breaks code isolation
2025-02-28 22:30:29 +03:00
Oleg Kalachev
fafe630e4c Improve RC reading in calibration process 2025-02-28 22:29:36 +03:00
Oleg Kalachev
5ff44db8dd Simplify WIFI_ENABLED macro test 2025-02-28 22:28:44 +03:00
Zatupitel
2b15812483 Fix working on ESP32-S3 (#8)
Disable brown-out detector in a more correct way: clear only enable bit instead of clearing the whole register.

---------

Co-authored-by: Oleg Kalachev <okalachev@gmail.com>
2025-02-28 22:28:10 +03:00
Oleg Kalachev
dbfbe11478 Add test on building the firmware without Wi-Fi to Actions 2025-02-28 22:26:05 +03:00
Oleg Kalachev
41b5932a5d Move SBUS RC declaration to the top 2025-02-28 22:25:27 +03:00
Oleg Kalachev
add03482aa Minor cleanups and fixes 2025-02-28 22:24:15 +03:00
Oleg Kalachev
32c4875ca1 Increase pwm frequency and resolution 2025-02-28 22:22:39 +03:00
Oleg Kalachev
07c5ae19dd Update upload-artifact action to fix build 2025-02-28 22:21:53 +03:00
Oleg Kalachev
d60968ea25 Remove RC_CHANNELS macro 2025-02-28 22:19:52 +03:00
Oleg Kalachev
03c6576b72 Move controlsTime variable to rc.ino 2025-01-11 01:17:11 +03:00
Oleg Kalachev
59a8a80cce Minor cleanup 2025-01-10 07:15:38 +03:00
Oleg Kalachev
5530ad2981 Move loopRate to time.ino 2025-01-10 07:15:15 +03:00
Oleg Kalachev
f9e1802bc0 Make util module header instead of .ino-file 2025-01-10 07:02:00 +03:00
Oleg Kalachev
ddc46c049f Make ONE_G definition const and move to utils.ino 2025-01-09 11:31:33 +03:00
Oleg Kalachev
8c9bff0813 Make motor indexes definition const int and move them to motors.ino
Remove motor indexes definitions from flix.ino
Add motors.ino to simulation code and implement required mocks
2025-01-09 11:17:44 +03:00
Oleg Kalachev
e3873c99c5 Fix getDutyCycle return type to make it possible to increase resolution 2025-01-09 11:02:57 +03:00
Oleg Kalachev
fd437b96d3 Add missing const qualifiers to some quaternion methods 2025-01-09 10:03:08 +03:00
Oleg Kalachev
9a977e85c8 Implement rotate method for quaternions as replace for multiplication
Vector rotating method is renamed from `rotate` to `rotateVector` to avoid inconsistent object and argument order in different `rotate` methods
2025-01-09 10:00:16 +03:00
Oleg Kalachev
e66cadbb57 Some fixes and updates to readme and other articles 2025-01-09 10:00:05 +03:00
Oleg Kalachev
abfb3fea05 Update ESP32-core to 3.1.0 2025-01-09 09:59:51 +03:00
Oleg Kalachev
672149bd34 Use ubuntu-20.04 runner to build simulator in CI
The latest Ubuntu Gazebo 11 officially supports is Ubuntu 20.04
2025-01-09 09:59:40 +03:00
Oleg Kalachev
6c76d339e0 Add battery connector cable to components list 2025-01-09 09:59:31 +03:00
Oleg Kalachev
a76f5a2299 Remove redundant inline specifiers
In-class defined methods are specified as inline by default
2025-01-09 09:59:10 +03:00
Oleg Kalachev
8e8c8d05bb Some minor cleanups and fixes 2025-01-09 09:58:56 +03:00
Oleg Kalachev
1582238abc Various minor fixes 2024-12-27 21:53:23 +03:00
Oleg Kalachev
f7434921e5 Fix joystick work in simulation
Logic was broken as joystickGet never got called
2024-12-27 15:38:44 +03:00
Oleg Kalachev
3c28d0e950 Minor fix 2024-12-25 02:21:40 +03:00
Oleg Kalachev
77c621100f Increase motors output frequency 2024-12-25 02:19:06 +03:00
Oleg Kalachev
1ef1ed5fc4 Simplify motors duty cycle computation 2024-12-25 02:19:00 +03:00
Oleg Kalachev
ce67baae89 Minor fixes 2024-12-25 02:18:52 +03:00
Oleg Kalachev
ad9259810f Fix SBUS simulation logic
Don't consider zero values from not connected joystick
2024-12-25 02:17:58 +03:00
Oleg Kalachev
c43624734d Move ONE_G definition to flix.ino 2024-12-25 02:17:50 +03:00
Oleg Kalachev
292b10197f Improve logic of passing channels data in simulated SBUS
Return the data the same way as on the real drone without touching channels global vairable
2024-12-25 02:17:43 +03:00
Oleg Kalachev
16c9d8fe8a Minor change 2024-12-25 02:17:28 +03:00
Oleg Kalachev
931f46b92d Don't let throttle be less than 0 in failsafe 2024-12-25 02:17:16 +03:00
Oleg Kalachev
441f82af95 Add notice on removing props in motor test commands in help 2024-12-25 02:16:34 +03:00
106 changed files with 413 additions and 7271 deletions

View File

@@ -5,7 +5,6 @@ on:
branches: [ '*' ]
pull_request:
branches: [ master ]
workflow_dispatch:
jobs:
build_linux:
@@ -63,43 +62,22 @@ jobs:
path: gazebo/build/*.so
retention-days: 1
build_simulator_docker:
runs-on: ubuntu-latest
container:
image: ubuntu:20.04
steps:
- name: Install Arduino CLI
uses: arduino/setup-arduino-cli@v1.1.1
- uses: actions/checkout@v4
- name: Install Gazebo
run: curl -sSL http://get.gazebosim.org | sh
- name: Install SDL2
run: apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install build-essential libsdl2-dev -y
- name: Build simulator
run: make build_simulator
- uses: actions/upload-artifact@v4
with:
name: gazebo-plugin-binary
path: gazebo/build/*.so
retention-days: 1
build_simulator_macos:
runs-on: macos-latest
if: github.event_name == 'workflow_dispatch'
steps:
- name: Install Arduino CLI
run: brew install arduino-cli
- uses: actions/checkout@v4
- name: Clean up python binaries # Workaround for https://github.com/actions/setup-python/issues/577
run: |
rm -f /usr/local/bin/2to3*
rm -f /usr/local/bin/idle3*
rm -f /usr/local/bin/pydoc3*
rm -f /usr/local/bin/python3*
rm -f /usr/local/bin/python3*-config
- name: Install Gazebo
run: brew update && brew tap osrf/simulation && brew install gazebo11
- name: Install SDL2
run: brew install sdl2
- name: Build simulator
run: make build_simulator
# build_simulator_macos:
# runs-on: macos-latest
# steps:
# - name: Install Arduino CLI
# run: brew install arduino-cli
# - uses: actions/checkout@v4
# - name: Clean up python binaries # Workaround for https://github.com/actions/setup-python/issues/577
# run: |
# rm -f /usr/local/bin/2to3*
# rm -f /usr/local/bin/idle3*
# rm -f /usr/local/bin/pydoc3*
# rm -f /usr/local/bin/python3*
# rm -f /usr/local/bin/python3*-config
# - name: Install Gazebo
# run: brew update && brew tap osrf/simulation && brew install gazebo11
# - name: Install SDL2
# run: brew install sdl2
# - name: Build simulator
# run: make build_simulator

View File

@@ -1,51 +0,0 @@
name: Docs
on:
push:
branches: [ '*' ]
pull_request:
branches: [ master ]
permissions:
contents: read
pages: write
id-token: write
jobs:
markdownlint:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Install markdownlint
run: npm install -g markdownlint-cli2
- name: Run markdownlint
run: markdownlint-cli2 "**/*.md"
build_book:
runs-on: ubuntu-latest
needs: markdownlint
steps:
- uses: actions/checkout@v4
- name: Install mdBook
run: cargo install mdbook --vers 0.4.43 --locked
- name: Build book
run: cd docs && mdbook build
- name: Upload artifact
uses: actions/upload-pages-artifact@v3
with:
path: docs/build
deploy:
if: ${{ github.event_name == 'push' && github.ref == 'refs/heads/master' }}
concurrency:
group: "pages"
cancel-in-progress: true
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-latest
needs: build_book
steps:
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v4

View File

@@ -1,67 +0,0 @@
{
"MD004": {
"style": "asterisk"
},
"MD010": false,
"MD013": false,
"MD024": false,
"MD033": false,
"MD034": false,
"MD044": {
"html_elements": false,
"code_blocks": false,
"names": [
"FlixPeriph",
"Wi-Fi",
"STM",
"Li-ion",
"GitHub",
"github.com",
"PPM",
"PWM",
"Futaba",
"S.Bus",
"C++",
"PID",
"Arduino IDE",
"Arduino",
"Arduino Nano",
"ESP32",
"IMU",
"MEMS",
"imu.ino",
"InvenSense",
"MPU-6050",
"MPU-9250",
"GY-91",
"ICM-20948",
"Linux",
"Windows",
"macOS",
"iOS",
"Android",
"Bluetooth",
"GPS",
"GPIO",
"USB",
"SPI",
"I²C",
"UART",
"GND",
"3V3",
"VCC",
"SCL",
"SDA",
"SAO",
"AD0",
"MOSI",
"MISO",
"NCS",
"MOSFET",
"ArduPilot",
"Betaflight",
"PX4"
]
},
"MD045": false
}

View File

@@ -5,18 +5,18 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/.arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/Arduino/libraries/**",
"/usr/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/.arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@@ -28,10 +28,9 @@
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
"${workspaceFolder}/flix/wifi.ino"
],
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/.arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@@ -51,19 +50,19 @@
"name": "Mac",
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
// "${workspaceFolder}/gazebo",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/include/**",
"~/Library/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**",
"/opt/homebrew/include/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/Library/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/flix.ino",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
@@ -75,10 +74,9 @@
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
"${workspaceFolder}/flix/wifi.ino"
],
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++",
"compilerPath": "~/Library/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [
@@ -100,17 +98,17 @@
"includePath": [
"${workspaceFolder}/flix",
"${workspaceFolder}/gazebo",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.3-083aad99-v2/esp32/dio_qspi/include",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/libraries/**",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/**",
"~/AppData/Local/Arduino15/packages/esp32/tools/esp32-arduino-libs/idf-release_v5.4-2f7dcd86-v1/esp32/dio_qspi/include",
"~/Documents/Arduino/libraries/**"
],
"forcedInclude": [
"${workspaceFolder}/.vscode/intellisense.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.1.0/variants/d1_mini32/pins_arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/cores/esp32/Arduino.h",
"~/AppData/Local/Arduino15/packages/esp32/hardware/esp32/3.2.0/variants/d1_mini32/pins_arduino.h",
"${workspaceFolder}/flix/cli.ino",
"${workspaceFolder}/flix/control.ino",
"${workspaceFolder}/flix/estimate.ino",
@@ -122,10 +120,9 @@
"${workspaceFolder}/flix/motors.ino",
"${workspaceFolder}/flix/rc.ino",
"${workspaceFolder}/flix/time.ino",
"${workspaceFolder}/flix/wifi.ino",
"${workspaceFolder}/flix/parameters.ino"
"${workspaceFolder}/flix/wifi.ino"
],
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2405/bin/xtensa-esp32-elf-g++.exe",
"compilerPath": "~/AppData/Local/Arduino15/packages/esp32/tools/esp-x32/2411/bin/xtensa-esp32-elf-g++.exe",
"cStandard": "c11",
"cppStandard": "c++17",
"defines": [

View File

@@ -13,7 +13,7 @@ monitor:
dependencies .dependencies:
arduino-cli core update-index --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.1.0 --config-file arduino-cli.yaml
arduino-cli core install esp32:esp32@3.2.0 --config-file arduino-cli.yaml
arduino-cli lib update-index
arduino-cli lib install "FlixPeriph"
arduino-cli lib install "MAVLink"@2.0.16

162
README.md
View File

@@ -1,163 +1,7 @@
# Flix
**Flix** (*flight + X*) — making an open source ESP32-based quadcopter from scratch.
Minimal **Flix** quadcopter firmware implementation for the [book](https://quadcopter.dev).
<table>
<tr>
<td align=center><strong>Version 1.1</strong> (3D-printed frame)</td>
<td align=center><strong>Version 0</strong></td>
</tr>
<tr>
<td><img src="docs/img/flix1.1.jpg" width=500 alt="Flix quadcopter"></td>
<td><img src="docs/img/flix.jpg" width=500 alt="Flix quadcopter"></td>
</tr>
</table>
See the full code and documentation in the main branch: https://github.com/okalachev/flix.
## Features
* Simple and clean Arduino based source code.
* Acro and Stabilized flight using remote control.
* Precise simulation using Gazebo.
* [In-RAM logging](docs/log.md).
* Command line interface through USB port.
* Wi-Fi support.
* MAVLink support.
* Control using mobile phone (with QGroundControl app).
* Completely 3D-printed frame.
* Textbook for students on writing a flight controller ([in development](https://quadcopter.dev)).
* *Position control and autonomous flights using external camera¹*.
* [Building and running instructions](docs/build.md).
*¹ — planned.*
## It actually flies
See detailed demo video: https://youtu.be/hT46CZ1CgC4.
<a href="https://youtu.be/hT46CZ1CgC4"><img width=500 src="https://i3.ytimg.com/vi/hT46CZ1CgC4/maxresdefault.jpg"></a>
Version 0 demo video: https://youtu.be/8GzzIQ3C6DQ.
<a href="https://youtu.be/8GzzIQ3C6DQ"><img width=500 src="https://i3.ytimg.com/vi/8GzzIQ3C6DQ/maxresdefault.jpg"></a>
See the [user builds gallery](docs/user.md).
<a href="docs/user.md"><img src="docs/img/user/user.jpg" width=400></a>
## Simulation
The simulator is implemented using Gazebo and runs the original Arduino code:
<img src="docs/img/simulator.png" width=500 alt="Flix simulator">
See [instructions on running the simulation](docs/build.md).
## Components (version 1)
|Type|Part|Image|Quantity|
|-|-|:-:|:-:|
|Microcontroller board|ESP32 Mini|<img src="docs/img/esp32.jpg" width=100>|1|
|IMU (and barometer²) board|GY91, MPU-9265 (or other MPU9250/MPU6500 board), ICM20948³|<img src="docs/img/gy-91.jpg" width=90 align=center><img src="docs/img/icm-20948.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (shaft 0.8mm).<br>Motor with exact 3.7V voltage is needed, not ranged working voltage (3.7V — 6V).|<img src="docs/img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="docs/img/prop.jpg" width=100>|4|
|MOSFET (transistor)|100N03A or [analog](https://t.me/opensourcequadcopter/33)|<img src="docs/img/100n03a.jpg" width=100>|4|
|Pull-down resistor|10 kΩ|<img src="docs/img/resistor10k.jpg" width=100>|4|
|3.7V Li-Po battery|LW 952540 (or any compatible by the size)|<img src="docs/img/battery.jpg" width=100>|1|
|Battery connector cable|MX2.0 2P female|<img src="docs/img/mx.png" width=100>|1|
|Li-Po Battery charger|Any|<img src="docs/img/charger.jpg" width=100>|1|
|Screws for IMU board mounting|M3x5|<img src="docs/img/screw-m3.jpg" width=100>|2|
|Screws for frame assembly|M1.4x5|<img src="docs/img/screw-m1.4.jpg" height=30 align=center>|4|
|Frame bottom part|3D printed⁴:<br>[`flix-frame-1.1.stl`](docs/assets/flix-frame-1.1.stl) [`flix-frame-1.1.step`](docs/assets/flix-frame-1.1.step)|<img src="docs/img/frame1.jpg" width=100>|1|
|Frame top part|3D printed:<br>[`esp32-holder.stl`](docs/assets/esp32-holder.stl) [`esp32-holder.step`](docs/assets/esp32-holder.step)|<img src="docs/img/esp32-holder.jpg" width=100>|1|
|Washer for IMU board mounting|3D printed:<br>[`washer-m3.stl`](docs/assets/washer-m3.stl) [`washer-m3.step`](docs/assets/washer-m3.step)|<img src="docs/img/washer-m3.jpg" width=100>|2|
|*RC transmitter (optional)*|*KINGKONG TINY X8 (warning: lacks USB support) or other⁵*|<img src="docs/img/tx.jpg" width=100>|1|
|*RC receiver (optional)*|*DF500 or other⁵*|<img src="docs/img/rx.jpg" width=100>|1|
|Wires|28 AWG recommended|<img src="docs/img/wire-28awg.jpg" width=100>||
|Tape, double-sided tape||||
*² — barometer is not used for now.*<br>
*³ — change `MPU9250` to `ICM20948` in `imu.ino` file if using ICM-20948 board.*<br>
*⁴ — this frame is optimized for GY-91 board, if using other, the board mount holes positions should be modified.*<br>
*⁵ — you may use any transmitter-receiver pair with SBUS interface.*
Tools required for assembly:
* 3D printer.
* Soldering iron.
* Solder wire (with flux).
* Screwdrivers.
* Multimeter.
Feel free to modify the design and or code, and create your own improved versions of Flix! Send your results to the [official Telegram chat](https://t.me/opensourcequadcopterchat), or directly to the author ([E-mail](mailto:okalachev@gmail.com), [Telegram](https://t.me/okalachev)).
## Schematics (version 1)
### Simplified connection diagram
<img src="docs/img/schematics1.svg" width=800 alt="Flix version 1 schematics">
Motor connection scheme:
<img src="docs/img/mosfet-connection.png" height=400 alt="MOSFET connection scheme">
You can see a user-contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14) of the drone.
See [assembly guide](docs/assembly.md) for instructions on assembling the drone.
### Notes
* Power ESP32 Mini with Li-Po battery using VCC (+) and GND (-) pins.
* Connect the IMU board to the ESP32 Mini using VSPI, power it using 3.3V and GND pins:
|IMU pin|ESP32 pin|
|-|-|
|GND|GND|
|3.3V|3.3V|
|SCL *(SCK)*|SVP (GPIO18)|
|SDA *(MOSI)*|GPIO23|
|SAO *(MISO)*|GPIO19|
|NCS|GPIO5|
* Solder pull-down resistors to the MOSFETs.
* Connect the motors to the ESP32 Mini using MOSFETs, by following scheme:
|Motor|Position|Direction|Wires|GPIO|
|-|-|-|-|-|
|Motor 0|Rear left|Counter-clockwise|Black & White|GPIO12 (*TDI*)|
|Motor 1|Rear right|Clockwise|Blue & Red|GPIO13 (*TCK*)|
|Motor 2|Front right|Counter-clockwise|Black & White|GPIO14 (*TMS*)|
|Motor 3|Front left|Clockwise|Blue & Red|GPIO15 (*TD0*)|
Counter-clockwise motors have black and white wires and clockwise motors have blue and red wires.
* Optionally connect the RC receiver to the ESP32's UART2:
|Receiver pin|ESP32 pin|
|-|-|
|GND|GND|
|VIN|VCC (or 3.3V depending on the receiver)|
|Signal (TX)|GPIO4⁶|
*⁶ — UART2 RX pin was [changed](https://docs.espressif.com/projects/arduino-esp32/en/latest/migration_guides/2.x_to_3.0.html#id14) to GPIO4 in Arduino ESP32 core 3.0.*
### IMU placement
Default IMU orientation in the code is **LFD** (Left-Forward-Down):
<img src="docs/img/gy91-lfd.svg" width=400 alt="GY-91 axes">
In case of using other IMU orientation, modify the `rotateIMU` function in the `imu.ino` file.
See [FlixPeriph documentation](https://github.com/okalachev/flixperiph?tab=readme-ov-file#imu-axes-orientation) to learn axis orientation of other IMU boards.
## Version 0
See the information on the obsolete version 0 in the [corresponding article](docs/version0.md).
## Materials
Subscribe to the Telegram channel on developing the drone and the flight controller (in Russian): https://t.me/opensourcequadcopter.
Join the official Telegram chat: https://t.me/opensourcequadcopterchat.
Detailed article on Habr.com about the development of the drone (in Russian): https://habr.com/ru/articles/814127/.
<img src="docs/img/flix1.jpg" width=500 alt="Flix quadcopter">

View File

@@ -1,10 +0,0 @@
build:
mdbook build
serve:
mdbook serve
clean:
mdbook clean
.PHONY: build serve clean

View File

@@ -1,31 +0,0 @@
# https://rust-lang.github.io/mdBook/format/configuration/preprocessors.html
# https://rust-lang.github.io/mdBook/for_developers/preprocessors.html
import json
import sys
import re
def transform_markdown_to_html(markdown_text):
def replace_blockquote(match):
tag = match.group(1).lower()
content = match.group(2).strip().replace('\n> ', ' ')
return f'<div class="alert alert-{tag}">{content}</div>\n'
pattern = re.compile(r'> \[!(NOTE|TIP|IMPORTANT|WARNING|CAUTION)\]\n>(.*?)\n?(?=(\n[^>]|\Z))', re.DOTALL)
transformed_text = pattern.sub(replace_blockquote, markdown_text)
return transformed_text
if __name__ == '__main__':
if len(sys.argv) > 1:
if sys.argv[1] == 'supports':
sys.exit(0)
context, book = json.load(sys.stdin)
for section in book['sections']:
if 'Chapter' in section:
section['Chapter']['content'] = transform_markdown_to_html(section['Chapter']['content'])
print(json.dumps(book))

View File

@@ -1,29 +0,0 @@
# Brief assembly guide
Soldered components ([schematics variant](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14)):
<img src="img/assembly/1.jpg" width=600>
<br>Use double-sided tape to attach ESP32 to the top frame part (ESP32 holder):
<img src="img/assembly/2.jpg" width=600>
<br>Use two washers to screw the IMU board to the frame:
<img src="img/assembly/3.jpg" width=600>
<br>Screw the IMU with M3x5 screws as shown:
<img src="img/assembly/4.jpg" width=600>
<br>Install the motors, attach MOSFETs to the frame using tape:
<img src="img/assembly/5.jpg" width=600>
<br>Screw the ESP32 holder with M1.4x5 screws to the frame:
<img src="img/assembly/6.jpg" width=600>
<br>Assembled drone:
<img src="img/assembly/7.jpg" width=600>

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@@ -1,110 +0,0 @@
.sidebar-resize-handle { display: none !important; }
footer {
contain: content;
border-top: 3px solid #f4f4f4;
}
footer a.telegram, footer a.github {
display: block;
margin-bottom: 10px;
margin-top: 10px;
display: flex;
align-items: center;
text-decoration: none;
}
.content .github, .content .telegram {
display: flex;
align-items: center;
text-align: center;
justify-content: center;
}
.telegram::before, .github::before {
font-family: FontAwesome;
margin-right: 0.3em;
font-size: 1.6em;
color: black;
}
.github::before {
content: "\f09b";
}
.telegram::before {
font-size: 1.4em;
color: #0084c5;
content: "\f2c6";
}
.content hr {
border: none;
border-top: 2px solid #c9c9c9;
margin: 2em 0;
}
.content img {
display: block;
margin: 0 auto;
}
.content img.border {
border: 1px solid #c9c9c9;
}
.firmware {
position: relative;
margin: 20px 0;
padding: 20px 20px;
padding-left: 60px;
color: var(--fg);
background-color: var(--quote-bg);
border-block-start: .1em solid var(--quote-border);
border-block-end: .1em solid var(--quote-border);
}
.firmware::before {
font-family: FontAwesome;
font-size: 1.5em;
content: "\f15b";
position: absolute;
width: 20px;
text-align: center;
left: 20px;
}
.alert {
margin-top: 20px;
margin-bottom: 20px;
position: relative;
border-left: 2px solid #0a69da;
padding: 20px;
padding-left: 60px;
}
.alert::before {
font-family: FontAwesome;
font-size: 1.5em;
color: #0a69da;
content: "\f05a";
position: absolute;
width: 20px;
text-align: center;
left: 20px;
}
.alert-tip { border-left-color: #1b7f37; }
.alert-tip::before { color: #1b7f37; content: '\f0eb'; }
.alert-caution { border-left-color: #cf212e; }
.alert-caution::before { color: #cf212e; content: '\f071'; }
.alert-important { border-left-color: #8250df; }
.alert-important::before { color: #8250df; content: '\f06a'; }
.alert-warning { border-left-color: #f0ad4e; }
.alert-warning::before { color: #f0ad4e; content: '\f071'; }
.alert-code { border-left-color: #333; }
.alert-code::before { color: #333; content: '\f121'; }

View File

@@ -1,22 +0,0 @@
[book]
authors = ["Oleg Kalachev"]
language = "ru"
multilingual = false
src = "book"
title = "Полетный контроллер с нуля"
description = "Учебник по разработке полетного контроллера квадрокоптера"
[build]
build-dir = "build"
[output.html]
additional-css = ["book.css", "zoom.css"]
additional-js = ["zoom.js", "js.js"]
edit-url-template = "https://github.com/okalachev/flix/blob/master/docs/{path}?plain=1"
mathjax-support = true
[output.html.code.hidelines]
cpp = "//~"
[preprocessor.alerts]
command = "python3 alerts.py"

View File

@@ -1,10 +0,0 @@
# Flix
> [!IMPORTANT]
> Flix — это проект по созданию открытого квадрокоптера на базе ESP32 с нуля и учебника по разработке полетных контроллеров.
<img src="img/flix1.1.jpg" class="border" width=500 alt="Flix quadcopter">
<p class="github">GitHub:&nbsp;<a href="https://github.com/okalachev/flix">github.com/okalachev/flix</a>.</p>
<p class="telegram">Telegram-канал:&nbsp;<a href="https://t.me/opensourcequadcopter">@opensourcequadcopter</a>.</p>

View File

@@ -1,22 +0,0 @@
<!-- markdownlint-disable MD041 -->
<!-- markdownlint-disable MD042 -->
[Главная](./README.md)
* [Архитектура прошивки](firmware.md)
# Учебник
* [Основы]()
* [Светодиод]()
* [Моторы]()
* [Радиоуправление]()
* [Гироскоп](gyro.md)
* [Акселерометр]()
* [Оценка состояния]()
* [PID-регулятор]()
* [Режим ACRO]()
* [Режим STAB]()
* [Wi-Fi]()
* [MAVLink]()
* [Симуляция]()

View File

@@ -1,32 +0,0 @@
# Архитектура прошивки
<img src="img/dataflow.svg" width=800 alt="Firmware dataflow diagram">
Главный цикл работает на частоте 1000 Гц. Передача данных между подсистемами происходит через глобальные переменные:
* `t` *(float)* — текущее время шага, *с*.
* `dt` *(float)* — дельта времени между текущим и предыдущим шагами, *с*.
* `gyro` *(Vector)* — данные с гироскопа, *рад/с*.
* `acc` *(Vector)* — данные с акселерометра, *м/с<sup>2</sup>*.
* `rates` *(Vector)* — отфильтрованные угловые скорости, *рад/с*.
* `attitude` *(Quaternion)* — оценка ориентации (положения) дрона.
* `controls` *(float[])* — пользовательские управляющие сигналы с пульта, нормализованные в диапазоне [-1, 1].
* `motors` *(float[])* — выходные сигналы на моторы, нормализованные в диапазоне [-1, 1] (возможно вращение в обратную сторону).
## Исходные файлы
Исходные файлы прошивки находятся в директории `flix`. Ключевые файлы:
* [`flix.ino`](https://github.com/okalachev/flix/blob/canonical/flix/flix.ino) — основной входной файл, скетч Arduino. Включает определение глобальных переменных и главный цикл.
* [`imu.ino`](https://github.com/okalachev/flix/blob/canonical/flix/imu.ino) — чтение данных с датчика IMU (гироскоп и акселерометр), калибровка IMU.
* [`rc.ino`](https://github.com/okalachev/flix/blob/canonical/flix/rc.ino) — чтение данных с RC-приемника, калибровка RC.
* [`mavlink.ino`](https://github.com/okalachev/flix/blob/canonical/flix/mavlink.ino) — взаимодействие с QGroundControl через MAVLink.
* [`estimate.ino`](https://github.com/okalachev/flix/blob/canonical/flix/estimate.ino) — оценка ориентации дрона, комплементарный фильтр.
* [`control.ino`](https://github.com/okalachev/flix/blob/canonical/flix/control.ino) — управление ориентацией и угловыми скоростями дрона, трехмерный двухуровневый каскадный PID-регулятор.
* [`motors.ino`](https://github.com/okalachev/flix/blob/canonical/flix/motors.ino) — управление выходными сигналами на моторы через ШИМ.
Вспомогательные файлы включают:
* [`vector.h`](https://github.com/okalachev/flix/blob/canonical/flix/vector.h), [`quaternion.h`](https://github.com/okalachev/flix/blob/canonical/flix/quaternion.h) — реализация библиотек векторов и кватернионов проекта.
* [`pid.h`](https://github.com/okalachev/flix/blob/canonical/flix/pid.h) — реализация общего ПИД-регулятора.
* [`lpf.h`](https://github.com/okalachev/flix/blob/canonical/flix/lpf.h) — реализация общего фильтра нижних частот.

View File

@@ -1,262 +0,0 @@
# Гироскоп
<div class="firmware">
<strong>Файл прошивки Flix:</strong>
<a href="https://github.com/okalachev/flix/blob/canonical/flix/imu.ino"><code>imu.ino</code></a> <small>(каноничная версия)</small>.<br>
Текущая версия: <a href="https://github.com/okalachev/flix/blob/master/flix/imu.ino"><code>imu.ino</code></a>.
</div>
Поддержание стабильного полета квадрокоптера невозможно без датчиков обратной связи. Важнейший из них — это **MEMS-гироскоп**. MEMS-гироскоп это микроэлектромеханический аналог классического механического гироскопа.
Механический гироскоп состоит из вращающегося диска, который сохраняет свою ориентацию в пространстве. Благодаря этому эффекту возможно определить ориентацию объекта в пространстве.
В MEMS-гироскопе нет вращающихся частей, и он помещается в крошечную микросхему. Он может измерять только текущую угловую скорость вращения объекта вокруг трех осей: X, Y и Z.
|Механический гироскоп|MEMS-гироскоп|
|-|-|
|<img src="img/gyroscope.jpg" width="300" alt="Механический гироскоп">|<img src="img/mpu9250.jpg" width="100" alt="MEMS-гироскоп MPU-9250">|
MEMS-гироскоп обычно интегрирован в инерциальный модуль (IMU), в котором также находятся акселерометр и магнитометр. Модуль IMU часто называют 9-осевым датчиком, потому что он измеряет:
* Угловую скорость вращения по трем осям (гироскоп).
* Ускорение по трем осям (акселерометр).
* Магнитное поле по трем осям (магнитометр).
Flix поддерживает следующие модели IMU:
* InvenSense MPU-9250.
* InvenSense MPU-6500.
* InvenSense ICM-20948.
> [!NOTE]
> MEMS-гироскоп измеряет угловую скорость вращения объекта.
## Интерфейс подключения
Большинство модулей IMU подключаются к микроконтроллеру через интерфейсы I²C и SPI. Оба этих интерфейса являются *шинами данных*, то есть позволяют подключить к одному микроконтроллеру несколько устройств.
**Интерфейс I²C** использует два провода для передачи данных и тактового сигнала. Выбор устройства для коммуникации происходит при помощи передачи адреса устройства на шину. Разные устройства имеют разные адреса, и микроконтроллер может последовательно общаться с несколькими устройствами.
**Интерфейс SPI** использует два провода для передачи данных, еще один для тактового сигнала и еще один для выбора устройства. При этом для каждого устройства на шине выделяется отдельный GPIO-пин для выбора. В разных реализациях этот пин называется CS/NCS (Chip Select) или SS (Slave Select). Когда CS-пин устройства активен (напряжение на нем низкое), устройство выбрано для общения.
В полетных контроллерах IMU обычно подключают через SPI, потому что он обеспечивает значительно бо́льшую скорость передачи данных и меньшую задержку. Подключение IMU через интерфейс I²C (например, в случае нехватки пинов микроконтроллера) возможно, но не рекомендуется.
Подключение IMU к микроконтроллеру ESP32 через интерфейс SPI выглядит так:
|Пин платы IMU|Пин ESP32|
|-|-|
|VCC/3V3|3V3|
|GND|GND|
|SCL|IO18|
|SDA *(MOSI)*|IO23|
|SAO/AD0 *(MISO)*|IO19|
|NCS|IO5|
Кроме того, многие IMU могут «будить» микроконтроллер при наличии новых данных. Для этого используется пин INT, который подключается к любому GPIO-пину микроконтроллера. При такой конфигурации можно использовать прерывания для обработки новых данных с IMU, вместо периодического опроса датчика. Это позволяет снизить нагрузку на микроконтроллер в сложных алгоритмах управления.
> [!WARNING]
> На некоторых платах IMU, например, на ICM-20948, отсутствует стабилизатор напряжения, поэтому их нельзя подключать к пину VIN ESP32, который подает напряжение 5 В. Допустимо питание только от пина 3V3.
## Работа с гироскопом
Для взаимодействия с IMU, включая работу с гироскопом, в Flix используется библиотека *FlixPeriph*. Библиотека устанавливается через менеджер библиотек Arduino IDE:
<img src="img/flixperiph.png" width="300">
Чтобы работать с IMU, используется класс, соответствующий модели IMU: `MPU9250`, `MPU6500` или `ICM20948`. Классы для работы с разными IMU имеют единообразный интерфейс для основных операций, поэтому возможно легко переключаться между разными моделями IMU. Датчик MPU-6500 практически полностью совместим с MPU-9250, поэтому фактически класс `MPU9250` поддерживает обе модели.
## Ориентация осей гироскопа
Данные с гироскопа представляют собой угловую скорость вокруг трех осей: X, Y и Z. Ориентацию этих осей у IMU InvenSense можно легко определить по небольшой точке в углу чипа. Оси координат и направление вращения для измерений гироскопа обозначены на диаграмме:
<img src="img/imu-axes.svg" width="300" alt="Оси координат IMU">
Расположение осей координат в популярных платах IMU:
|GY-91|MPU-92/65|ICM-20948|
|-|-|-|
|<img src="https://github.com/okalachev/flixperiph/raw/refs/heads/master/img/gy91-axes.svg" width="200" alt="Оси координат платы GY-91">|<img src="https://github.com/okalachev/flixperiph/raw/refs/heads/master/img/mpu9265-axes.svg" width="200" alt="Оси координат платы MPU-9265">|<img src="https://github.com/okalachev/flixperiph/raw/refs/heads/master/img/icm20948-axes.svg" width="200" alt="Оси координат платы ICM-20948">|
Магнитометр IMU InvenSense обычно является отдельным устройством, интегрированным в чип, поэтому его оси координат могут отличаться. Библиотека FlixPeriph скрывает это различие и приводит данные с магнитометра к системе координат гироскопа и акселерометра.
## Чтение данных
Интерфейс библиотеки FlixPeriph соответствует стилю, принятому в Arduino. Для начала работы с IMU необходимо создать объект соответствующего класса и вызвать метод `begin()`. В конструктор класса передается интерфейс, по которому подключен IMU (SPI или I²C):
```cpp
#include <FlixPeriph.h>
#include <SPI.h>
MPU9250 IMU(SPI);
void setup() {
Serial.begin(115200);
bool success = IMU.begin();
if (!success) {
Serial.println("Failed to initialize IMU");
}
}
```
Для однократного считывания данных используется метод `read()`. Затем данные с гироскопа получаются при помощи метода `getGyro(x, y, z)`. Этот метод записывает в переменные `x`, `y` и `z` угловые скорости вокруг соответствующих осей в радианах в секунду.
Если нужно гарантировать, что будут считаны новые данные, можно использовать метод `waitForData()`. Этот метод блокирует выполнение программы до тех пор, пока в IMU не появятся новые данные. Метод `waitForData()` позволяет привязать частоту главного цикла `loop` к частоте обновления данных IMU. Это удобно для организации главного цикла управления квадрокоптером.
Программа для чтения данных с гироскопа и вывода их в консоль для построения графиков в Serial Plotter выглядит так:
```cpp
#include <FlixPeriph.h>
#include <SPI.h>
MPU9250 IMU(SPI);
void setup() {
Serial.begin(115200);
bool success = IMU.begin();
if (!success) {
Serial.println("Failed to initialize IMU");
}
}
void loop() {
IMU.waitForData();
float gx, gy, gz;
IMU.getGyro(gx, gy, gz);
Serial.printf("gx:%f gy:%f gz:%f\n", gx, gy, gz);
delay(50); // замедление вывода
}
```
После запуска программы в Serial Plotter можно увидеть графики угловых скоростей. Например, при вращениях IMU вокруг вертикальной оси Z графики будут выглядеть так:
<img src="img/gyro-plotter.png">
## Конфигурация гироскопа
В коде Flix настройка IMU происходит в функции `configureIMU`. В этой функции настраиваются три основных параметра гироскопа: диапазон измерений, частота сэмплов и частота LPF-фильтра.
### Частота сэмплов
Большинство IMU могут обновлять данные с разной частотой. В полетных контроллерах обычно используется частота обновления от 500 Гц до 8 кГц. Чем выше частота сэмплов, тем выше точность управления полетом, но и больше нагрузка на микроконтроллер.
Частота сэмплов устанавливается методом `setSampleRate()`. В Flix используется частота 1 кГц:
```cpp
IMU.setRate(IMU.RATE_1KHZ_APPROX);
```
Поскольку не все поддерживаемые IMU могут работать строго на частоте 1 кГц, в библиотеке FlixPeriph существует возможность приближенной настройки частоты сэмплов. Например, у IMU ICM-20948 при такой настройке реальная частота сэмплирования будет равна 1125 Гц.
Другие доступные для установки в библиотеке FlixPeriph частоты сэмплирования:
* `RATE_MIN` — минимальная частота сэмплов для конкретного IMU.
* `RATE_50HZ_APPROX` — значение, близкое к 50 Гц.
* `RATE_1KHZ_APPROX`  — значение, близкое к 1 кГц.
* `RATE_8KHZ_APPROX` — значение, близкое к 8 кГц.
* `RATE_MAX` — максимальная частота сэмплов для конкретного IMU.
#### Диапазон измерений
Большинство MEMS-гироскопов поддерживают несколько диапазонов измерений угловой скорости. Главное преимущество выбора меньшего диапазона — бо́льшая чувствительность. В полетных контроллерах обычно выбирается максимальный диапазон измерений от 2000 до 2000 градусов в секунду, чтобы обеспечить возможность динамичных маневров.
В библиотеке FlixPeriph диапазон измерений гироскопа устанавливается методом `setGyroRange()`:
```cpp
IMU.setGyroRange(IMU.GYRO_RANGE_2000DPS);
```
### LPF-фильтр
IMU InvenSense могут фильтровать измерения на аппаратном уровне при помощи фильтра нижних частот (LPF). Flix реализует собственный фильтр для гироскопа, чтобы иметь больше гибкости при поддержке разных IMU. Поэтому для встроенного LPF устанавливается максимальная частота среза:
```cpp
IMU.setDLPF(IMU.DLPF_MAX);
```
## Калибровка гироскопа
Как и любое измерительное устройство, гироскоп вносит искажения в измерения. Наиболее простая модель этих искажений делит их на статические смещения (*bias*) и случайный шум (*noise*):
\\[ gyro_{xyz}=rates_{xyz}+bias_{xyz}+noise \\]
Для качественной работы подсистемы оценки ориентации и управления дроном необходимо оценить *bias* гироскопа и учесть его в вычислениях. Для этого при запуске программы производится калибровка гироскопа, которая реализована в функции `calibrateGyro()`. Эта функция считывает данные с гироскопа в состоянии покоя 1000 раз и усредняет их. Полученные значения считаются *bias* гироскопа и в дальнейшем вычитаются из измерений.
Программа для вывода данных с гироскопа с калибровкой:
```cpp
#include <FlixPeriph.h>
#include <SPI.h>
MPU9250 IMU(SPI);
float gyroBiasX, gyroBiasY, gyroBiasZ; // bias гироскопа
void setup() {
Serial.begin(115200);
bool success = IMU.begin();
if (!success) {
Serial.println("Failed to initialize IMU");
}
calibrateGyro();
}
void loop() {
float gx, gy, gz;
IMU.waitForData();
IMU.getGyro(gx, gy, gz);
// Устранение bias гироскопа
gx -= gyroBiasX;
gy -= gyroBiasY;
gz -= gyroBiasZ;
Serial.printf("gx:%f gy:%f gz:%f\n", gx, gy, gz);
delay(50); // замедление вывода
}
void calibrateGyro() {
const int samples = 1000;
Serial.println("Calibrating gyro, stand still");
gyroBiasX = 0;
gyroBiasY = 0;
gyroBiasZ = 0;
// Получение 1000 измерений гироскопа
for (int i = 0; i < samples; i++) {
IMU.waitForData();
float gx, gy, gz;
IMU.getGyro(gx, gy, gz);
gyroBiasX += gx;
gyroBiasY += gy;
gyroBiasZ += gz;
}
// Усреднение значений
gyroBiasX = gyroBiasX / samples;
gyroBiasY = gyroBiasY / samples;
gyroBiasZ = gyroBiasZ / samples;
Serial.printf("Gyro bias X: %f\n", gyroBiasX);
Serial.printf("Gyro bias Y: %f\n", gyroBiasY);
Serial.printf("Gyro bias Z: %f\n", gyroBiasZ);
}
```
График данных с гироскопа в состоянии покоя без калибровки. Можно увидеть статическую ошибку каждой из осей:
<img src="img/gyro-uncalibrated-plotter.png">
График данных с гироскопа в состоянии покоя после калибровки:
<img src="img/gyro-calibrated-plotter.png">
Откалиброванные данные с гироскопа вместе с данными с акселерометра поступают в *подсистему оценки состояния*.
## Дополнительные материалы
* [MPU-9250 datasheet](https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf).
* [MPU-6500 datasheet](https://invensense.tdk.com/wp-content/uploads/2020/06/PS-MPU-6500A-01-v1.3.pdf).
* [ICM-20948 datasheet](https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf).

View File

@@ -1 +0,0 @@
../img

View File

@@ -9,9 +9,9 @@ cd flix
## Simulation
### Ubuntu 20.04
### Ubuntu
The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you have a newer version, consider using a virtual machine.
The latest version of Ubuntu supported by Gazebo 11 simulator is 22.04. If you have a newer version, consider using a virtual machine.
1. Install Arduino CLI:
@@ -84,7 +84,7 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone. For **iOS**, use [QGroundControl build from TAJISOFT](https://apps.apple.com/ru/app/qgc-from-tajisoft/id1618653051).
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Connect your smartphone to the same Wi-Fi network as the machine running the simulator.
3. If you're using a virtual machine, make sure that its network is set to the **bridged** mode with Wi-Fi adapter selected.
4. Run the simulation.
@@ -96,9 +96,10 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
1. Connect your USB remote control to the machine running the simulator.
2. Run the simulation.
3. Calibrate the RC using `cr` command in the command line interface.
4. Run the simulation again.
5. Use the USB remote control to fly the drone!
3. Calibrate the RC using `cr` command in the command line interface and stop the simulation.
4. Copy the calibration results to the source code (`gazebo/joystick.h`).
5. Run the simulation again.
6. Use the USB remote control to fly the drone!
## Firmware
@@ -106,7 +107,7 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
1. Install [Arduino IDE](https://www.arduino.cc/en/software) (version 2 is recommended).
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Install ESP32 core, version 3.1.0 (version 2.x is not supported). See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
3. Install ESP32 core, version 3.2.0. See the [official Espressif's instructions](https://docs.espressif.com/projects/arduino-esp32/en/latest/installing.html#installing-using-arduino-ide) on installing ESP32 Core in Arduino IDE.
4. Install the following libraries using [Library Manager](https://docs.arduino.cc/software/ide-v2/tutorials/ide-v2-installing-a-library):
* `FlixPeriph`, the latest version.
* `MAVLink`, version 2.0.16.
@@ -118,13 +119,6 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
### Command line (Windows, Linux, macOS)
1. [Install Arduino CLI](https://arduino.github.io/arduino-cli/installation/).
On Linux, use:
```bash
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | BINDIR=~/.local/bin sh
```
2. Windows users might need to install [USB to UART bridge driver from Silicon Labs](https://www.silabs.com/developers/usb-to-uart-bridge-vcp-drivers).
3. Compile the firmware using `make`. Arduino dependencies will be installed automatically:
@@ -146,21 +140,19 @@ The latest version of Ubuntu supported by Gazebo 11 simulator is 20.04. If you h
See other available Make commands in the [Makefile](../Makefile).
> [!TIP]
> You can test the firmware on a bare ESP32 board without connecting IMU and other peripherals. The Wi-Fi network `flix` should appear and all the basic functionality including CLI and QGroundControl connection should work.
### Setup and flight
Before flight you need to calibrate the accelerometer:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
2. Type `ca` command there and follow the instructions.
1. Open Serial Monitor in Arduino IDE (use use `make monitor` command in the command line).
2. Type `ca` command there.
3. Copy calibration results to the source code (`flix/imu.ino`).
#### Control with smartphone
1. Install [QGroundControl mobile app](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html#android) on your smartphone.
2. Power the drone using the battery.
3. Connect your smartphone to the appeared `flix` Wi-Fi network (password: `flixwifi`).
3. Connect your smartphone to the appeared `flix` Wi-Fi network.
4. Open QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
5. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
6. Use the virtual joystick to fly the drone!
@@ -169,33 +161,11 @@ Before flight you need to calibrate the accelerometer:
Before flight using remote control, you need to calibrate it:
1. Open Serial Monitor in Arduino IDE (or use `make monitor` command in the command line).
2. Type `cr` command there and follow the instructions.
3. Use the remote control to fly the drone!
1. Open Serial Monitor in Arduino IDE (use use `make monitor` command in the command line).
2. Type `cr` command there.
3. Copy calibration results to the source code (`flix/rc.ino`).
#### Control with USB remote control
If your drone doesn't have RC receiver installed, you can use USB remote control and QGroundControl app to fly it.
1. Install [QGroundControl](https://docs.qgroundcontrol.com/master/en/qgc-user-guide/getting_started/download_and_install.html) app on your computer.
2. Connect your USB remote control to the computer.
3. Power up the drone.
4. Connect your computer to the appeared `flix` Wi-Fi network (password: `flixwifi`).
5. Launch QGroundControl app. It should connect and begin showing the drone's telemetry automatically.
6. Go the the QGroundControl menu ⇒ *Vehicle Setup**Joystick*. Calibrate you USB remote control there.
7. Use the USB remote control to fly the drone!
#### Adjusting parameters
You can adjust some of the drone's parameters (include PID coefficients) in QGroundControl app. In order to do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Parameters*.
<img src="img/parameters.png" width="400">
#### CLI access
In addition to accessing the drone's command line interface (CLI) using the serial port, you can also access it with QGroundControl using Wi-Fi connection. To do that, go to the QGroundControl menu ⇒ *Vehicle Setup**Analyze Tools**MAVLink Console*.
<img src="img/cli.png" width="400">
Then you can use your remote control to fly the drone!
> [!NOTE]
> If something goes wrong, go to the [Troubleshooting](troubleshooting.md) article.

View File

@@ -6,14 +6,14 @@
The main loop is running at 1000 Hz. All the dataflow is happening through global variables (for simplicity):
* `t` *(double)* current step time, *s*.
* `t` *(float)* current step time, *s*.
* `dt` *(float)* — time delta between the current and previous steps, *s*.
* `gyro` *(Vector)* — data from the gyroscope, *rad/s*.
* `acc` *(Vector)* — acceleration data from the accelerometer, *m/s<sup>2</sup>*.
* `rates` *(Vector)* — filtered angular rates, *rad/s*.
* `attitude` *(Quaternion)* — estimated attitude (orientation) of drone.
* `controls` *(float[])* — user control inputs from the RC, normalized to [-1, 1] range.
* `motors` *(float[])* motor outputs, normalized to [-1, 1] range; reverse rotation is possible.
* `controlRoll`, `controlPitch`, ... *(float[])* — pilot's control inputs, range [-1, 1].
* `motors` *(float[])* motor outputs, normalized to [0, 1] range; reverse rotation is possible.
## Source files

Binary file not shown.

Before

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 169 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 152 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 115 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 105 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

View File

@@ -1,119 +0,0 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 544.13 637.15">
<defs>
<style>
.a {
fill: #dbe1e2;
}
.b {
fill: #c2c1c0;
}
.c {
fill: #c6c6c5;
}
.d {
fill: #ec7d23;
}
.e {
font-size: 50px;
font-family: Tahoma;
}
.e, .n {
fill: #010101;
}
.f {
opacity: 0.8;
}
.g, .i, .k, .m {
fill: none;
stroke-width: 10px;
}
.g {
stroke: #0577ba;
}
.g, .i, .k {
stroke-linejoin: bevel;
}
.h {
fill: #0577ba;
}
.i {
stroke: #76c043;
}
.j {
fill: #76c043;
}
.k {
stroke: #d71f26;
}
.l {
fill: #d71f26;
}
.m {
stroke: #010101;
stroke-miterlimit: 10;
}
</style>
</defs>
<g>
<g>
<rect class="a" x="51.25" y="538.09" width="111.96" height="44.06"/>
<polygon class="b" points="204.47 515.98 163.21 582.15 163.21 538.09 204.47 471.91 204.47 515.98"/>
<polygon class="c" points="163.21 538.19 51.25 538.19 92.46 471.91 204.42 471.91 163.21 538.19"/>
<ellipse class="d" cx="101.09" cy="480" rx="7.45" ry="3.7" transform="translate(-117.09 40.67) rotate(-14.52)"/>
</g>
<text class="e" transform="translate(166.62 107.43)">Z</text>
<g class="f">
<g>
<line class="g" x1="127.84" y1="505.05" x2="127.84" y2="70.04"/>
<polygon class="h" points="145.79 75.3 127.84 44.21 109.89 75.3 145.79 75.3"/>
</g>
</g>
<g class="f">
<g>
<line class="i" x1="127.84" y1="505.05" x2="315.74" y2="203.61"/>
<polygon class="j" points="328.2 217.57 329.41 181.69 297.73 198.57 328.2 217.57"/>
</g>
</g>
<text class="e" transform="translate(338.14 279.7)">Y</text>
<g class="f">
<g>
<line class="k" x1="127.94" y1="504.62" x2="467.04" y2="504.62"/>
<polygon class="l" points="461.79 522.58 492.87 504.62 461.79 486.67 461.79 522.58"/>
</g>
</g>
<text class="e" transform="translate(438.99 582.15)">X</text>
<g class="f">
<g>
<path class="m" d="M80,98.74a52.66,52.66,0,1,0,98.43,36.72"/>
<polygon class="n" points="190.29 140.9 180.45 116.91 164.59 137.41 190.29 140.9"/>
</g>
</g>
<g class="f">
<g>
<path class="m" d="M474,467.75a52.66,52.66,0,1,0-59.23,86.77"/>
<polygon class="n" points="406.68 564.7 432.32 560.9 416.21 540.59 406.68 564.7"/>
</g>
</g>
<g class="f">
<g>
<path class="m" d="M222.38,257.69a52.66,52.66,0,1,1,93.83,47.25"/>
<polygon class="n" points="308.22 293.44 303.95 319.01 328.23 309.93 308.22 293.44"/>
</g>
</g>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 2.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 24 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 74 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 56 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

View File

@@ -1,7 +0,0 @@
// Enable zoom on images larger than 300px
document.querySelectorAll('.content img').forEach(function (img) {
var width = img.getAttribute('width');
if (!width || width >= 300) {
img.setAttribute('data-action', 'zoom');
}
});

336
docs/theme/index.hbs vendored
View File

@@ -1,336 +0,0 @@
<!DOCTYPE HTML>
<html lang="{{ language }}" class="{{ default_theme }} sidebar-visible" dir="{{ text_direction }}">
<head>
<!-- Book generated using mdBook -->
<meta charset="UTF-8">
<title>{{ title }}</title>
{{#if is_print }}
<meta name="robots" content="noindex">
{{/if}}
{{#if base_url}}
<base href="{{ base_url }}">
{{/if}}
<!-- Custom HTML head -->
{{> head}}
<meta name="description" content="{{ description }}">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="theme-color" content="#ffffff">
{{#if favicon_svg}}
<link rel="icon" href="{{ path_to_root }}favicon.svg">
{{/if}}
{{#if favicon_png}}
<link rel="shortcut icon" href="{{ path_to_root }}favicon.png">
{{/if}}
<link rel="stylesheet" href="{{ path_to_root }}css/variables.css">
<link rel="stylesheet" href="{{ path_to_root }}css/general.css">
<link rel="stylesheet" href="{{ path_to_root }}css/chrome.css">
{{#if print_enable}}
<link rel="stylesheet" href="{{ path_to_root }}css/print.css" media="print">
{{/if}}
<!-- Fonts -->
<link rel="stylesheet" href="{{ path_to_root }}FontAwesome/css/font-awesome.css">
{{#if copy_fonts}}
<link rel="stylesheet" href="{{ path_to_root }}fonts/fonts.css">
{{/if}}
<!-- Highlight.js Stylesheets -->
<link rel="stylesheet" href="{{ path_to_root }}highlight.css">
<link rel="stylesheet" href="{{ path_to_root }}tomorrow-night.css">
<link rel="stylesheet" href="{{ path_to_root }}ayu-highlight.css">
<!-- Custom theme stylesheets -->
{{#each additional_css}}
<link rel="stylesheet" href="{{ ../path_to_root }}{{ this }}">
{{/each}}
{{#if mathjax_support}}
<!-- MathJax -->
<script async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
{{/if}}
<!-- Provide site root to javascript -->
<script>
var path_to_root = "{{ path_to_root }}";
var default_theme = window.matchMedia("(prefers-color-scheme: dark)").matches ? "{{ preferred_dark_theme }}" : "{{ default_theme }}";
</script>
<!-- Start loading toc.js asap -->
<script src="{{ path_to_root }}toc.js"></script>
<!-- Yandex.Metrika counter -->
<script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(97589916, "init", { clickmap:true, trackLinks:true, accurateTrackBounce:true }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/97589916" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter -->
</head>
<body>
<div id="body-container">
<!-- Work around some values being stored in localStorage wrapped in quotes -->
<script>
try {
var theme = localStorage.getItem('mdbook-theme');
var sidebar = localStorage.getItem('mdbook-sidebar');
if (theme.startsWith('"') && theme.endsWith('"')) {
localStorage.setItem('mdbook-theme', theme.slice(1, theme.length - 1));
}
if (sidebar.startsWith('"') && sidebar.endsWith('"')) {
localStorage.setItem('mdbook-sidebar', sidebar.slice(1, sidebar.length - 1));
}
} catch (e) { }
</script>
<!-- Set the theme before any content is loaded, prevents flash -->
<script>
var theme;
try { theme = localStorage.getItem('mdbook-theme'); } catch(e) { }
if (theme === null || theme === undefined) { theme = default_theme; }
const html = document.documentElement;
html.classList.remove('{{ default_theme }}')
html.classList.add(theme);
html.classList.add("js");
</script>
<input type="checkbox" id="sidebar-toggle-anchor" class="hidden">
<!-- Hide / unhide sidebar before it is displayed -->
<script>
var sidebar = null;
var sidebar_toggle = document.getElementById("sidebar-toggle-anchor");
if (document.body.clientWidth >= 1080) {
try { sidebar = localStorage.getItem('mdbook-sidebar'); } catch(e) { }
sidebar = sidebar || 'visible';
} else {
sidebar = 'hidden';
}
sidebar_toggle.checked = sidebar === 'visible';
html.classList.remove('sidebar-visible');
html.classList.add("sidebar-" + sidebar);
</script>
<nav id="sidebar" class="sidebar" aria-label="Table of contents">
<!-- populated by js -->
<mdbook-sidebar-scrollbox class="sidebar-scrollbox">
<footer>
<a href="https://github.com/okalachev/flix" class="github">GitHub</a>
<a href="https://t.me/opensourcequadcopter" class="telegram">Telegram-канал</a>
💰 Поддержать проект:
<iframe style="margin-top: 0.4em;" src="https://yoomoney.ru/quickpay/fundraise/button?billNumber=16U9OH2S4IT.241205&" width="330" height="50" frameborder="0" allowtransparency="true" scrolling="no"></iframe>
&copy; 2024 Олег Калачев
</footer>
</mdbook-sidebar-scrollbox>
<noscript>
<iframe class="sidebar-iframe-outer" src="{{ path_to_root }}toc.html"></iframe>
</noscript>
<div id="sidebar-resize-handle" class="sidebar-resize-handle">
<div class="sidebar-resize-indicator"></div>
</div>
</nav>
<div id="page-wrapper" class="page-wrapper">
<div class="page">
{{> header}}
<div id="menu-bar-hover-placeholder"></div>
<div id="menu-bar" class="menu-bar sticky">
<div class="left-buttons">
<label id="sidebar-toggle" class="icon-button" for="sidebar-toggle-anchor" title="Toggle Table of Contents" aria-label="Toggle Table of Contents" aria-controls="sidebar">
<i class="fa fa-bars"></i>
</label>
<button id="theme-toggle" class="icon-button" type="button" title="Change theme" aria-label="Change theme" aria-haspopup="true" aria-expanded="false" aria-controls="theme-list">
<i class="fa fa-paint-brush"></i>
</button>
<ul id="theme-list" class="theme-popup" aria-label="Themes" role="menu">
<li role="none"><button role="menuitem" class="theme" id="light">Light</button></li>
<li role="none"><button role="menuitem" class="theme" id="rust">Rust</button></li>
<li role="none"><button role="menuitem" class="theme" id="coal">Coal</button></li>
<li role="none"><button role="menuitem" class="theme" id="navy">Navy</button></li>
<li role="none"><button role="menuitem" class="theme" id="ayu">Ayu</button></li>
</ul>
{{#if search_enabled}}
<button id="search-toggle" class="icon-button" type="button" title="Search. (Shortkey: s)" aria-label="Toggle Searchbar" aria-expanded="false" aria-keyshortcuts="S" aria-controls="searchbar">
<i class="fa fa-search"></i>
</button>
{{/if}}
</div>
<h1 class="menu-title">{{ book_title }}</h1>
<div class="right-buttons">
{{#if print_enable}}
<a href="{{ path_to_root }}print.html" title="Print this book" aria-label="Print this book">
<i id="print-button" class="fa fa-print"></i>
</a>
{{/if}}
{{#if git_repository_url}}
<a href="{{git_repository_url}}" title="Git repository" aria-label="Git repository">
<i id="git-repository-button" class="fa {{git_repository_icon}}"></i>
</a>
{{/if}}
{{#if git_repository_edit_url}}
<a href="{{git_repository_edit_url}}" title="Suggest an edit" aria-label="Suggest an edit">
<i id="git-edit-button" class="fa fa-edit"></i>
</a>
{{/if}}
</div>
</div>
{{#if search_enabled}}
<div id="search-wrapper" class="hidden">
<form id="searchbar-outer" class="searchbar-outer">
<input type="search" id="searchbar" name="searchbar" placeholder="Search this book ..." aria-controls="searchresults-outer" aria-describedby="searchresults-header">
</form>
<div id="searchresults-outer" class="searchresults-outer hidden">
<div id="searchresults-header" class="searchresults-header"></div>
<ul id="searchresults">
</ul>
</div>
</div>
{{/if}}
<!-- Apply ARIA attributes after the sidebar and the sidebar toggle button are added to the DOM -->
<script>
document.getElementById('sidebar-toggle').setAttribute('aria-expanded', sidebar === 'visible');
document.getElementById('sidebar').setAttribute('aria-hidden', sidebar !== 'visible');
Array.from(document.querySelectorAll('#sidebar a')).forEach(function(link) {
link.setAttribute('tabIndex', sidebar === 'visible' ? 0 : -1);
});
</script>
<div id="content" class="content">
<main>
{{{ content }}}
</main>
<nav class="nav-wrapper" aria-label="Page navigation">
<!-- Mobile navigation buttons -->
{{#previous}}
<a rel="prev" href="{{ path_to_root }}{{link}}" class="mobile-nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
{{/previous}}
{{#next}}
<a rel="next prefetch" href="{{ path_to_root }}{{link}}" class="mobile-nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
{{/next}}
<div style="clear: both"></div>
</nav>
</div>
</div>
<nav class="nav-wide-wrapper" aria-label="Page navigation">
{{#previous}}
<a rel="prev" href="{{ path_to_root }}{{link}}" class="nav-chapters previous" title="Previous chapter" aria-label="Previous chapter" aria-keyshortcuts="Left">
<i class="fa fa-angle-left"></i>
</a>
{{/previous}}
{{#next}}
<a rel="next prefetch" href="{{ path_to_root }}{{link}}" class="nav-chapters next" title="Next chapter" aria-label="Next chapter" aria-keyshortcuts="Right">
<i class="fa fa-angle-right"></i>
</a>
{{/next}}
</nav>
</div>
{{#if live_reload_endpoint}}
<!-- Livereload script (if served using the cli tool) -->
<script>
const wsProtocol = location.protocol === 'https:' ? 'wss:' : 'ws:';
const wsAddress = wsProtocol + "//" + location.host + "/" + "{{{live_reload_endpoint}}}";
const socket = new WebSocket(wsAddress);
socket.onmessage = function (event) {
if (event.data === "reload") {
socket.close();
location.reload();
}
};
window.onbeforeunload = function() {
socket.close();
}
</script>
{{/if}}
{{#if google_analytics}}
<!-- Google Analytics Tag -->
<script>
var localAddrs = ["localhost", "127.0.0.1", ""];
// make sure we don't activate google analytics if the developer is
// inspecting the book locally...
if (localAddrs.indexOf(document.location.hostname) === -1) {
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', '{{google_analytics}}', 'auto');
ga('send', 'pageview');
}
</script>
{{/if}}
{{#if playground_line_numbers}}
<script>
window.playground_line_numbers = true;
</script>
{{/if}}
{{#if playground_copyable}}
<script>
window.playground_copyable = true;
</script>
{{/if}}
{{#if playground_js}}
<script src="{{ path_to_root }}ace.js"></script>
<script src="{{ path_to_root }}editor.js"></script>
<script src="{{ path_to_root }}mode-rust.js"></script>
<script src="{{ path_to_root }}theme-dawn.js"></script>
<script src="{{ path_to_root }}theme-tomorrow_night.js"></script>
{{/if}}
{{#if search_js}}
<script src="{{ path_to_root }}elasticlunr.min.js"></script>
<script src="{{ path_to_root }}mark.min.js"></script>
<script src="{{ path_to_root }}searcher.js"></script>
{{/if}}
<script src="{{ path_to_root }}clipboard.min.js"></script>
<script src="{{ path_to_root }}highlight.js"></script>
<script src="{{ path_to_root }}book.js"></script>
<!-- Custom JS scripts -->
{{#each additional_js}}
<script src="{{ ../path_to_root }}{{this}}"></script>
{{/each}}
{{#if is_print}}
{{#if mathjax_support}}
<script>
window.addEventListener('load', function() {
MathJax.Hub.Register.StartupHook('End', function() {
window.setTimeout(window.print, 100);
});
});
</script>
{{else}}
<script>
window.addEventListener('load', function() {
window.setTimeout(window.print, 100);
});
</script>
{{/if}}
{{/if}}
</div>
</body>
</html>

View File

@@ -1,35 +0,0 @@
# Troubleshooting
## The sketch doesn't compile
Do the following:
* **Check ESP32 core is installed**. Check if the version matches the one used in the [tutorial](build.md#firmware).
* **Check libraries**. Install all the required libraries from the tutorial. Make sure there are no MPU9250 or other peripherals libraries that may conflict with the ones used in the tutorial.
## The drone doesn't fly
Do the following:
* **Check the battery voltage**. Use a multimeter to measure the battery voltage. It should be in range of 3.7-4.2 V.
* **Check if there are some startup errors**. Connect the ESP32 to the computer and check the Serial Monitor output. Use the Reset button to make sure you see the whole ESP32 output.
* **Make sure correct IMU model is chosen**. If using ICM-20948 board, change `MPU9250` to `ICM20948` everywhere in the `imu.ino` file.
* **Check if the CLI is working**. Perform `help` command in Serial Monitor. You should see the list of available commands. You can also access the CLI using QGroundControl (*Vehicle Setup* ⇒ *Analyze Tools**MAVLink Console*).
* **Configure QGroundControl correctly before connecting to the drone** if you use it to control the drone. Go to the settings and enable *Virtual Joystick*. *Auto-Center Throttle* setting **should be disabled**.
* **Check the IMU is working**. Perform `imu` command and check its output:
* The `status` field should be `OK`.
* The `rate` field should be about 1000 (Hz).
* The `accel` and `gyro` fields should change as you move the drone.
* **Calibrate the accelerometer.** if is wasn't done before. Type `ca` command in Serial Monitor and follow the instructions.
* **Check the attitude estimation**. Connect to the drone using QGroundControl. Rotate the drone in different orientations and check if the attitude estimation shown in QGroundControl is correct.
* **Check the IMU orientation is set correctly**. If the attitude estimation is rotated, make sure `rotateIMU` function is defined correctly in `imu.ino` file.
* **Check the motors type**. Motors with exact 3.7V voltage are needed, not ranged working voltage (3.7V — 6V).
* **Check the motors**. Perform the following commands using Serial Monitor:
* `mfr` — should rotate front right motor (counter-clockwise).
* `mfl` — should rotate front left motor (clockwise).
* `mrl` — should rotate rear left motor (counter-clockwise).
* `mrr` — should rotate rear right motor (clockwise).
* **Calibrate the RC** if you use it. Type `cr` command in Serial Monitor and follow the instructions.
* **Check the RC data** if you use it. Use `rc` command, `Control` should show correct values between -1 and 1, and between 0 and 1 for the throttle.
* **Check the IMU output using QGroundControl**. Connect to the drone using QGroundControl on your computer. Go to the *Analyze* tab, *MAVLINK Inspector*. Plot the data from the `SCALED_IMU` message. The gyroscope and accelerometer data should change according to the drone movement.
* **Check the gyroscope only attitude estimation**. Comment out `applyAcc();` line in `estimate.ino` and check if the attitude estimation in QGroundControl. It should be stable, but only drift very slowly.

View File

@@ -1,97 +0,0 @@
# Hall of fame
This page contains user-built drones based on the Flix project. Publish your projects into the official Telegram-chat: [@opensourcequadcopterchat](https://t.me/opensourcequadcopterchat) or send materials as a pull request.
---
Author: [@cryptokobans](https://t.me/cryptokobans).<br>
Features: ESP32-C3 SuperMini board, INA226 power monitor, IRLZ44N MOSFETs, MPU-6500 IMU.
**Flight video:**
<a href="https://drive.google.com/file/d/1-4ciDsj8slTEaxxRl1-QAkx0cUDkb8iy/view?usp=sharing"><img height=300 src="img/user/cryptokobans/video.jpg"></a>
<img src="img/user/cryptokobans/1.jpg" height=150> <img src="img/user/cryptokobans/2.jpg" height=150>
---
Author: [@jeka_chex](https://t.me/jeka_chex).<br>
Features: custom frame, FPV camera, 3-blade 31 mm propellers.<br>
Motor drivers: AON7410 MOSFET + capacitors.<br>
Custom frame files: https://drive.google.com/drive/folders/1QCIc-_YYFxJN4cMhVLjL5SflqegvCowm?usp=share_link.<br>
**Flight video:**
<a href="https://drive.google.com/file/d/1VnWI5YVPojfqsfpyLX4v2V9zHi9adwcd/view?usp=sharing"><img height=300 src="img/user/jeka_chex/video.jpg"></a>
**FPV flight video:**
<a href="https://drive.google.com/file/d/1RSU6VWs9omsge4hGloH5NQqnxvLyhMKB/view?usp=sharing"><img height=300 src="img/user/jeka_chex/video-fpv.jpg"></a>
<img src="img/user/jeka_chex/1.jpg" height=150> <img src="img/user/jeka_chex/2.jpg" height=150> <img src="img/user/jeka_chex/3.jpg" height=150> <img src="img/user/jeka_chex/4.jpg" height=150> <img src="img/user/jeka_chex/5.jpg" height=150>
---
Author: [@fisheyeu](https://t.me/fisheyeu).<br>
[Video](https://drive.google.com/file/d/1IT4eMmWPZpmaZR_qsIRmNJ52hYkFB_0q/view?usp=share_link).
<img src="img/user/fisheyeu/1.jpg" height=300> <img src="img/user/fisheyeu/2.jpg" height=300>
---
Author: [@p_kabakov](https://t.me/p_kabakov).<br>
Custom propellers guard 3D-model: https://drive.google.com/file/d/1TKnzwvrZYzYuRTLLERNmnKH71H9n4Xj_/view?usp=share_link.<br>
Features: ESP32-C3 microcontroller is used.<br>
[Video](https://drive.google.com/file/d/1B0NMcsk0fgwUgNr9XuLOdR2yYCuaj008/view?usp=share_link).
<img src="img/user/p_kabakov/1.jpg" width=150> <img src="img/user/p_kabakov/2.jpg" width=150> <img src="img/user/p_kabakov/3.jpg" width=150>
**Custom Wi-Fi RC control:**
<a href="https://github.com/pavelkabakov/flix/blob/master/rc_control_v1/IMG_20250221_195756.jpg"><img height=300 src="img/user/p_kabakov/wifirc.jpg"></a>
See source and description (in Russian): https://github.com/pavelkabakov/flix/tree/master/rc_control_v1.
---
Author: [@yi_lun](https://t.me/yi_lun).<br>
[Video](https://drive.google.com/file/d/1TkSuvHQ_0qQPFUpY5XjJzmhnpX_07cTg/view?usp=share_link).
<img src="img/user/yi_lun/1.jpg" width=300> <img src="img/user/yi_lun/2.jpg" width=300>
---
Author: [@peter_ukhov](https://t.me/peter_ukhov).<br>
Features: customized ESP32 holder, GY-ICM20948V2 IMU board, boost-converter for powering the ESP32.<br>
Files for 3D-printing: https://drive.google.com/file/d/1Sma-FEzFBj2HA5ixJtUyH0uWixvr6vdK/view?usp=share_link.<br>
Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612179508274&cot=14.<br>
<a href="https://www.youtube.com/watch?v=wi4w_hOmKcQ"><img width=500 src="img/user/peter_ukhov-2/video.jpg"></a>
<img src="img/user/peter_ukhov-2/1.jpg" width=300> <img src="img/user/peter_ukhov-2/2.jpg" width=300>
---
Author: [@Alexey_Karakash](https://t.me/Alexey_Karakash).<br>
Files for 3D printing of the custom frame: https://drive.google.com/file/d/1tkNmujrHrKpTMVtsRH3mor2zdAM0JHum/view?usp=share_link.<br>
<a href="https://t.me/opensourcequadcopter/61"><img width=500 src="img/user/alexey_karakash/video.jpg"></a>
<img src="img/user/alexey_karakash/1.jpg" height=150> <img src="img/user/alexey_karakash/2.jpg" height=150> <img src="img/user/alexey_karakash/3.jpg" height=150> <img src="img/user/alexey_karakash/4.jpg" height=150> <img src="img/user/alexey_karakash/5.jpg" height=150>
---
Author: [@rudpa](https://t.me/rudpa).<br>
<a href="https://t.me/opensourcequadcopter/46"><img width=500 src="img/user/rudpa/video.jpg"></a>
<img src="img/user/rudpa/1.jpg" height=150> <img src="img/user/rudpa/2.jpg" height=150> <img src="img/user/rudpa/3.jpg" height=150>
---
Author: [@peter_ukhov](https://t.me/peter_ukhov).<br>
Schematics: https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764612338222067&cot=14.<br>
<a href="https://t.me/opensourcequadcopter/24"><img width=500 src="img/user/peter_ukhov/video.jpg"></a>
<img src="img/user/peter_ukhov/1.jpg" height=150> <img src="img/user/peter_ukhov/2.jpg" height=150> <img src="img/user/peter_ukhov/3.jpg" height=150>

View File

@@ -1,30 +0,0 @@
# Flix version 0
Flix version 0 (obsolete):
<img src="img/flix.jpg" width=500 alt="Flix quadcopter">
## Components list
|Type|Part|Image|Quantity|
|-|-|-|-|
|Microcontroller board|ESP32 Mini|<img src="img/esp32.jpg" width=100>|1|
|IMU and barometer² board|GY-91 (or other MPU-9250 board)|<img src="img/gy-91.jpg" width=100>|1|
|Quadcopter frame|K100|<img src="img/frame.jpg" width=100>|1|
|Motor|8520 3.7V brushed motor (**shaft 0.8mm!**)|<img src="img/motor.jpeg" width=100>|4|
|Propeller|Hubsan 55 mm|<img src="img/prop.jpg" width=100>|4|
|Motor ESC|2.7A 1S Dual Way Micro Brush ESC|<img src="img/esc.jpg" width=100>|4|
|RC transmitter|KINGKONG TINY X8|<img src="img/tx.jpg" width=100>|1|
|RC receiver|DF500 (SBUS)|<img src="img/rx.jpg" width=100>|1|
|~~SBUS inverter~~*||<img src="img/inv.jpg" width=100>|~~1~~|
|Battery|3.7 Li-Po 850 MaH 60C|||
|Battery charger||<img src="img/charger.jpg" width=100>|1|
|Wires, connectors, tape, ...||||
*\* — not needed as ESP32 supports [software pin inversion](https://github.com/bolderflight/sbus#inverted-serial).*
## Schematics
<img src="img/schematics.svg" width=800 alt="Flix schematics">
You can also check a user contributed [variant of complete circuit diagram](https://miro.com/app/board/uXjVN-dTjoo=/?moveToWidget=3458764574482511443&cot=14) of the drone.

View File

@@ -1,31 +0,0 @@
img[data-action="zoom"] {
cursor: zoom-in;
}
.zoom-img,
.zoom-img-wrap {
position: relative;
z-index: 666;
transition: all 300ms;
}
img.zoom-img {
cursor: zoom-out;
}
.zoom-overlay {
cursor: zoom-out;
z-index: 420;
background: #fff;
position: fixed;
top: 0;
left: 0;
right: 0;
bottom: 0;
filter: "alpha(opacity=0)";
opacity: 0;
transition: opacity 300ms;
}
.zoom-overlay-open .zoom-overlay {
filter: "alpha(opacity=100)";
opacity: 1;
}
/*# sourceMappingURL=data:application/json;base64,eyJ2ZXJzaW9uIjozLCJzb3VyY2VzIjpbIi4uL2Nzcy96b29tLmNzcyJdLCJuYW1lcyI6W10sIm1hcHBpbmdzIjoiQUFBQTtFQUNFLGdCQUFnQjtDQUNqQjtBQUNEOztFQUVFLG1CQUFtQjtFQUNuQixhQUFhO0VBQ2Isc0JBQXNCO0NBQ3ZCO0FBQ0Q7RUFDRSxpQkFBaUI7Q0FDbEI7QUFDRDtFQUNFLGlCQUFpQjtFQUNqQixhQUFhO0VBQ2IsaUJBQWlCO0VBQ2pCLGdCQUFnQjtFQUNoQixPQUFPO0VBQ1AsUUFBUTtFQUNSLFNBQVM7RUFDVCxVQUFVO0VBQ1YsMkJBQTJCO0VBQzNCLFdBQVc7RUFDWCwrQkFBK0I7Q0FDaEM7QUFDRDtFQUNFLDZCQUE2QjtFQUM3QixXQUFXO0NBQ1oiLCJmaWxlIjoiem9vbS5jc3MiLCJzb3VyY2VzQ29udGVudCI6WyJpbWdbZGF0YS1hY3Rpb249XCJ6b29tXCJdIHtcbiAgY3Vyc29yOiB6b29tLWluO1xufVxuLnpvb20taW1nLFxuLnpvb20taW1nLXdyYXAge1xuICBwb3NpdGlvbjogcmVsYXRpdmU7XG4gIHotaW5kZXg6IDY2NjtcbiAgdHJhbnNpdGlvbjogYWxsIDMwMG1zO1xufVxuaW1nLnpvb20taW1nIHtcbiAgY3Vyc29yOiB6b29tLW91dDtcbn1cbi56b29tLW92ZXJsYXkge1xuICBjdXJzb3I6IHpvb20tb3V0O1xuICB6LWluZGV4OiA0MjA7XG4gIGJhY2tncm91bmQ6ICNmZmY7XG4gIHBvc2l0aW9uOiBmaXhlZDtcbiAgdG9wOiAwO1xuICBsZWZ0OiAwO1xuICByaWdodDogMDtcbiAgYm90dG9tOiAwO1xuICBmaWx0ZXI6IFwiYWxwaGEob3BhY2l0eT0wKVwiO1xuICBvcGFjaXR5OiAwO1xuICB0cmFuc2l0aW9uOiAgICAgIG9wYWNpdHkgMzAwbXM7XG59XG4uem9vbS1vdmVybGF5LW9wZW4gLnpvb20tb3ZlcmxheSB7XG4gIGZpbHRlcjogXCJhbHBoYShvcGFjaXR5PTEwMClcIjtcbiAgb3BhY2l0eTogMTtcbn1cbiJdfQ== */

View File

@@ -1,281 +0,0 @@
/* https://github.com/spinningarrow/zoom-vanilla.js
The MIT License
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
+function () { "use strict";
var OFFSET = 80
// From http://youmightnotneedjquery.com/#offset
function offset(element) {
var rect = element.getBoundingClientRect()
var scrollTop = window.pageYOffset ||
document.documentElement.scrollTop ||
document.body.scrollTop ||
0
var scrollLeft = window.pageXOffset ||
document.documentElement.scrollLeft ||
document.body.scrollLeft ||
0
return {
top: rect.top + scrollTop,
left: rect.left + scrollLeft
}
}
function zoomListener() {
var activeZoom = null
var initialScrollPosition = null
var initialTouchPosition = null
function listen() {
document.body.addEventListener('click', function (event) {
if (event.target.getAttribute('data-action') !== 'zoom' ||
event.target.tagName !== 'IMG') return
zoom(event)
})
}
function zoom(event) {
event.stopPropagation()
if (document.body.classList.contains('zoom-overlay-open')) return
if (event.metaKey || event.ctrlKey) return openInNewWindow()
closeActiveZoom({ forceDispose: true })
activeZoom = vanillaZoom(event.target)
activeZoom.zoomImage()
addCloseActiveZoomListeners()
}
function openInNewWindow() {
window.open(event.target.getAttribute('data-original') ||
event.target.currentSrc ||
event.target.src,
'_blank')
}
function closeActiveZoom(options) {
options = options || { forceDispose: false }
if (!activeZoom) return
activeZoom[options.forceDispose ? 'dispose' : 'close']()
removeCloseActiveZoomListeners()
activeZoom = null
}
function addCloseActiveZoomListeners() {
// todo(fat): probably worth throttling this
window.addEventListener('scroll', handleScroll)
document.addEventListener('click', handleClick)
document.addEventListener('keyup', handleEscPressed)
document.addEventListener('touchstart', handleTouchStart)
document.addEventListener('touchend', handleClick)
}
function removeCloseActiveZoomListeners() {
window.removeEventListener('scroll', handleScroll)
document.removeEventListener('keyup', handleEscPressed)
document.removeEventListener('click', handleClick)
document.removeEventListener('touchstart', handleTouchStart)
document.removeEventListener('touchend', handleClick)
}
function handleScroll(event) {
if (initialScrollPosition === null) initialScrollPosition = window.pageYOffset
var deltaY = initialScrollPosition - window.pageYOffset
if (Math.abs(deltaY) >= 40) closeActiveZoom()
}
function handleEscPressed(event) {
if (event.keyCode == 27) closeActiveZoom()
}
function handleClick(event) {
event.stopPropagation()
event.preventDefault()
closeActiveZoom()
}
function handleTouchStart(event) {
initialTouchPosition = event.touches[0].pageY
event.target.addEventListener('touchmove', handleTouchMove)
}
function handleTouchMove(event) {
if (Math.abs(event.touches[0].pageY - initialTouchPosition) <= 10) return
closeActiveZoom()
event.target.removeEventListener('touchmove', handleTouchMove)
}
return { listen: listen }
}
var vanillaZoom = (function () {
var fullHeight = null
var fullWidth = null
var overlay = null
var imgScaleFactor = null
var targetImage = null
var targetImageWrap = null
var targetImageClone = null
function zoomImage() {
var img = document.createElement('img')
img.onload = function () {
fullHeight = Number(img.height)
fullWidth = Number(img.width)
zoomOriginal()
}
img.src = targetImage.currentSrc || targetImage.src
}
function zoomOriginal() {
targetImageWrap = document.createElement('div')
targetImageWrap.className = 'zoom-img-wrap'
targetImageWrap.style.position = 'absolute'
targetImageWrap.style.top = offset(targetImage).top + 'px'
targetImageWrap.style.left = offset(targetImage).left + 'px'
targetImageClone = targetImage.cloneNode()
targetImageClone.style.visibility = 'hidden'
targetImage.style.width = targetImage.offsetWidth + 'px'
targetImage.parentNode.replaceChild(targetImageClone, targetImage)
document.body.appendChild(targetImageWrap)
targetImageWrap.appendChild(targetImage)
targetImage.classList.add('zoom-img')
targetImage.setAttribute('data-action', 'zoom-out')
overlay = document.createElement('div')
overlay.className = 'zoom-overlay'
document.body.appendChild(overlay)
calculateZoom()
triggerAnimation()
}
function calculateZoom() {
targetImage.offsetWidth // repaint before animating
var originalFullImageWidth = fullWidth
var originalFullImageHeight = fullHeight
var maxScaleFactor = originalFullImageWidth / targetImage.width
var viewportHeight = window.innerHeight - OFFSET
var viewportWidth = window.innerWidth - OFFSET
var imageAspectRatio = originalFullImageWidth / originalFullImageHeight
var viewportAspectRatio = viewportWidth / viewportHeight
if (originalFullImageWidth < viewportWidth && originalFullImageHeight < viewportHeight) {
imgScaleFactor = maxScaleFactor
} else if (imageAspectRatio < viewportAspectRatio) {
imgScaleFactor = (viewportHeight / originalFullImageHeight) * maxScaleFactor
} else {
imgScaleFactor = (viewportWidth / originalFullImageWidth) * maxScaleFactor
}
}
function triggerAnimation() {
targetImage.offsetWidth // repaint before animating
var imageOffset = offset(targetImage)
var scrollTop = window.pageYOffset
var viewportY = scrollTop + (window.innerHeight / 2)
var viewportX = (window.innerWidth / 2)
var imageCenterY = imageOffset.top + (targetImage.height / 2)
var imageCenterX = imageOffset.left + (targetImage.width / 2)
var translateY = Math.round(viewportY - imageCenterY)
var translateX = Math.round(viewportX - imageCenterX)
var targetImageTransform = 'scale(' + imgScaleFactor + ')'
var targetImageWrapTransform =
'translate(' + translateX + 'px, ' + translateY + 'px) translateZ(0)'
targetImage.style.webkitTransform = targetImageTransform
targetImage.style.msTransform = targetImageTransform
targetImage.style.transform = targetImageTransform
targetImageWrap.style.webkitTransform = targetImageWrapTransform
targetImageWrap.style.msTransform = targetImageWrapTransform
targetImageWrap.style.transform = targetImageWrapTransform
document.body.classList.add('zoom-overlay-open')
}
function close() {
document.body.classList.remove('zoom-overlay-open')
document.body.classList.add('zoom-overlay-transitioning')
targetImage.style.webkitTransform = ''
targetImage.style.msTransform = ''
targetImage.style.transform = ''
targetImageWrap.style.webkitTransform = ''
targetImageWrap.style.msTransform = ''
targetImageWrap.style.transform = ''
if (!'transition' in document.body.style) return dispose()
targetImageWrap.addEventListener('transitionend', dispose)
targetImageWrap.addEventListener('webkitTransitionEnd', dispose)
}
function dispose() {
targetImage.removeEventListener('transitionend', dispose)
targetImage.removeEventListener('webkitTransitionEnd', dispose)
if (!targetImageWrap || !targetImageWrap.parentNode) return
targetImage.classList.remove('zoom-img')
targetImage.style.width = ''
targetImage.setAttribute('data-action', 'zoom')
targetImageClone.parentNode.replaceChild(targetImage, targetImageClone)
targetImageWrap.parentNode.removeChild(targetImageWrap)
overlay.parentNode.removeChild(overlay)
document.body.classList.remove('zoom-overlay-transitioning')
}
return function (target) {
targetImage = target
return { zoomImage: zoomImage, close: close, dispose: dispose }
}
}())
zoomListener().listen()
}()

View File

@@ -5,12 +5,10 @@
#include "pid.h"
#include "vector.h"
#include "util.h"
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern float loopRate, dt;
extern double t;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern float loopRate;
extern uint16_t channels[16];
const char* motd =
"\nWelcome to\n"
@@ -22,11 +20,6 @@ const char* motd =
"|__| |_______||__| /__/ \\__\\\n\n"
"Commands:\n\n"
"help - show help\n"
"p - show all parameters\n"
"p <name> - show parameter\n"
"p <name> <value> - set parameter\n"
"preset - reset parameters\n"
"time - show time info\n"
"ps - show pitch/roll/yaw\n"
"psq - show attitude quaternion\n"
"imu - show IMU data\n"
@@ -34,96 +27,42 @@ const char* motd =
"mot - show motor output\n"
"log - dump in-RAM log\n"
"cr - calibrate RC\n"
"cg - calibrate gyro\n"
"ca - calibrate accel\n"
"mfr, mfl, mrr, mrl - test motor (remove props)\n"
"reset - reset drone's state\n"
"reboot - reboot the drone\n";
"reset - reset drone's state\n";
void print(const char* format, ...) {
char buf[1000];
va_list args;
va_start(args, format);
vsnprintf(buf, sizeof(buf), format, args);
va_end(args);
Serial.print(buf);
#if WIFI_ENABLED
mavlinkPrint(buf);
#endif
}
void pause(float duration) {
#if ARDUINO
double start = t;
while (t - start < duration) {
step();
handleInput();
#if WIFI_ENABLED
processMavlink();
#endif
}
#else
// Code above won't work in the simulation
delay(duration * 1000);
#endif
}
void doCommand(String str, bool echo = false) {
// parse command
String command, arg0, arg1;
splitString(str, command, arg0, arg1);
// echo command
if (echo && !command.isEmpty()) {
print("> %s\n", str.c_str());
}
// execute command
void doCommand(const String& command) {
if (command == "help" || command == "motd") {
print("%s\n", motd);
} else if (command == "p" && arg0 == "") {
printParameters();
} else if (command == "p" && arg0 != "" && arg1 == "") {
print("%s = %g\n", arg0.c_str(), getParameter(arg0.c_str()));
} else if (command == "p") {
bool success = setParameter(arg0.c_str(), arg1.toFloat());
if (success) {
print("%s = %g\n", arg0.c_str(), arg1.toFloat());
} else {
print("Parameter not found: %s\n", arg0.c_str());
}
} else if (command == "preset") {
resetParameters();
} else if (command == "time") {
print("Time: %f\n", t);
print("Loop rate: %f\n", loopRate);
print("dt: %f\n", dt);
Serial.println(motd);
} else if (command == "ps") {
Vector a = attitude.toEulerZYX();
print("roll: %f pitch: %f yaw: %f\n", degrees(a.x), degrees(a.y), degrees(a.z));
Vector a = attitude.toEuler();
Serial.printf("roll: %f pitch: %f yaw: %f\n", a.x * RAD_TO_DEG, a.y * RAD_TO_DEG, a.z * RAD_TO_DEG);
} else if (command == "psq") {
print("qx: %f qy: %f qz: %f qw: %f\n", attitude.x, attitude.y, attitude.z, attitude.w);
Serial.printf("qx: %f qy: %f qz: %f qw: %f\n", attitude.x, attitude.y, attitude.z, attitude.w);
} else if (command == "imu") {
printIMUInfo();
print("gyro: %f %f %f\n", rates.x, rates.y, rates.z);
print("acc: %f %f %f\n", acc.x, acc.y, acc.z);
printIMUCal();
print("rate: %f\n", loopRate);
print("landed: %d\n", landed);
Serial.printf("gyro: %f %f %f\n", rates.x, rates.y, rates.z);
Serial.printf("acc: %f %f %f\n", acc.x, acc.y, acc.z);
printIMUCalibration();
Serial.printf("rate: %f\n", loopRate);
} else if (command == "rc") {
print("Raw: throttle %d yaw %d pitch %d roll %d armed %d mode %d\n",
channels[throttleChannel], channels[yawChannel], channels[pitchChannel],
channels[rollChannel], channels[armedChannel], channels[modeChannel]);
print("Control: throttle %g yaw %g pitch %g roll %g armed %g mode %g\n",
controls[throttleChannel], controls[yawChannel], controls[pitchChannel],
controls[rollChannel], controls[armedChannel], controls[modeChannel]);
print("Mode: %s\n", getModeName());
Serial.printf("channels: ");
for (int i = 0; i < 16; i++) {
Serial.printf("%u ", channels[i]);
}
Serial.printf("\nroll: %g pitch: %g yaw: %g throttle: %g armed: %g mode: %g\n",
controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode);
Serial.printf("mode: %s\n", getModeName());
} else if (command == "mot") {
print("Motors: front-right %g front-left %g rear-right %g rear-left %g\n",
Serial.printf("front-right %f front-left %f rear-right %f rear-left %f\n",
motors[MOTOR_FRONT_RIGHT], motors[MOTOR_FRONT_LEFT], motors[MOTOR_REAR_RIGHT], motors[MOTOR_REAR_LEFT]);
} else if (command == "log") {
dumpLog();
} else if (command == "cr") {
calibrateRC();
} else if (command == "cg") {
calibrateGyro();
} else if (command == "ca") {
calibrateAccel();
} else if (command == "mfr") {
@@ -136,12 +75,10 @@ void doCommand(String str, bool echo = false) {
testMotor(MOTOR_REAR_LEFT);
} else if (command == "reset") {
attitude = Quaternion();
} else if (command == "reboot") {
ESP.restart();
} else if (command == "") {
// do nothing
} else {
print("Invalid command: %s\n", command.c_str());
Serial.println("Invalid command: " + command);
}
}
@@ -150,7 +87,7 @@ void handleInput() {
static String input;
if (showMotd) {
print("%s\n", motd);
Serial.printf("%s\n", motd);
showMotd = false;
}

View File

@@ -45,8 +45,6 @@ PID yawRatePID(YAWRATE_P, YAWRATE_I, YAWRATE_D);
PID rollPID(ROLL_P, ROLL_I, ROLL_D);
PID pitchPID(PITCH_P, PITCH_I, PITCH_D);
PID yawPID(YAW_P, 0, 0);
Vector maxRate(ROLLRATE_MAX, PITCHRATE_MAX, YAWRATE_MAX);
float tiltMax = TILT_MAX;
Quaternion attitudeTarget;
Vector ratesTarget;
@@ -54,7 +52,6 @@ Vector torqueTarget;
float thrustTarget;
extern const int MOTOR_REAR_LEFT, MOTOR_REAR_RIGHT, MOTOR_FRONT_RIGHT, MOTOR_FRONT_LEFT;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
void control() {
interpretRC();
@@ -72,39 +69,39 @@ void control() {
}
void interpretRC() {
armed = controls[throttleChannel] >= 0.05 &&
(controls[armedChannel] >= 0.5 || isnan(controls[armedChannel])); // assume armed if armed channel is not defined
armed = controlThrottle >= 0.05 && controlArmed >= 0.5;
// NOTE: put ACRO or MANUAL modes there if you want to use them
if (controls[modeChannel] < 0.25) {
if (controlMode < 0.25) {
mode = STAB;
} else if (controls[modeChannel] < 0.75) {
} else if (controlMode < 0.75) {
mode = STAB;
} else {
mode = STAB;
}
thrustTarget = controls[throttleChannel];
thrustTarget = controlThrottle;
if (mode == ACRO) {
yawMode = YAW_RATE;
ratesTarget.x = controls[rollChannel] * maxRate.x;
ratesTarget.y = controls[pitchChannel] * maxRate.y;
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
ratesTarget.x = controlRoll * ROLLRATE_MAX;
ratesTarget.y = controlPitch * PITCHRATE_MAX;
ratesTarget.z = -controlYaw * YAWRATE_MAX; // positive yaw stick means clockwise rotation in FLU
} else if (mode == STAB) {
yawMode = controls[yawChannel] == 0 ? YAW : YAW_RATE;
yawMode = controlYaw == 0 ? YAW : YAW_RATE;
attitudeTarget = Quaternion::fromEulerZYX(Vector(
controls[rollChannel] * tiltMax,
controls[pitchChannel] * tiltMax,
attitudeTarget = Quaternion::fromEuler(Vector(
controlRoll * TILT_MAX,
controlPitch * TILT_MAX,
attitudeTarget.getYaw()));
ratesTarget.z = -controls[yawChannel] * maxRate.z; // positive yaw stick means clockwise rotation in FLU
ratesTarget.z = -controlYaw * YAWRATE_MAX; // positive yaw stick means clockwise rotation in FLU
} else if (mode == MANUAL) {
// passthrough mode
yawMode = YAW_RATE;
torqueTarget = Vector(controls[rollChannel], controls[pitchChannel], -controls[yawChannel]) * 0.01;
torqueTarget = Vector(controlRoll, controlPitch, -controlYaw) * 0.01;
}
if (yawMode == YAW_RATE || !motorsActive()) {
@@ -122,10 +119,10 @@ void controlAttitude() {
}
const Vector up(0, 0, 1);
Vector upActual = attitude.rotateVector(up);
Vector upTarget = attitudeTarget.rotateVector(up);
Vector upActual = Quaternion::rotateVector(up, attitude);
Vector upTarget = Quaternion::rotateVector(up, attitudeTarget);
Vector error = Vector::angularRatesBetweenVectors(upTarget, upActual);
Vector error = Vector::rotationVectorBetween(upTarget, upActual);
ratesTarget.x = rollPID.update(error.x, dt);
ratesTarget.y = pitchPID.update(error.y, dt);

View File

@@ -23,20 +23,20 @@ void applyGyro() {
rates = ratesFilter.update(gyro);
// apply rates to attitude
attitude = attitude.rotate(Quaternion::fromAngularRates(rates * dt));
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(rates * dt));
}
void applyAcc() {
// test should we apply accelerometer gravity correction
float accNorm = acc.norm();
landed = !motorsActive() && abs(accNorm - ONE_G) < ONE_G * 0.1f;
bool landed = !motorsActive() && abs(accNorm - ONE_G) < ONE_G * 0.1f;
if (!landed) return;
// calculate accelerometer correction
Vector up = attitude.rotateVector(Vector(0, 0, 1));
Vector correction = Vector::angularRatesBetweenVectors(acc, up) * WEIGHT_ACC;
Vector up = Quaternion::rotateVector(Vector(0, 0, 1), attitude);
Vector correction = Vector::rotationVectorBetween(acc, up) * WEIGHT_ACC;
// apply correction
attitude = attitude.rotate(Quaternion::fromAngularRates(correction));
attitude = Quaternion::rotate(attitude, Quaternion::fromRotationVector(correction));
}

View File

@@ -1,31 +1,16 @@
// Copyright (c) 2024 Oleg Kalachev <okalachev@gmail.com>
// Repository: https://github.com/okalachev/flix
// Fail-safe functions
// Fail-safe for RC loss
#define RC_LOSS_TIMEOUT 0.2
#define DESCEND_TIME 3.0 // time to descend from full throttle to zero
extern double controlsTime;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel;
void failsafe() {
armingFailsafe();
rcLossFailsafe();
}
// Prevent arming without zero throttle input
void armingFailsafe() {
static double zeroThrottleTime;
static double armingTime;
if (!armed) armingTime = t; // stores the last time when the drone was disarmed, therefore contains arming time
if (controlsTime > 0 && controls[throttleChannel] < 0.05) zeroThrottleTime = controlsTime;
if (armingTime - zeroThrottleTime > 0.1) armed = false; // prevent arming if there was no zero throttle for 0.1 sec
}
extern float controlTime;
// RC loss failsafe
void rcLossFailsafe() {
if (t - controlsTime > RC_LOSS_TIMEOUT) {
void failsafe() {
if (t - controlTime > RC_LOSS_TIMEOUT) {
descend();
}
}
@@ -33,9 +18,9 @@ void rcLossFailsafe() {
// Smooth descend on RC lost
void descend() {
mode = STAB;
controls[rollChannel] = 0;
controls[pitchChannel] = 0;
controls[yawChannel] = 0;
controls[throttleChannel] -= dt / DESCEND_TIME;
if (controls[throttleChannel] < 0) controls[throttleChannel] = 0;
controlRoll = 0;
controlPitch = 0;
controlYaw = 0;
controlThrottle -= dt / DESCEND_TIME;
if (controlThrottle < 0) controlThrottle = 0;
}

View File

@@ -10,22 +10,19 @@
#define SERIAL_BAUDRATE 115200
#define WIFI_ENABLED 1
double t = NAN; // current step time, s
float t = NAN; // current step time, s
float dt; // time delta from previous step, s
int16_t channels[16]; // raw rc channels
float controls[16]; // normalized controls in range [-1..1] ([0..1] for throttle)
float controlRoll, controlPitch, controlYaw, controlThrottle, controlArmed, controlMode; // pilot's inputs, range [-1, 1]
Vector gyro; // gyroscope data
Vector acc; // accelerometer data, m/s/s
Vector rates; // filtered angular rates, rad/s
Quaternion attitude; // estimated attitude
bool landed; // are we landed and stationary
float motors[4]; // normalized motors thrust in range [-1..1]
float motors[4]; // normalized motors thrust in range [0..1]
void setup() {
Serial.begin(SERIAL_BAUDRATE);
print("Initializing flix");
Serial.println("Initializing flix\n");
disableBrownOut();
setupParameters();
setupLED();
setupMotors();
setLED(true);
@@ -35,7 +32,7 @@ void setup() {
setupIMU();
setupRC();
setLED(false);
print("Initializing complete");
Serial.println("Initializing complete\n");
}
void loop() {
@@ -50,5 +47,4 @@ void loop() {
processMavlink();
#endif
logData();
syncParameters();
}

View File

@@ -5,19 +5,26 @@
#include <SPI.h>
#include <MPU9250.h>
#include "lpf.h"
#include "util.h"
MPU9250 IMU(SPI);
// NOTE: use 'ca' command to calibrate the accelerometer and put the values here
Vector accBias;
Vector gyroBias;
Vector accScale(1, 1, 1);
Vector gyroBias;
void setupIMU() {
print("Setup IMU\n");
IMU.begin();
Serial.println("Setup IMU");
bool status = IMU.begin();
if (!status) {
while (true) {
Serial.println("IMU begin error");
delay(1000);
}
}
configureIMU();
calibrateGyro();
}
void configureIMU() {
@@ -31,7 +38,6 @@ void readIMU() {
IMU.waitForData();
IMU.getGyro(gyro.x, gyro.y, gyro.z);
IMU.getAccel(acc.x, acc.y, acc.z);
calibrateGyroOnce();
// apply scale and bias
acc = (acc - accBias) / accScale;
gyro = gyro - gyroBias;
@@ -47,40 +53,49 @@ void rotateIMU(Vector& data) {
// Axes orientation for various boards: https://github.com/okalachev/flixperiph#imu-axes-orientation
}
void calibrateGyroOnce() {
static float landedTime = 0;
landedTime = landed ? landedTime + dt : 0;
if (landedTime < 2) return; // calibrate only if definitely stationary
void calibrateGyro() {
const int samples = 1000;
Serial.println("Calibrating gyro, stand still");
IMU.setGyroRange(IMU.GYRO_RANGE_250DPS); // the most sensitive mode
static LowPassFilter<Vector> gyroCalibrationFilter(0.001);
gyroBias = gyroCalibrationFilter.update(gyro);
gyroBias = Vector(0, 0, 0);
for (int i = 0; i < samples; i++) {
IMU.waitForData();
IMU.getGyro(gyro.x, gyro.y, gyro.z);
gyroBias = gyroBias + gyro;
}
gyroBias = gyroBias / samples;
printIMUCalibration();
configureIMU();
}
void calibrateAccel() {
print("Calibrating accelerometer\n");
Serial.println("Calibrating accelerometer");
IMU.setAccelRange(IMU.ACCEL_RANGE_2G); // the most sensitive mode
print("Place level [8 sec]\n");
pause(8);
Serial.setTimeout(60000);
Serial.print("1/6 Place level [enter] ");
Serial.readStringUntil('\n');
calibrateAccelOnce();
print("Place nose up [8 sec]\n");
pause(8);
Serial.print("2/6 Place nose up [enter] ");
Serial.readStringUntil('\n');
calibrateAccelOnce();
print("Place nose down [8 sec]\n");
pause(8);
Serial.print("3/6 Place nose down [enter] ");
Serial.readStringUntil('\n');
calibrateAccelOnce();
print("Place on right side [8 sec]\n");
pause(8);
Serial.print("4/6 Place on right side [enter] ");
Serial.readStringUntil('\n');
calibrateAccelOnce();
print("Place on left side [8 sec]\n");
pause(8);
Serial.print("5/6 Place on left side [enter] ");
Serial.readStringUntil('\n');
calibrateAccelOnce();
print("Place upside down [8 sec]\n");
pause(8);
Serial.print("6/6 Place upside down [enter] ");
Serial.readStringUntil('\n');
calibrateAccelOnce();
printIMUCal();
print("✓ Calibration done!\n");
printIMUCalibration();
Serial.print("✓ Calibration done!\n");
configureIMU();
}
@@ -111,14 +126,13 @@ void calibrateAccelOnce() {
accBias = (accMax + accMin) / 2;
}
void printIMUCal() {
print("gyro bias: %f %f %f\n", gyroBias.x, gyroBias.y, gyroBias.z);
print("accel bias: %f %f %f\n", accBias.x, accBias.y, accBias.z);
print("accel scale: %f %f %f\n", accScale.x, accScale.y, accScale.z);
void printIMUCalibration() {
Serial.printf("gyro bias: %f %f %f\n", gyroBias.x, gyroBias.y, gyroBias.z);
Serial.printf("accel bias: %f %f %f\n", accBias.x, accBias.y, accBias.z);
Serial.printf("accel scale: %f %f %f\n", accScale.x, accScale.y, accScale.z);
}
void printIMUInfo() {
IMU.status() ? print("status: ERROR %d\n", IMU.status()) : print("status: OK\n");
print("model: %s\n", IMU.getModel());
print("who am I: 0x%02X\n", IMU.whoAmI());
Serial.printf("model: %s\n", IMU.getModel());
Serial.printf("who am I: 0x%02X\n", IMU.whoAmI());
}

View File

@@ -21,7 +21,3 @@ void setLED(bool on) {
digitalWrite(LED_BUILTIN, on ? HIGH : LOW);
state = on;
}
void blinkLED() {
setLED(micros() / BLINK_PERIOD % 2);
}

View File

@@ -3,60 +3,36 @@
// In-RAM logging
#include "vector.h"
#define LOG_RATE 100
#define LOG_DURATION 10
#define LOG_PERIOD 1.0 / LOG_RATE
#define LOG_SIZE LOG_DURATION * LOG_RATE
#define LOG_COLUMNS 14
float tFloat;
Vector attitudeEuler;
Vector attitudeTargetEuler;
struct LogEntry {
const char *name;
float *value;
};
LogEntry logEntries[] = {
{"t", &tFloat},
{"rates.x", &rates.x},
{"rates.y", &rates.y},
{"rates.z", &rates.z},
{"ratesTarget.x", &ratesTarget.x},
{"ratesTarget.y", &ratesTarget.y},
{"ratesTarget.z", &ratesTarget.z},
{"attitude.x", &attitudeEuler.x},
{"attitude.y", &attitudeEuler.y},
{"attitude.z", &attitudeEuler.z},
{"attitudeTarget.x", &attitudeTargetEuler.x},
{"attitudeTarget.y", &attitudeTargetEuler.y},
{"attitudeTarget.z", &attitudeTargetEuler.z},
{"thrustTarget", &thrustTarget}
};
const int logColumns = sizeof(logEntries) / sizeof(logEntries[0]);
float logBuffer[LOG_SIZE][logColumns];
void prepareLogData() {
tFloat = t;
attitudeEuler = attitude.toEulerZYX();
attitudeTargetEuler = attitudeTarget.toEulerZYX();
}
float logBuffer[LOG_SIZE][LOG_COLUMNS]; // * 4 (float)
int logPointer = 0;
void logData() {
if (!armed) return;
static int logPointer = 0;
static double logTime = 0;
static float logTime = 0;
if (t - logTime < LOG_PERIOD) return;
logTime = t;
prepareLogData();
for (int i = 0; i < logColumns; i++) {
logBuffer[logPointer][i] = *logEntries[i].value;
}
logBuffer[logPointer][0] = t;
logBuffer[logPointer][1] = rates.x;
logBuffer[logPointer][2] = rates.y;
logBuffer[logPointer][3] = rates.z;
logBuffer[logPointer][4] = ratesTarget.x;
logBuffer[logPointer][5] = ratesTarget.y;
logBuffer[logPointer][6] = ratesTarget.z;
logBuffer[logPointer][7] = attitude.toEuler().x;
logBuffer[logPointer][8] = attitude.toEuler().y;
logBuffer[logPointer][9] = attitude.toEuler().z;
logBuffer[logPointer][10] = attitudeTarget.toEuler().x;
logBuffer[logPointer][11] = attitudeTarget.toEuler().y;
logBuffer[logPointer][12] = attitudeTarget.toEuler().z;
logBuffer[logPointer][13] = thrustTarget;
logPointer++;
if (logPointer >= LOG_SIZE) {
@@ -65,15 +41,13 @@ void logData() {
}
void dumpLog() {
// Print header
for (int i = 0; i < logColumns; i++) {
print("%s%s", logEntries[i].name, i < logColumns - 1 ? "," : "\n");
}
// Print data
Serial.printf("t,rates.x,rates.y,rates.z,ratesTarget.x,ratesTarget.y,ratesTarget.z,"
"attitude.x,attitude.y,attitude.z,attitudeTarget.x,attitudeTarget.y,attitudeTarget.z,thrustTarget\n");
for (int i = 0; i < LOG_SIZE; i++) {
if (logBuffer[i][0] == 0) continue; // skip empty records
for (int j = 0; j < logColumns; j++) {
print("%g%s", logBuffer[i][j], j < logColumns - 1 ? "," : "\n");
for (int j = 0; j < LOG_COLUMNS - 1; j++) {
Serial.printf("%f,", logBuffer[i][j]);
}
Serial.printf("%f\n", logBuffer[i][LOG_COLUMNS - 1]);
}
}

View File

@@ -22,7 +22,8 @@ public:
output = input;
initialized = true;
}
return output = output * (1 - alpha) + input * alpha;
return output += alpha * (input - output);
}
void setCutOffFrequency(float cutOffFreq, float dt) {

View File

@@ -13,10 +13,7 @@
#define MAVLINK_CONTROL_SCALE 0.7f
#define MAVLINK_CONTROL_YAW_DEAD_ZONE 0.1f
float mavlinkControlScale = 0.7;
extern double controlsTime;
extern int rollChannel, pitchChannel, throttleChannel, yawChannel, armedChannel, modeChannel;
extern float controlTime;
void processMavlink() {
sendMavlink();
@@ -24,8 +21,8 @@ void processMavlink() {
}
void sendMavlink() {
static double lastSlow = 0;
static double lastFast = 0;
static float lastSlow = 0;
static float lastFast = 0;
mavlink_message_t msg;
uint32_t time = t * 1000;
@@ -37,25 +34,18 @@ void sendMavlink() {
MAV_MODE_FLAG_MANUAL_INPUT_ENABLED | (armed * MAV_MODE_FLAG_SAFETY_ARMED) | ((mode == STAB) * MAV_MODE_FLAG_STABILIZE_ENABLED),
0, MAV_STATE_STANDBY);
sendMessage(&msg);
mavlink_msg_extended_sys_state_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
MAV_VTOL_STATE_UNDEFINED, landed ? MAV_LANDED_STATE_ON_GROUND : MAV_LANDED_STATE_IN_AIR);
sendMessage(&msg);
}
if (t - lastFast >= PERIOD_FAST) {
lastFast = t;
const float zeroQuat[] = {0, 0, 0, 0};
Quaternion att = fluToFrd(attitude); // MAVLink uses FRD coordinate system
mavlink_msg_attitude_quaternion_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
time, att.w, att.x, att.y, att.z, rates.x, rates.y, rates.z, zeroQuat);
time, attitude.w, attitude.x, -attitude.y, -attitude.z, rates.x, -rates.y, -rates.z, zeroQuat); // convert to frd
sendMessage(&msg);
mavlink_msg_rc_channels_scaled_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlsTime * 1000, 0,
controls[0] * 10000, controls[1] * 10000, controls[2] * 10000,
controls[3] * 10000, controls[4] * 10000, controls[5] * 10000,
INT16_MAX, INT16_MAX, UINT8_MAX);
mavlink_msg_rc_channels_raw_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, controlTime * 1000, 0,
channels[0], channels[1], channels[2], channels[3], channels[4], channels[5], channels[6], channels[7], UINT8_MAX);
sendMessage(&msg);
float actuator[32];
@@ -64,8 +54,8 @@ void sendMavlink() {
sendMessage(&msg);
mavlink_msg_scaled_imu_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, time,
acc.x * 1000, acc.y * 1000, acc.z * 1000,
gyro.x * 1000, gyro.y * 1000, gyro.z * 1000,
acc.x * 1000, -acc.y * 1000, -acc.z * 1000, // convert to frd
gyro.x * 1000, -gyro.y * 1000, -gyro.z * 1000,
0, 0, 0, 0);
sendMessage(&msg);
}
@@ -97,121 +87,16 @@ void handleMavlink(const void *_msg) {
if (msg.msgid == MAVLINK_MSG_ID_MANUAL_CONTROL) {
mavlink_manual_control_t m;
mavlink_msg_manual_control_decode(&msg, &m);
if (m.target && m.target != SYSTEM_ID) return; // 0 is broadcast
controlThrottle = m.z / 1000.0f;
controlPitch = m.x / 1000.0f * MAVLINK_CONTROL_SCALE;
controlRoll = m.y / 1000.0f * MAVLINK_CONTROL_SCALE;
controlYaw = m.r / 1000.0f * MAVLINK_CONTROL_SCALE;
controlMode = 1; // STAB mode
controlArmed = 1; // armed
controlTime = t;
controls[throttleChannel] = m.z / 1000.0f;
controls[pitchChannel] = m.x / 1000.0f * mavlinkControlScale;
controls[rollChannel] = m.y / 1000.0f * mavlinkControlScale;
controls[yawChannel] = m.r / 1000.0f * mavlinkControlScale;
controls[modeChannel] = 1; // STAB mode
controls[armedChannel] = 1; // armed
controlsTime = t;
if (abs(controls[yawChannel]) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controls[yawChannel] = 0;
if (abs(controlYaw) < MAVLINK_CONTROL_YAW_DEAD_ZONE) controlYaw = 0;
}
if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_LIST) {
mavlink_param_request_list_t m;
mavlink_msg_param_request_list_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
mavlink_message_t msg;
for (int i = 0; i < parametersCount(); i++) {
mavlink_msg_param_value_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
getParameterName(i), getParameter(i), MAV_PARAM_TYPE_REAL32, parametersCount(), i);
sendMessage(&msg);
}
}
if (msg.msgid == MAVLINK_MSG_ID_PARAM_REQUEST_READ) {
mavlink_param_request_read_t m;
mavlink_msg_param_request_read_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
char name[MAVLINK_MSG_PARAM_REQUEST_READ_FIELD_PARAM_ID_LEN + 1];
strlcpy(name, m.param_id, sizeof(name)); // param_id might be not null-terminated
float value = strlen(name) == 0 ? getParameter(m.param_index) : getParameter(name);
if (m.param_index != -1) {
memcpy(name, getParameterName(m.param_index), 16);
}
mavlink_message_t msg;
mavlink_msg_param_value_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
name, value, MAV_PARAM_TYPE_REAL32, parametersCount(), m.param_index);
sendMessage(&msg);
}
if (msg.msgid == MAVLINK_MSG_ID_PARAM_SET) {
mavlink_param_set_t m;
mavlink_msg_param_set_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
char name[MAVLINK_MSG_PARAM_SET_FIELD_PARAM_ID_LEN + 1];
strlcpy(name, m.param_id, sizeof(name)); // param_id might be not null-terminated
setParameter(name, m.param_value);
// send ack
mavlink_message_t msg;
mavlink_msg_param_value_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
m.param_id, m.param_value, MAV_PARAM_TYPE_REAL32, parametersCount(), 0); // index is unknown
sendMessage(&msg);
}
if (msg.msgid == MAVLINK_MSG_ID_MISSION_REQUEST_LIST) { // handle to make qgc happy
mavlink_mission_request_list_t m;
mavlink_msg_mission_request_list_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
mavlink_message_t msg;
mavlink_msg_mission_count_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg, 0, 0, 0, MAV_MISSION_TYPE_MISSION, 0);
sendMessage(&msg);
}
if (msg.msgid == MAVLINK_MSG_ID_SERIAL_CONTROL) {
mavlink_serial_control_t m;
mavlink_msg_serial_control_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
char data[MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN + 1];
strlcpy(data, (const char *)m.data, m.count); // data might be not null-terminated
doCommand(data, true);
}
// Handle commands
if (msg.msgid == MAVLINK_MSG_ID_COMMAND_LONG) {
mavlink_command_long_t m;
mavlink_msg_command_long_decode(&msg, &m);
if (m.target_system && m.target_system != SYSTEM_ID) return;
mavlink_message_t ack;
mavlink_message_t response;
if (m.command == MAV_CMD_REQUEST_MESSAGE && m.param1 == MAVLINK_MSG_ID_AUTOPILOT_VERSION) {
mavlink_msg_command_ack_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &ack, m.command, MAV_RESULT_ACCEPTED, UINT8_MAX, 0, msg.sysid, msg.compid);
sendMessage(&ack);
mavlink_msg_autopilot_version_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &response,
MAV_PROTOCOL_CAPABILITY_PARAM_FLOAT | MAV_PROTOCOL_CAPABILITY_MAVLINK2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0);
sendMessage(&response);
} else {
mavlink_msg_command_ack_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &ack, m.command, MAV_RESULT_UNSUPPORTED, UINT8_MAX, 0, msg.sysid, msg.compid);
sendMessage(&ack);
}
}
}
// Send shell output to GCS
void mavlinkPrint(const char* str) {
// Send data in chunks
for (int i = 0; i < strlen(str); i += MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN) {
char data[MAVLINK_MSG_SERIAL_CONTROL_FIELD_DATA_LEN + 1];
strlcpy(data, str + i, sizeof(data));
mavlink_message_t msg;
mavlink_msg_serial_control_pack(SYSTEM_ID, MAV_COMP_ID_AUTOPILOT1, &msg,
SERIAL_CONTROL_DEV_SHELL, 0, 0, 0, strlen(data), (uint8_t *)data, 0, 0);
sendMessage(&msg);
}
}
// Convert Forward-Left-Up to Forward-Right-Down quaternion
inline Quaternion fluToFrd(const Quaternion &q) {
return Quaternion(q.w, q.x, -q.y, -q.z);
}
#endif

View File

@@ -2,7 +2,6 @@
// Repository: https://github.com/okalachev/flix
// Motors output control using MOSFETs
// In case of using ESCs, change PWM_STOP, PWM_MIN and PWM_MAX to appropriate values in μs, decrease PWM_FREQUENCY (to 400)
#include "util.h"
@@ -11,11 +10,8 @@
#define MOTOR_2_PIN 14 // front right
#define MOTOR_3_PIN 15 // front left
#define PWM_FREQUENCY 1000
#define PWM_RESOLUTION 12
#define PWM_STOP 0
#define PWM_MIN 0
#define PWM_MAX 1000000 / PWM_FREQUENCY
#define PWM_FREQUENCY 78000
#define PWM_RESOLUTION 10
// Motors array indexes:
const int MOTOR_REAR_LEFT = 0;
@@ -24,7 +20,7 @@ const int MOTOR_FRONT_RIGHT = 2;
const int MOTOR_FRONT_LEFT = 3;
void setupMotors() {
print("Setup Motors\n");
Serial.println("Setup Motors");
// configure pins
ledcAttach(MOTOR_0_PIN, PWM_FREQUENCY, PWM_RESOLUTION);
@@ -33,14 +29,12 @@ void setupMotors() {
ledcAttach(MOTOR_3_PIN, PWM_FREQUENCY, PWM_RESOLUTION);
sendMotors();
print("Motors initialized\n");
Serial.println("Motors initialized");
}
int getDutyCycle(float value) {
value = constrain(value, 0, 1);
float pwm = mapff(value, 0, 1, PWM_MIN, PWM_MAX);
if (value == 0) pwm = PWM_STOP;
float duty = mapff(pwm, 0, 1000000 / PWM_FREQUENCY, 0, (1 << PWM_RESOLUTION) - 1);
float duty = mapff(value, 0, 1, 0, (1 << PWM_RESOLUTION) - 1);
return round(duty);
}
@@ -55,13 +49,13 @@ bool motorsActive() {
return motors[0] != 0 || motors[1] != 0 || motors[2] != 0 || motors[3] != 0;
}
void testMotor(uint8_t n) {
print("Testing motor %d\n", n);
void testMotor(int n) {
Serial.printf("Testing motor %d\n", n);
motors[n] = 1;
delay(50); // ESP32 may need to wait until the end of the current cycle to change duty https://github.com/espressif/arduino-esp32/issues/5306
sendMotors();
pause(3);
delay(3000);
motors[n] = 0;
sendMotors();
print("Done\n");
Serial.printf("Done\n");
}

View File

@@ -1,142 +0,0 @@
// Copyright (c) 2024 Oleg Kalachev <okalachev@gmail.com>
// Repository: https://github.com/okalachev/flix
// Parameters storage in flash memory
#include <Preferences.h>
extern float channelNeutral[16];
extern float channelMax[16];
extern float mavlinkControlScale;
Preferences storage;
struct Parameter {
const char *name;
float *variable;
float value; // cache
};
Parameter parameters[] = {
// control
{"ROLLRATE_P", &rollRatePID.p},
{"ROLLRATE_I", &rollRatePID.i},
{"ROLLRATE_D", &rollRatePID.d},
{"ROLLRATE_I_LIM", &rollRatePID.windup},
{"PITCHRATE_P", &pitchRatePID.p},
{"PITCHRATE_I", &pitchRatePID.i},
{"PITCHRATE_D", &pitchRatePID.d},
{"PITCHRATE_I_LIM", &pitchRatePID.windup},
{"YAWRATE_P", &yawRatePID.p},
{"YAWRATE_I", &yawRatePID.i},
{"YAWRATE_D", &yawRatePID.d},
{"ROLL_P", &rollPID.p},
{"ROLL_I", &rollPID.i},
{"ROLL_D", &rollPID.d},
{"PITCH_P", &pitchPID.p},
{"PITCH_I", &pitchPID.i},
{"PITCH_D", &pitchPID.d},
{"YAW_P", &yawPID.p},
{"PITCHRATE_MAX", &maxRate.y},
{"ROLLRATE_MAX", &maxRate.x},
{"YAWRATE_MAX", &maxRate.z},
{"TILT_MAX", &tiltMax},
// imu
{"ACC_BIAS_X", &accBias.x},
{"ACC_BIAS_Y", &accBias.y},
{"ACC_BIAS_Z", &accBias.z},
{"ACC_SCALE_X", &accScale.x},
{"ACC_SCALE_Y", &accScale.y},
{"ACC_SCALE_Z", &accScale.z},
// rc
{"RC_NEUTRAL_0", &channelNeutral[0]},
{"RC_NEUTRAL_1", &channelNeutral[1]},
{"RC_NEUTRAL_2", &channelNeutral[2]},
{"RC_NEUTRAL_3", &channelNeutral[3]},
{"RC_NEUTRAL_4", &channelNeutral[4]},
{"RC_NEUTRAL_5", &channelNeutral[5]},
{"RC_NEUTRAL_6", &channelNeutral[6]},
{"RC_NEUTRAL_7", &channelNeutral[7]},
{"RC_MAX_0", &channelMax[0]},
{"RC_MAX_1", &channelMax[1]},
{"RC_MAX_2", &channelMax[2]},
{"RC_MAX_3", &channelMax[3]},
{"RC_MAX_4", &channelMax[4]},
{"RC_MAX_5", &channelMax[5]},
{"RC_MAX_6", &channelMax[6]},
{"RC_MAX_7", &channelMax[7]},
#if WIFI_ENABLED
// MAVLink
{"MAV_CTRL_SCALE", &mavlinkControlScale},
#endif
};
void setupParameters() {
storage.begin("flix", false);
// Read parameters from storage
for (auto &parameter : parameters) {
if (!storage.isKey(parameter.name)) {
storage.putFloat(parameter.name, *parameter.variable);
}
*parameter.variable = storage.getFloat(parameter.name, *parameter.variable);
parameter.value = *parameter.variable;
}
}
int parametersCount() {
return sizeof(parameters) / sizeof(parameters[0]);
}
const char *getParameterName(int index) {
if (index < 0 || index >= parametersCount()) return "";
return parameters[index].name;
}
float getParameter(int index) {
if (index < 0 || index >= parametersCount()) return NAN;
return *parameters[index].variable;
}
float getParameter(const char *name) {
for (auto &parameter : parameters) {
if (strcmp(parameter.name, name) == 0) {
return *parameter.variable;
}
}
return NAN;
}
bool setParameter(const char *name, const float value) {
for (auto &parameter : parameters) {
if (strcmp(parameter.name, name) == 0) {
*parameter.variable = value;
return true;
}
}
return false;
}
void syncParameters() {
static double lastSync = 0;
if (t - lastSync < 1) return; // sync once per second
if (motorsActive()) return; // don't use flash while flying, it may cause a delay
lastSync = t;
for (auto &parameter : parameters) {
if (parameter.value == *parameter.variable) continue;
if (isnan(parameter.value) && isnan(*parameter.variable)) continue; // handle NAN != NAN
storage.putFloat(parameter.name, *parameter.variable);
parameter.value = *parameter.variable;
}
}
void printParameters() {
for (auto &parameter : parameters) {
print("%s = %g\n", parameter.name, *parameter.variable);
}
}
void resetParameters() {
storage.clear();
ESP.restart();
}

View File

@@ -15,22 +15,22 @@ public:
Quaternion(float w, float x, float y, float z): w(w), x(x), y(y), z(z) {};
static Quaternion fromAxisAngle(float a, float b, float c, float angle) {
static Quaternion fromAxisAngle(const Vector& axis, float angle) {
float halfAngle = angle * 0.5;
float sin2 = sin(halfAngle);
float cos2 = cos(halfAngle);
float sinNorm = sin2 / sqrt(a * a + b * b + c * c);
return Quaternion(cos2, a * sinNorm, b * sinNorm, c * sinNorm);
float sinNorm = sin2 / axis.norm();
return Quaternion(cos2, axis.x * sinNorm, axis.y * sinNorm, axis.z * sinNorm);
}
static Quaternion fromAngularRates(const Vector& rates) {
if (rates.zero()) {
static Quaternion fromRotationVector(const Vector& rotation) {
if (rotation.zero()) {
return Quaternion();
}
return Quaternion::fromAxisAngle(rates.x, rates.y, rates.z, rates.norm());
return Quaternion::fromAxisAngle(rotation, rotation.norm());
}
static Quaternion fromEulerZYX(const Vector& euler) {
static Quaternion fromEuler(const Vector& euler) {
float cx = cos(euler.x / 2);
float cy = cos(euler.y / 2);
float cz = cos(euler.z / 2);
@@ -60,14 +60,38 @@ public:
return ret;
}
void toAxisAngle(float& a, float& b, float& c, float& angle) const {
angle = acos(w) * 2;
a = x / sin(angle / 2);
b = y / sin(angle / 2);
c = z / sin(angle / 2);
bool finite() const {
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
}
Vector toEulerZYX() const {
float norm() const {
return sqrt(w * w + x * x + y * y + z * z);
}
void normalize() {
float n = norm();
w /= n;
x /= n;
y /= n;
z /= n;
}
void toAxisAngle(Vector& axis, float& angle) const {
angle = acos(w) * 2;
axis.x = x / sin(angle / 2);
axis.y = y / sin(angle / 2);
axis.z = z / sin(angle / 2);
}
Vector toRotationVector() const {
if (w == 1 && x == 0 && y == 0 && z == 0) return Vector(0, 0, 0); // neutral quaternion
float angle;
Vector axis;
toAxisAngle(axis, angle);
return angle * axis;
}
Vector toEuler() const {
// https://github.com/ros/geometry2/blob/589caf083cae9d8fae7effdb910454b4681b9ec1/tf2/include/tf2/impl/utils.h#L87
Vector euler;
float sqx = x * x;
@@ -112,18 +136,9 @@ public:
void setYaw(float yaw) {
// TODO: optimize?
Vector euler = toEulerZYX();
Vector euler = toEuler();
euler.z = yaw;
(*this) = Quaternion::fromEulerZYX(euler);
}
Quaternion& operator *= (const Quaternion& q) {
Quaternion ret(
w * q.w - x * q.x - y * q.y - z * q.z,
w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y + y * q.w + z * q.x - x * q.z,
w * q.z + z * q.w + x * q.y - y * q.x);
return (*this = ret);
(*this) = Quaternion::fromEuler(euler);
}
Quaternion operator * (const Quaternion& q) const {
@@ -134,6 +149,14 @@ public:
w * q.z + z * q.w + x * q.y - y * q.x);
}
bool operator == (const Quaternion& q) const {
return w == q.w && x == q.x && y == q.y && z == q.z;
}
bool operator != (const Quaternion& q) const {
return !(*this == q);
}
Quaternion inversed() const {
float normSqInv = 1 / (w * w + x * x + y * y + z * z);
return Quaternion(
@@ -143,18 +166,6 @@ public:
-z * normSqInv);
}
float norm() const {
return sqrt(w * w + x * x + y * y + z * z);
}
void normalize() {
float n = norm();
w /= n;
x /= n;
y /= n;
z /= n;
}
Vector conjugate(const Vector& v) const {
Quaternion qv(0, v.x, v.y, v.z);
Quaternion res = (*this) * qv * inversed();
@@ -167,22 +178,27 @@ public:
return Vector(res.x, res.y, res.z);
}
// Rotate vector by quaternion
Vector rotateVector(const Vector& v) const {
return conjugateInversed(v);
}
// Rotate quaternion by quaternion
Quaternion rotate(const Quaternion& q, const bool normalize = true) const {
Quaternion rotated = (*this) * q;
static Quaternion rotate(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
Quaternion rotated = a * b;
if (normalize) {
rotated.normalize();
}
return rotated;
}
bool finite() const {
return isfinite(w) && isfinite(x) && isfinite(y) && isfinite(z);
// Rotate vector by quaternion
static Vector rotateVector(const Vector& v, const Quaternion& q) {
return q.conjugateInversed(v);
}
// Quaternion between two quaternions a and b
static Quaternion between(const Quaternion& a, const Quaternion& b, const bool normalize = true) {
Quaternion q = a * b.inversed();
if (normalize) {
q.normalize();
}
return q;
}
size_t printTo(Print& p) const {

View File

@@ -8,7 +8,15 @@
SBUS RC(Serial2); // NOTE: Use RC(Serial2, 16, 17) if you use the old UART2 pins
// RC channels mapping:
uint16_t channels[16]; // raw rc channels
float controlTime; // time of the last controls update
// NOTE: use 'cr' command to calibrate the RC and put the values here
int channelZero[] = {992, 992, 172, 992, 172, 172, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int channelMax[] = {1811, 1811, 1811, 1811, 1811, 1811, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
// Channels mapping:
int rollChannel = 0;
int pitchChannel = 1;
int throttleChannel = 2;
@@ -16,54 +24,57 @@ int yawChannel = 3;
int armedChannel = 4;
int modeChannel = 5;
double controlsTime; // time of the last controls update
float channelNeutral[16] = {NAN}; // first element NAN means not calibrated
float channelMax[16];
void setupRC() {
print("Setup RC\n");
Serial.println("Setup RC");
RC.begin();
}
bool readRC() {
if (RC.read()) {
SBUSData data = RC.data();
memcpy(channels, data.ch, sizeof(channels)); // copy channels data
for (int i = 0; i < 16; i++) channels[i] = data.ch[i]; // copy channels data
normalizeRC();
controlsTime = t;
controlTime = t;
return true;
}
return false;
}
void normalizeRC() {
if (isnan(channelNeutral[0])) return; // skip if not calibrated
for (uint8_t i = 0; i < 16; i++) {
controls[i] = mapf(channels[i], channelNeutral[i], channelMax[i], 0, 1);
float controls[16];
for (int i = 0; i < 16; i++) {
controls[i] = mapf(channels[i], channelZero[i], channelMax[i], 0, 1);
}
// Update control values
controlRoll = controls[rollChannel];
controlPitch = controls[pitchChannel];
controlYaw = controls[yawChannel];
controlThrottle = controls[throttleChannel];
controlArmed = controls[armedChannel];
controlMode = controls[modeChannel];
}
void calibrateRC() {
print("Calibrate RC: move all sticks to maximum positions [4 sec]\n");
print("··o ··o\n··· ···\n··· ···\n");
pause(4);
Serial.println("Calibrate RC: move all sticks to maximum positions [4 sec]");
Serial.println("··o ··o\n··· ···\n··· ···");
delay(4000);
while (!readRC());
for (int i = 0; i < 16; i++) {
channelMax[i] = channels[i];
}
print("Calibrate RC: move all sticks to neutral positions [4 sec]\n");
print("··· ···\n··· ·o·\n·o· ···\n");
pause(4);
Serial.println("Calibrate RC: move all sticks to neutral positions [4 sec]");
Serial.println("··· ···\n··· ·o·\n·o· ···");
delay(4000);
while (!readRC());
for (int i = 0; i < 16; i++) {
channelNeutral[i] = channels[i];
channelZero[i] = channels[i];
}
printRCCal();
printRCCalibration();
}
void printRCCal() {
for (int i = 0; i < sizeof(channelNeutral) / sizeof(channelNeutral[0]); i++) print("%g ", channelNeutral[i]);
print("\n");
for (int i = 0; i < sizeof(channelMax) / sizeof(channelMax[0]); i++) print("%g ", channelMax[i]);
print("\n");
void printRCCalibration() {
for (int i = 0; i < sizeof(channelZero) / sizeof(channelZero[0]); i++) Serial.printf("%d ", channelZero[i]);
Serial.printf("\n");
for (int i = 0; i < sizeof(channelMax) / sizeof(channelMax[0]); i++) Serial.printf("%d ", channelMax[i]);
Serial.printf("\n");
}

View File

@@ -6,7 +6,7 @@
float loopRate; // Hz
void step() {
double now = micros() / 1000000.0;
float now = micros() / 1000000.0;
dt = now - t;
t = now;
@@ -18,7 +18,7 @@ void step() {
}
void computeLoopRate() {
static double windowStart = 0;
static float windowStart = 0;
static uint32_t rate = 0;
rate++;
if (t - windowStart >= 1) { // 1 second window

View File

@@ -34,13 +34,3 @@ float wrapAngle(float angle) {
void disableBrownOut() {
REG_CLR_BIT(RTC_CNTL_BROWN_OUT_REG, RTC_CNTL_BROWN_OUT_ENA);
}
// Trim and split string by spaces
void splitString(String& str, String& token0, String& token1, String& token2) {
str.trim();
char chars[str.length() + 1];
str.toCharArray(chars, str.length() + 1);
token0 = strtok(chars, " ");
token1 = strtok(NULL, " "); // String(NULL) creates empty string
token2 = strtok(NULL, "");
}

View File

@@ -13,14 +13,18 @@ public:
Vector(float x, float y, float z): x(x), y(y), z(z) {};
float norm() const {
return sqrt(x * x + y * y + z * z);
}
bool zero() const {
return x == 0 && y == 0 && z == 0;
}
bool finite() const {
return isfinite(x) && isfinite(y) && isfinite(z);
}
float norm() const {
return sqrt(x * x + y * y + z * z);
}
void normalize() {
float n = norm();
x /= n;
@@ -28,6 +32,10 @@ public:
z /= n;
}
Vector operator + (const float b) const {
return Vector(x + b, y + b, z + b);
}
Vector operator * (const float b) const {
return Vector(x * b, y * b, z * b);
}
@@ -44,6 +52,14 @@ public:
return Vector(x - b.x, y - b.y, z - b.z);
}
Vector& operator += (const Vector& b) {
return *this = *this + b;
}
Vector& operator -= (const Vector& b) {
return *this = *this - b;
}
// Element-wise multiplication
Vector operator * (const Vector& b) const {
return Vector(x * b.x, y * b.y, z * b.z);
@@ -62,10 +78,6 @@ public:
return !(*this == b);
}
bool finite() const {
return isfinite(x) && isfinite(y) && isfinite(z);
}
static float dot(const Vector& a, const Vector& b) {
return a.x * b.x + a.y * b.y + a.z * b.z;
}
@@ -74,18 +86,18 @@ public:
return Vector(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
}
static float angleBetweenVectors(const Vector& a, const Vector& b) {
static float angleBetween(const Vector& a, const Vector& b) {
return acos(constrain(dot(a, b) / (a.norm() * b.norm()), -1, 1));
}
static Vector angularRatesBetweenVectors(const Vector& a, const Vector& b) {
static Vector rotationVectorBetween(const Vector& a, const Vector& b) {
Vector direction = cross(a, b);
if (direction.zero()) {
// vectors are opposite, return any perpendicular vector
return cross(a, Vector(1, 0, 0));
}
direction.normalize();
float angle = angleBetweenVectors(a, b);
float angle = angleBetween(a, b);
return direction * angle;
}
@@ -96,3 +108,6 @@ public:
p.print(z, 15);
}
};
Vector operator * (const float a, const Vector& b) { return b * a; }
Vector operator + (const float a, const Vector& b) { return b + a; }

View File

@@ -11,20 +11,19 @@
#define WIFI_SSID "flix"
#define WIFI_PASSWORD "flixwifi"
#define WIFI_UDP_IP "255.255.255.255"
#define WIFI_UDP_PORT 14550
#define WIFI_UDP_REMOTE_PORT 14550
WiFiUDP udp;
void setupWiFi() {
print("Setup Wi-Fi\n");
Serial.println("Setup Wi-Fi");
WiFi.softAP(WIFI_SSID, WIFI_PASSWORD);
udp.begin(WIFI_UDP_PORT);
}
void sendWiFi(const uint8_t *buf, int len) {
if (WiFi.softAPIP() == IPAddress(0, 0, 0, 0) && WiFi.status() != WL_CONNECTED) return;
udp.beginPacket(WIFI_UDP_IP, WIFI_UDP_PORT);
udp.beginPacket(WiFi.softAPBroadcastIP(), WIFI_UDP_REMOTE_PORT);
udp.write(buf, len);
udp.endPacket();
}

View File

@@ -27,31 +27,15 @@ long map(long x, long in_min, long in_max, long out_min, long out_max) {
return (delta * rise) / run + out_min;
}
size_t strlcpy(char* dst, const char* src, size_t len) {
size_t l = strlen(src);
size_t i = 0;
while (i < len - 1 && *src != '\0') { *dst++ = *src++; i++; }
*dst = '\0';
return l;
}
class __FlashStringHelper;
// Arduino String partial implementation
// https://www.arduino.cc/reference/en/language/variables/data-types/stringobject/
class String: public std::string {
public:
String(const char *str = "") : std::string(str ? str : "") {}
long toInt() const { return atol(this->c_str()); }
float toFloat() const { return atof(this->c_str()); }
bool isEmpty() const { return this->empty(); }
void toCharArray(char *buf, unsigned int bufsize, unsigned int index = 0) const {
strlcpy(buf, this->c_str() + index, bufsize);
}
void trim() {
this->erase(0, this->find_first_not_of(" \t\n\r"));
this->erase(this->find_last_not_of(" \t\n\r") + 1);
}
};
class Print;
@@ -145,11 +129,6 @@ public:
HardwareSerial Serial, Serial2;
class EspClass {
public:
void restart() { Serial.println("Ignore reboot in simulation"); }
} ESP;
void delay(uint32_t ms) {
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
}

View File

@@ -1,61 +0,0 @@
// Copyright (c) 2024 Oleg Kalachev <okalachev@gmail.com>
// Repository: https://github.com/okalachev/flix
// Partial implementation of the ESP32 Preferences library for the simulation
#include <map>
#include <fstream>
#include "util.h"
class Preferences {
private:
std::map<std::string, float> storage;
std::string storagePath;
void readFromFile() {
std::ifstream file(storagePath);
std::string key;
float value;
while (file >> key >> value) {
storage[key] = value;
}
}
void writeToFile() {
std::ofstream file(storagePath);
for (auto &pair : storage) {
file << pair.first << " " << pair.second << std::endl;
}
}
public:
bool begin(const char *name, bool readOnly = false, const char *partition_label = NULL) {
storagePath = getPluginPath().parent_path() / (std::string(name) + ".txt");
gzmsg << "Preferences initialized: " << storagePath << std::endl;
readFromFile();
return true;
}
bool isKey(const char *key) {
return storage.find(key) != storage.end();
}
size_t putFloat(const char *key, float value) {
storage[key] = value;
writeToFile();
return sizeof(value);
}
float getFloat(const char *key, float defaultValue = NAN) {
if (!isKey(key)) {
return defaultValue;
}
return storage[key];
}
bool clear() {
storage.clear();
writeToFile();
return true;
}
};

Some files were not shown because too many files have changed in this diff Show More